BBM 413
Fundamentals of Image Processing

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Frequency Domain Techniques – Part I
Review - Point Operations

- Smallest possible neighborhood is of size 1x1
- Process each point independently of the others
- Output image g depends only on the value of f at a single point (x,y)
- Transformation function T remaps the sample’s value:

 $$s = T(r)$$

 where

 - r is the value at the point in question
 - s is the new value in the processed result
 - T is an intensity transformation function
Review – Spatial Filtering

\[f[\ldots] \]

\[h[\ldots] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k, n+l] \]

Slide credit: S. Seitz
Review – Spatial Filtering

$$f[\cdot, \cdot]$$

$$h[\cdot, \cdot]$$

$$h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l]$$

Slide credit: S. Seitz
Review – Spatial Filtering

\[f[\cdot, \cdot] \]

\[h[\cdot, \cdot] \]

\[h[m, n] = \sum_{k,l} g[k, l] f[m+k, n+l] \]

Slide credit: S. Seitz
Review – Spatial Filtering

\[f[\cdot, \cdot] \]

\[h[\cdot, \cdot] \]

\[h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l] \]
Review – Spatial Filtering

\[f[\cdot, \cdot] \quad h[\cdot, \cdot] \]

\[g[\cdot, \cdot] = \frac{1}{9} \]

\[h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l] \]

Slide credit: S. Seitz
Review – Spatial Filtering

\[f[\ldots] \]

\[h[\ldots] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]

Slide credit: S. Seitz
Review – Spatial Filtering

Sobel

Slide credit: J. Hays
Review – Spatial Filtering

Fill in the blanks:

a) _ = D * B
b) A = _ * _
c) F = D * _
d) _ = D * D

Filtering Operator

Slide credit: D. Hoiem
Today

- Frequency domain techniques
- Images in terms of frequency
- Fourier Series
- Convolution Theorem
Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?
Why does a lower resolution image still make sense to us? What do we lose?
How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?
Answer to these questions?

- Thinking images in terms of frequency.

- Treat images as infinite-size, continuous periodic functions.
Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.
Jean Baptiste Joseph Fourier (1768–1830) had a crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

• Don’t believe it?
 – Neither did Lagrange, Laplace, Poisson and other big wigs
 – Not translated into English until 1878!

...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.
Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

- Don’t believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!

- But it’s (mostly) true!
 - called Fourier Series
 - there are some subtle restrictions

Slide credit: A. Efros
A sum of sines

Our building block:

\[A \sin(\omega x + \phi) \]

Add enough of them to get any signal \(f(x) \) you want!
Frequency Spectra

- example: \[g(t) = \sin(2\pi f t) + \frac{1}{3}\sin(2\pi (3f) t) \]
Frequency Spectra

Slide credit: A. Efros
Frequency Spectra

\[A \sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kt) \]
Frequency Spectra

Image credit: Lucas V. Barbosa
Example: Music

- We think of music in terms of frequencies at different magnitudes.
Other signals

• We can also think of all kinds of other signals the same way
Fourier Transform

We want to understand the frequency \(w \) of our signal. So, let's reparametrize the signal by \(w \) instead of \(x \):

\[
\begin{align*}
f(x) & \quad \rightarrow \quad \text{Fourier Transform} \quad \rightarrow \quad F(w) \\
A \sin(\omega x + \phi) & \quad \text{For every} \ w \text{ from 0 to inf,} \ F(w) \text{ holds the amplitude} \ A \text{ and} \\
& \quad \text{phase} \ \phi \text{ of the corresponding sine} \quad A \sin(\omega x + \phi) \\
\end{align*}
\]

• How can \(F \) hold both? Complex number trick!

\[
\begin{align*}
F(\omega) &= R(\omega) + iI(\omega) \\
A &= \pm \sqrt{R(\omega)^2 + I(\omega)^2} \\
\phi &= \tan^{-1} \frac{I(\omega)}{R(\omega)}
\end{align*}
\]

We can always go back:

\[
\begin{align*}
F(w) & \quad \rightarrow \quad \text{Inverse Fourier Transform} \quad \rightarrow \quad f(x) \\
\end{align*}
\]

