BBM 413
Fundamentals of Image Processing

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Spatial Filtering
Image Filtering

- **Image filtering**: computes a function of a *local neighborhood* at each pixel position
- Called “Local operator,” “Neighborhood operator,” or “Window operator”
- \(f: \text{image} \rightarrow \text{image} \)
- **Uses**:
 - Enhance images
 - Noise reduction, smooth, resize, increase contrast, recolor, artistic effects, etc.
 - Extract features from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching, e.g., eye template

Slide credit: D. Hoiem
Filtering

• The name “filter” is borrowed from frequency domain processing (next week’s topic)

• Accept or reject certain frequency components

• Fourier (1807): Periodic functions could be represented as a weighted sum of sines and cosines
Signals

- A signal is composed of low and high frequency components

 - low frequency components: smooth / piecewise smooth
 - Neighboring pixels have similar brightness values
 - You’re within a region

 - high frequency components: oscillatory
 - Neighboring pixels have different brightness values
 - You’re either at the edges or noise points
Low/high frequencies vs. fine/coarse-scale details

Original image

Low-frequencies (coarse-scale details) boosted

High-frequencies (fine-scale details) boosted

L. Karacan, E. Erdem and A. Erdem, Structure Preserving Image Smoothing via Region Covariances, TOG, 2013
Signals – Examples
Motivation: noise reduction

• Assume image is degraded with an additive model.
• Then,

\[
\text{Observation} = \text{True signal} + \text{noise} \\
\text{Observed image} = \text{Actual image} + \text{noise}
\]

low-pass filters \quad \text{high-pass filters}

\downarrow

\text{smooth the image}
Common types of noise

- **Salt and pepper noise:**
 random occurrences of black and white pixels

- **Impulse noise:**
 random occurrences of white pixels

- **Gaussian noise:**
 variations in intensity drawn from a Gaussian normal distribution
Gaussian noise

\[f(x, y) = \tilde{f}(x, y) + \eta(x, y) \]

Gaussian i.i.d. ("white") noise:
\[\eta(x, y) \sim \mathcal{N}(\mu, \sigma) \]

\[
\begin{align*}
\text{>> } & \text{noise = randn(size(im)).*sigma; } \\
\text{>> } & \text{output = im + noise; }
\end{align*}
\]

What is the impact of the sigma?

Slide credit: M. Hebert
Motivation: noise reduction

- Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.

Adapted from: K. Grauman
Motivation: noise reduction

• Make multiple observations of the same static scene
• Take the average
• Even multiple images of the same static scene will not be identical.
• What if we can’t make multiple observations?

What if there’s only one image?

Adapted from: K. Grauman
Image Filtering

• **Idea:** Use the information coming from the neighboring pixels for processing

• Design a transformation function of the local neighborhood at each pixel in the image
 – Function specified by a “filter” or mask saying how to combine values from neighbors.

• Various uses of filtering:
 – Enhance an image (denoise, resize, etc)
 – Extract information (texture, edges, etc)
 – Detect patterns (template matching)

Adapted from: K. Grauman
Filtering

- Processing done on a function
 - can be executed in continuous form (e.g. analog circuit)
 - but can also be executed using sampled representation

- Simple example: smoothing by averaging

Slide credit: S. Marschner
Linear filtering

• Filtered value is the linear combination of neighboring pixel values.

• Key properties
 – linearity: $\text{filter}(f + g) = \text{filter}(f) + \text{filter}(g)$
 – shift invariance: behavior invariant to shifting the input
 • delaying an audio signal
 • sliding an image around

• Can be modeled mathematically by convolution

Adapted from: S. Marschner
First attempt at a solution

• Let’s replace each pixel with an average of all the values in its neighborhood

• Assumptions:
 – Expect pixels to be like their neighbors (spatial regularity in images)
 – Expect noise processes to be independent from pixel to pixel

Slide credit: S. Marschner, K. Grauman
First attempt at a solution

• Let’s replace each pixel with an average of all the values in its neighborhood

• Moving average in 1D:

