Spatial Filtering

Image Filtering

- **Image filtering**: computes a function of a local neighborhood at each pixel position
- Called “Local operator,” “Neighborhood operator,” or “Window operator”
- \(f: \text{image} \rightarrow \text{image} \)
- Uses:
 - Enhance images
 - Noise reduction, smooth, resize, increase contrast, recolor, artistic effects, etc.
 - Extract features from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching, e.g., eye template

Filtering

- The name “filter” is borrowed from frequency domain processing (next week’s topic)
- Accept or reject certain frequency components
- Fourier (1807): Periodic functions could be represented as a weighted sum of sines and cosines

Signals

- A signal is composed of low and high frequency components
 - Low frequency components: smooth / piecewise smooth
 - Neighboring pixels have similar brightness values
 - You’re within a region
 - High frequency components: oscillatory
 - Neighboring pixels have different brightness values
 - You’re either at the edges or noise points
Motivation: noise reduction

- Assume image is degraded with an additive model.
- Then,

\[
\text{Observation} = \text{True signal} + \text{noise} \\
\text{Observed image} = \text{Actual image} + \text{noise}
\]

\[
\begin{align*}
\text{low-pass filters} & \quad \text{smooth the image} \\
\text{high-pass filters} &
\end{align*}
\]

Common types of noise

- **Salt and pepper noise**: random occurrences of black and white pixels
- **Impulse noise**: random occurrences of white pixels
- **Gaussian noise**: variations in intensity drawn from a Gaussian normal distribution
Gaussian noise

\[f(x, y) = \hat{f}(x, y) + \eta(x, y) \]

What is the impact of the sigma?

Slide credit: M. Hebert

Motivation: noise reduction

- Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.

Adapted from: K. Grauman

Image Filtering

- Idea: Use the information coming from the neighboring pixels for processing
- Design a transformation function of the local neighborhood at each pixel in the image
 - Function specified by a “filter” or mask saying how to combine values from neighbors.
- Various uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Adapted from: K. Grauman
Filtering

- Processing done on a function
 - can be executed in continuous form (e.g. analog circuit)
 - but can also be executed using sampled representation
- Simple example: smoothing by averaging

![Continuous and discrete smoothing filters](image)

Linear filtering

- Filtered value is the linear combination of neighboring pixel values.
- Key properties
 - linearity: \(\text{filter}(f + g) = \text{filter}(f) + \text{filter}(g) \)
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by *convolution*

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors (spatial regularity in images)
 - Expect noise processes to be independent from pixel to pixel

![Moving average in 1D](image)
Convolution warm-up

- Same moving average operation, expressed mathematically:

\[b_{\text{smooth}}[i] = \frac{1}{2r + 1} \sum_{j=i-r}^{i+r} b[j] \]

Discrete convolution

- Simple averaging:

\[b_{\text{smooth}}[i] = \frac{1}{2r + 1} \sum_{j=i-r}^{i+r} b[j] \]
 - every sample gets the same weight

- Convolution: same idea but with weighted average

\[(a \ast b)[i] = \sum_{j} a[j]b[i-j] \]
 - each sample gets its own weight (normally zero far away)

- This is all convolution is: it is a moving weighted average

Filters

- Sequence of weights \(a[j] \) is called a filter
- Filter is nonzero over its region of support
 - usually centered on zero: support radius \(r \)
- Filter is normalized so that it sums to 1.0
 - this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
 - since for images we usually want to treat left and right the same

Convolution and filtering

- Can express sliding average as convolution with a box filter
 - \(a_{\text{box}} = \ldots, 0, 1, 1, 1, 1, 0, \ldots \)
Example: box and step

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) $[\ldots, 1, 4, 6, 4, 1, \ldots]/16$

And in pseudocode...

```python
function convolve(sequence a, sequence b, int r, int i)
    s = 0
    for j = -r to r
        s = s + a[j] * b[i - j]
    return s
```

Key properties

- **Linearity**: $\text{filter}(f_1 + f_2) = \text{filter}(f_1) + \text{filter}(f_2)$
- **Shift invariance**: $\text{filter}(\text{shift}(f)) = \text{shift}(\text{filter}(f))$
 - same behavior regardless of pixel location, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Theoretical result: any linear shift-invariant operator can be represented as a convolution.
Properties in more detail

- **Commutative:** \(a * b = b * a \)
 - Conceptually no difference between filter and signal
- **Associative:** \(a * (b * c) = (a * b) * c \)
 - Often apply several filters one after another: \(((a * b_1) * b_2) * b_3)\)
 - This is equivalent to applying one filter: \(a * (b_1 * b_2 * b_3)\)
- **Distributes over addition:** \(a * (b + c) = (a * b) + (a * c)\)
- ** Scalars factor out:** \(ka * b = a * kb = k(a * b)\)
- **Identity:** unit impulse \(e = [\ldots, 0, 1, 0, 0, \ldots] \), \(a * e = a \)

A gallery of filters

- **Box filter**
 - Simple and cheap
- **Tent filter**
 - Linear interpolation
- **Gaussian filter**
 - Very smooth antialiasing filter