Slide credit: A. Efros
Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

\[
\text{Amplitude: } A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \quad \text{Phase: } \phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}
\]
Discrete Fourier transform

- **Forward transform**

\[
F(u, v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j2\pi(ux/M+vy/N)}
\]

for \(u = 0, 1, 2, \ldots, M - 1, v = 0, 1, 2, \ldots, N - 1 \)

- **Inverse transform**

\[
f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j2\pi(ux/M+vy/N)}
\]

for \(x = 0, 1, 2, \ldots, M - 1, y = 0, 1, 2, \ldots, N - 1 \)

\(u, v \): the transform or frequency variables
\(x, y \): the spatial or image variables

Euler’s definition of \(e^{i\theta} = \cos \theta + i \sin \theta \)
The Fourier Transform

• Represent function on a new basis
 – Think of functions as vectors, with many components
 – We now apply a linear transformation to transform the basis
 • dot product with each basis element

• In the expression, u and v select the basis element, so a function of x and y becomes a function of u and v

• basis elements have the form $e^{-i2\pi(ux+vy)}$
How to interpret 2D Fourier Spectrum

Vertical orientation

Horizontal orientation

fx in cycles/image

0 f_{max}

Low spatial frequencies

High spatial frequencies

Log power spectrum

Slide credit: B. Freeman and A. Torralba
Fourier basis element

\[e^{-i2\pi(ux+vy)} \]

example, real part

\[F^{u,v}(x,y) \]

\[F^{u,v}(x,y) = \text{const. for } (ux+vy) = \text{const.} \]

Vector \((u,v)\)
- Magnitude gives frequency
- Direction gives orientation.

Slide credit: S. Thrun
Here u and v are larger than in the previous slide.
And larger still...

\[e^{-\pi i (ux + vy)} \]

\[e^{\pi i (ux + vy)} \]
2D FFT

Sinusoid with frequency = 1 and its FFT

Slide credit: M. H. Yang
2D FFT

Sinusoid with frequency = 3 and its FFT

Slide credit: M. H. Yang
2D FFT

Sinusoid with frequency = 5 and its FFT

Slide credit: M. H. Yang
2D FFT

Sinusoid with frequency = 10 and its FFT

Slide credit: M. H. Yang
2D FFT

Sinusoid with frequency = 15 and its FFT

Slide credit: M. H. Yang
2D FFT

Sinusoid with varying frequency and their FFT

Slide credit: M. H. Yang
Rotation

Sinusoid rotated at 30 degrees and its FFT

Slide credit: M. H. Yang
2D FFT

Sinusoid rotated at 60 degrees and its FFT

Slide credit: M. H. Yang
2D FFT

\[F(u, v) = \frac{1}{MN} \cdot \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-i2\pi(xu/M + yv/N)} \]
Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Slide credit: A. Efros
Signals can be composed

More: http://www.cs.unm.edu/~brayer/vision/fourier.html

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Slide credit: A. Efros
Some important Fourier Transforms
Some important Fourier Transforms

Slide credit: B. Freeman and A. Torralba
The Fourier Transform of some well-known images

Image

Log(1+Magnitude FT)

Slide credit: B. Freeman and A. Torralba
Fourier Amplitude Spectrum

Slide credit: B. Freeman and A. Torralba
Fourier transform magnitude

What in the image causes the dots?

Slide credit: B. Freeman and A. Torralba
Masking out the fundamental and harmonics from periodic pillars

Slide credit: B. Freeman and A. Torralba
The Convolution Theorem

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

\[F[g * h] = F[g]F[h] \]

- The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

\[F^{-1}[gh] = F^{-1}[g] * F^{-1}[h] \]

- **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!
Properties of Fourier Transforms

• Linearity \(\mathcal{F}[ax(t) + by(t)] = a\mathcal{F}[x(t)] + b\mathcal{F}[y(t)] \)

• Fourier transform of a real signal is symmetric about the origin

• The energy of the signal is the same as the energy of its Fourier transform

Slide credit: J. Hays
Filtering in spatial domain

Slide credit: D. Hoiem
Filtering in frequency domain
2D convolution theorem example

\[f(x,y) \]

\[h(x,y) \]

\[g(x,y) \]

\[|F(s_x,s_y)| \]

\[|H(s_x,s_y)| \]

\[|G(s_x,s_y)| \]