Slide credit: S. Marschner
Convolution warm-up

• Same moving average operation, expressed mathematically:

\[b_{\text{smooth}}[i] = \frac{1}{2r + 1} \sum_{j=i-r}^{i+r} b[j] \]
Discrete convolution

- Simple averaging:

\[b_{\text{smooth}}[i] = \frac{1}{2r + 1} \sum_{j=i-r}^{i+r} b[j] \]

- every sample gets the same weight

- Convolution: same idea but with weighted average

\[(a \ast b)[i] = \sum_{j} a[j]b[i - j] \]

- each sample gets its own weight (normally zero far away)

- This is all convolution is: it is a moving weighted average
Filters

- Sequence of weights \(a[j] \) is called a filter
- Filter is nonzero over its region of support
 - usually centered on zero: support radius \(r \)
- Filter is normalized so that it sums to 1.0
 - this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
 - since for images we usually want to treat left and right the same

\[
\frac{1}{2r+1}
\]

a box filter

Slide credit: S. Marschner
Convolution and filtering

- Can express sliding average as convolution with a box filter
- \(a_{\text{box}} = [\ldots, 0, 1, 1, 1, 1, 1, 0, \ldots] \)
Example: box and step

Slide credit: S. Marschner
Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) $[…, 1, 4, 6, 4, 1, …]/16$

Slide credit: S. Marschner
And in pseudocode...

function convolve(sequence a, sequence b, int r, int i)
 s = 0
 for j = -r to r
 s = s + a[j] * b[i - j]
 return s
Key properties

- **Linearity**: $\text{filter}(f_1 + f_2) = \text{filter}(f_1) + \text{filter}(f_2)$

- **Shift invariance**: $\text{filter}(\text{shift}(f)) = \text{shift}(\text{filter}(f))$
 - same behavior regardless of pixel location, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Slide credit: S. Lazebnik
Properties in more detail

• Commutative: $a \ast b = b \ast a$
 – Conceptually no difference between filter and signal

• Associative: $a \ast (b \ast c) = (a \ast b) \ast c$
 – Often apply several filters one after another: $(((a \ast b_1) \ast b_2) \ast b_3)$
 – This is equivalent to applying one filter: $a \ast (b_1 \ast b_2 \ast b_3)$

• Distributes over addition: $a \ast (b + c) = (a \ast b) + (a \ast c)$

• Scalars factor out: $ka \ast b = a \ast kb = k (a \ast b)$

• Identity: unit impulse $e = [...] , 0, 0, 1, 0, 0, [...]$, $a \ast e = a$
A gallery of filters

- Box filter
 - Simple and cheap
- Tent filter
 - Linear interpolation
- Gaussian filter
 - Very smooth antialiasing filter
Box filter

\[a_{\text{box}, r}[i] = \begin{cases}
 1/(2r + 1) & |i| \leq r, \\
 0 & \text{otherwise.}
\end{cases} \]

\[f_{\text{box}, r}(x) = \begin{cases}
 1/(2r) & -r \leq x < r, \\
 0 & \text{otherwise.}
\end{cases} \]
Tent filter

\[f_{\text{tent}}(x) = \begin{cases}
1 - |x| & |x| < 1, \\
0 & \text{otherwise};
\end{cases} \]

\[f_{\text{tent}, r}(x) = \frac{f_{\text{tent}}(x/r)}{r}. \]
Gaussian filter

\[f_g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]
Discrete filtering in 2D

• Same equation, one more index

\[(a * b)[i, j] = \sum_{i', j'} a[i', j'] b[i - i', j - j']\]

– now the filter is a rectangle you slide around over a grid of numbers

• Usefulness of associativity

– often apply several filters one after another: \(((a * b_1) * b_2) * b_3)\)
– this is equivalent to applying one filter: \(a * (b_1 * b_2 * b_3)\)
And in pseudocode...

```python
function convolve2d(filter2d a, filter2d b, int i, int j)
    s = 0
    r = a.radius
    for i' = -r to r do
        for j' = -r to r do
            s = s + a[i'][j'] * b[i - i'][j - j']
    return s
```
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Slide credit: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Slide credit: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Slide credit: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]
Image Correlation Filtering