Slide credit: A. Efros
Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Slide credit: A. Efros
Filtering

Gaussian
Filtering

Box Filter

Slide credit: A. Efros
Fourier Transform pairs

Spatial domain

Frequency domain

\[F(s) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi sx} dx \]

Slide credit: A. Efros
Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:

Slide credit: A. Efros
Edges in images
FFT in Matlab

• Filtering with fft

\[
\text{im} = \ldots \% \text{“im” should be a gray-scale floating point image}
\]

\[
[\text{imh}, \text{imw}] = \text{size}(\text{im});
\]

\[
\text{fftsize} = 1024; \% \text{should be order of 2 (for speed) and include padding}
\]

\[
\text{im}_\text{fft} = \text{fft2}(\text{im}, \text{fftsize}, \text{fftsize}); \% 1) \text{fft im with padding}
\]

\[
\text{hs} = 50; \% \text{filter half-size}
\]

\[
\text{fil} = \text{fspecial}(\text{‘gaussian’}, \text{hs}*2+1, 10);
\]

\[
\text{fil}_\text{fft} = \text{fft2}(\text{fil}, \text{fftsize}, \text{fftsize}); \% 2) \text{fft fil, pad to same size as image}
\]

\[
\text{im}_\text{fil}_\text{fft} = \text{im}_\text{fft} .* \text{fil}_\text{fft}; \% 3) \text{multiply fft images}
\]

\[
\text{im}_\text{fil} = \text{ifft2}(\text{im}_\text{fil}_\text{fft}); \% 4) \text{inverse fft2}
\]

\[
\text{im}_\text{fil} = \text{im}_\text{fil}(1+\text{hs} : \text{size}(\text{im},1)+\text{hs}, 1+\text{hs} : \text{size}(\text{im},2)+\text{hs}); \% 5) \text{remove padding}
\]

• Displaying with fft

\[
\text{figure}(1), \text{imagesc}(\log(\text{abs}((\text{fftshift}(\text{im}_\text{fft}))))), \text{axis image}, \text{colormap jet}
\]
Phase and Magnitude

• Curious fact
 – all natural images have about the same magnitude transform
 – hence, phase seems to matter, but magnitude largely doesn’t

• Demonstration
 – Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?
This is the magnitude transform of the cheetah picture.

Slide credit: B. Freeman and A. Torralba
This is the magnitude transform of the zebra picture

Slide credit: B. Freeman and A. Torralba
Reconstruction with zebra phase, cheetah magnitude

Slide credit: B. Freeman and A. Torralba
Reconstruction with cheetah phase, zebra magnitude

Slide credit: B. Freeman and A. Torralba
Clues from Human Perception

- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid-high frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters

Slide credit: J. Hays
Campbell-Robson contrast sensitivity curve

The higher the frequency the less sensitive human visual system is...
Lossy Image Compression (JPEG)

\[X_{k_1,k_2} = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x_{n_1,n_2} \cos \left[\frac{\pi}{N_1} \left(n_1 + \frac{1}{2} \right) k_1 \right] \cos \left[\frac{\pi}{N_2} \left(n_2 + \frac{1}{2} \right) k_2 \right]. \]
Using DCT in JPEG

- The first coefficient $B(0,0)$ is the DC component, the average intensity.
- The top-left coeffs represent low frequencies, the bottom right – high frequencies.

Slide credit: A. Bobick
Image compression using DCT

- DCT enables image compression by concentrating most image information in the low frequencies
- Loose unimportant image info (high frequencies) by cutting B(u,v) at bottom right
- The decoder computes the inverse DCT – IDCT
JPEG compression comparison

89k

12k

Slide credit: A. Bobick
Things to Remember

• Sometimes it makes sense to think of images and filtering in the frequency domain
 – Fourier analysis

• Can be faster to filter using FFT for large images (N logN vs. N² for auto-correlation)

• Images are mostly smooth
 – Basis for compression

Slide credit: J. Hays
Practice question

1. Match the spatial domain image to the Fourier magnitude image
Summary

- Frequency domain techniques
- Images in terms of frequency
- Fourier Series
- Convolution Theorem
Next Week

• Sampling
• Gabor wavelets
• Steerable filters