- Center filter g at each pixel in image f
- Multiply weights by corresponding pixels
- Set resulting value in output image h
- g is called a *filter, mask, kernel, or template*
- Linear filtering is sum of dot product at each pixel position
- Filtering operation called *cross-correlation*
Correlation filtering

Say the averaging window size is \(2k+1 \times 2k+1\):

\[
G[i, j] = \frac{1}{(2k + 1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]
\]

Loop over all pixels in neighborhood around image pixel \(F[i,j]\)

Attribute uniform weight to each pixel

Now generalize to allow different weights depending on neighboring pixel’s relative position:

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

Non-uniform weights

Slide credit: K. Grauman
Correlation filtering

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

This is called cross-correlation, denoted \(G = H \otimes F \)

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter “kernel” or “mask” \(H[u,v] \) is the prescription for the weights in the linear combination.
Correlation filtering

Scene

Template (mask)
Correlation filtering

Detected template

Correlation map
Cross correlation example

Left

Right

scanline

Norm. corr

Slide credit: Fei-Fei Li
Averaging filter

- What values belong in the kernel H for the moving average example?

$$G = H \otimes F$$

Slide credit: K. Grauman
Smoothing by averaging

What if the filter size was 5 x 5 instead of 3 x 3?

Slide credit: K. Grauman
Boundary issues

- What is the size of the output?

- MATLAB: output size / “shape” options
 - \textit{shape} = ‘full’: output size is sum of sizes of \(f \) and \(g \)
 - \textit{shape} = ‘same’: output size is same as \(f \)
 - \textit{shape} = ‘valid’: output size is difference of sizes of \(f \) and \(g \)

Slide credit: S. Lazebnik
Boundary issues

• What about near the edge?
 – the filter window falls off the edge of the image
 – need to extrapolate
 – methods:
 • clip filter (black)
 • wrap around
 • copy edge
 • reflect across edge
Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):
 - clip filter (black): \texttt{imfilter(f, g, 0)}
 - wrap around: \texttt{imfilter(f, g, 'circular')}
 - copy edge: \texttt{imfilter(f, g, 'replicate')}
 - reflect across edge: \texttt{imfilter(f, g, 'symmetric')}
Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?

- Removes high-frequency components from the image ("low-pass filter").

This kernel is an approximation of a 2d Gaussian function:

\[h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}} \]
Smoothing with a Gaussian

Slide credit: K. Grauman
Gaussian filters

• What parameters matter here?

• **Size** of kernel or mask
 – Note, Gaussian function has infinite support, but discrete filters use finite kernels

\[\sigma = 5 \text{ with } 10 \times 10 \text{ kernel} \]
\[\sigma = 5 \text{ with } 30 \times 30 \text{ kernel} \]
Gaussian filters

- What parameters matter here?
- **Variance** of Gaussian: determines extent of smoothing

\[
\sigma = 2 \text{ with } 30 \times 30 \text{ kernel}
\]

\[
\sigma = 5 \text{ with } 30 \times 30 \text{ kernel}
\]

Slide credit: K. Grauman
Choosing kernel width

- Rule of thumb: set filter half-width to about 3σ
Matlab

>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation
>> imshow(outim);
Smoothing with a Gaussian

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.

```matlab
for sigma=1:3:10
    h = fspecial('gaussian', fsize, sigma);
    out = imfilter(im, h);
    imshow(out);
    pause;
end
```

Slide credit: K. Grauman
Gaussian Filters

$\sigma = 1$ pixel $\sigma = 5$ pixels $\sigma = 10$ pixels $\sigma = 30$ pixels

Slide credit: C.
Spatial Resolution and Color

original

Slide credit: C.
Blurring the G Component

original

processed

Slide credit: C.
Blurring the R Component

original
processed

Slide credit: C.
Blurring the B Component

original
processed

Slide credit: C.
“Lab” Color Representation

A transformation of the colors into a color space that is more perceptually meaningful:

- **L**: luminance
- **a**: red-green
- **b**: blue-yellow

Slide credit: C.
Blurring

original

processed

Slide credit: C.
Blurring a

original

processed

Slide credit: C.
Blurring b

original

processed

Slide credit: C.
Separability

• In some cases, filter is separable, and we can factor into two steps:
 – Convolve all rows
 – Convolve all columns
Separability of the Gaussian filter

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

\[= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{x^2}{2\sigma^2} \right) \right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{y^2}{2\sigma^2} \right) \right) \]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x \) and the other a function of \(y \).

In this case, the two functions are the (identical) 1D Gaussian.

Slide credit: D. Lowe
Separability example

2D convolution (center location only):

The filter factors into a product of 1D filters:

Perform convolution along rows:

Followed by convolution along the remaining column:

Slide credit: K. Grauman
Why is separability useful?

• What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
 – $O(n^2 m^2)$

• What if the kernel is separable?
 – $O(n^2 m)$
Properties of smoothing filters

- **Smoothing**
 - Values positive
 - Sum to 1 \rightarrow constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove “high-frequency” components; “low-pass” filter
Filtering an impulse signal

What is the result of filtering the impulse signal (image) F with the arbitrary kernel H?

$F[x, y]$ \quad \times \quad H[u, v]$ \quad G[x, y]$
Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]

Notation for convolution operator

Slide credit: K. Grauman
Convolution vs. Correlation

• **Convolution** is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 – convolution is a filtering operation

• **Correlation** compares the *similarity* of two sets of *data*. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 – correlation is a measure of relatedness of two signals

Slide credit: Fei-Fei Li
Convolution vs. correlation

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v] \]

\[G = H \ast F \]

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v] \]

\[G = H \otimes F \]

For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ?

Slide credit: K. Grauman
Predict the outputs using correlation filtering

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\quad \star \quad
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
= ?
\]

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array}
\quad \star \quad
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array}
= ?
\]

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{array}
\quad \star \quad
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
- \frac{1}{9}
= ?
\]

Slide credit: K. Grauman
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

Slide credit: D. Lowe
Practice with linear filters

Original

![Original Image]

Filtered (no change)

![Filtered Image]

Slide credit: D. Lowe
Practice with linear filters

Original

Slide credit: D. Lowe
Practice with linear filters

Original

Shifted left by 1 pixel with correlation

0 0 0
0 0 1
0 0 0

Slide credit: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

Slide credit: D. Lowe
Practice with linear filters

Original

Blur (with a box filter)

Slide credit: D. Lowe
Practice with linear filters

Original

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} - \frac{1}{9}\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix} = ?
\]
Practice with linear filters

Sharpening filter:
accentuates differences with local average

Original

Slide credit: D. Lowe
Filtering examples: sharpening

before

after

Slide credit: K. Grauman
Sharpening

• What does blurring take away?

Let’s add it back:
Unsharp mask filter

\[f + \alpha(f - f \ast g) = (1 + \alpha)f - \alpha f \ast g = f \ast ((1 + \alpha)e - g) \]

Slide credit: S. Lazebnik
Sharpening using Unsharp Mask Filter

Original

Filtered result

Slide credit: C.
Unsharp Masking

Slide credit: C.
Other filters

Slide credit: J. Hays

Sobel

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Vertical Edge (absolute value)
Other filters

Sobel

Horizontal Edge (absolute value)

Slide credit: J. Hays
Median filters

• A **Median Filter** operates over a window by selecting the median intensity in the window.

• What advantage does a median filter have over a mean filter?

• Is a median filter a kind of convolution?

adapted from: S. Seitz
Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter

Slide credit: K. Grauman
Median filter

Salt and pepper noise

Median filtered

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers
 - Median filter is edge preserving
Nextweek

• Introduction to frequency domain techniques
• The Fourier Transform