Box filter

\[
a_{\text{box},r}[i] = \begin{cases}
\frac{1}{2r+1} & |i| \leq r, \\
0 & \text{otherwise.}
\end{cases}
\]

\[
f_{\text{box},r}(x) = \begin{cases}
\frac{1}{2r} & -r \leq x < r, \\
0 & \text{otherwise.}
\end{cases}
\]

Tent filter

\[
f_{\text{tent}}(x) = \begin{cases}
1 - |x| & |x| < 1, \\
0 & \text{otherwise;}
\end{cases}
\]

\[
f_{\text{tent},r}(x) = f_{\text{tent}}(x / r).
\]
Gaussian filter

\[f_g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]

Discrete filtering in 2D

- Same equation, one more index
 \[(a \ast b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j'] \]
 - now the filter is a rectangle you slide around over a grid of numbers
- Usefulness of associativity
 - often apply several filters one after another: \(((a \ast b_1) \ast b_2) \ast b_3\)
 - this is equivalent to applying one filter: \(a \ast (b_1 \ast b_2 \ast b_3)\)

And in pseudocode...

```python
function convolve2d(filter1d a, filter1d b, int i, int j)
    s = 0
    r = a.radius
    for i' = -r to r
        for j' = -r to r
            s = s + a[i'][j']b[i-i'][j-j']
    return s
```

Moving Average In 2D

- \[F[x, y] \]
- \[G[x, y] \]
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Image Correlation Filtering

- Center filter \(g \) at each pixel in image \(f \)
- Multiply weights by corresponding pixels
- Set resulting value in output image \(h \)
- \(g \) is called a **filter, mask, kernel, or template**
- Linear filtering is sum of dot product at each pixel position
- Filtering operation called **cross-correlation**

Correlation filtering

Say the averaging window size is \(2k+1 \times 2k+1 \):

\[
G[i, j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]
\]

Loop over all pixels in neighborhood around image pixel \(F[i,j] \)

Attribute uniform weight to each pixel

Now generalize to allow different weights depending on neighboring pixel’s relative position:

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

Non-uniform weights

This is called cross-correlation, denoted \(G = H \otimes F \)

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter “kernel” or “mask” \(H[u,v] \) is the prescription for the weights in the linear combination.
Correlation filtering

Cross correlation example

Averaging filter

Slide credit: Fei-Fei Li

Slide credit: K. Grauman
Smoothing by averaging

Smoothing by averaging depicts box filter:
white = high value, black = low value

- What if the filter size was 5 x 5 instead of 3 x 3?

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{bmatrix}
\]

This kernel is an approximation of a 2d Gaussian function:

\[
h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}
\]

- Removes high-frequency components from the image ("low-pass filter").

Smoothing with a Gaussian

Smoothing with a Gaussian
Gaussian filters

- What parameters matter here?
- **Size** of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

\[
\sigma = 5 \text{ with } 10 \times 10 \text{ kernel} \\
\sigma = 5 \text{ with } 30 \times 30 \text{ kernel}
\]

Slide credit: K. Grauman

Choosing kernel width

- Rule of thumb: set filter half-width to about \(3\sigma\)

\[
\text{Effect of } \sigma
\]

Slide credit: S. Lazebnik

Gaussian Filters

Parameter \(\sigma\) is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.

\[
\sigma = 1 \text{ pixel } \quad \sigma = 5 \text{ pixels } \quad \sigma = 10 \text{ pixels } \quad \sigma = 30 \text{ pixels}
\]

Slide credit: C. Dyer
Spatial Resolution and Color

Blurring the G Component

Blurring the R Component

Blurring the B Component

Slide credit: C. Dyer
“Lab” Color Representation

A transformation of the colors into a color space that is more perceptually meaningful:
L: luminance, a: red-green, b: blue-yellow

Blurring L

Blurring a

Blurring b
Separability

• In some cases, filter is separable, and we can factor into two steps:
 – Convolve all rows
 – Convolve all columns

Separability of the Gaussian filter

\[G(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(\frac{-x^2 + y^2}{2\sigma^2}\right) \]

\[= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-x^2}{2\sigma^2}\right) \right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-y^2}{2\sigma^2}\right) \right) \]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x \) and the other a function of \(y \).

In this case, the two functions are the (identical) 1D Gaussian.

Why is separability useful?

• What is the complexity of filtering an \(n \times n \) image with an \(m \times m \) kernel?
 – \(O(n^2 m^2) \)

• What if the kernel is separable?
 – \(O(n^2 m) \)
Properties of smoothing filters

• **Smoothing**
 - Values positive
 - Sum to 1 → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove “high-frequency” components; “low-pass” filter

Filtering an impulse signal

What is the result of filtering the impulse signal (image) \(F \) with the arbitrary kernel \(H \)?

Convolution

• **Convolution:**
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]

Notation for convolution operator

Convolution vs. Correlation

• A **convolution** is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - convolution is a filtering operation

• **Correlation** compares the similarity of two sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - correlation is a measure of relatedness of two signals
Convolvulation vs. correlation

Convolution

\[G[i, j] = \sum_{u=0}^{k} \sum_{v=0}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]

Cross-correlation

\[G[i, j] = \sum_{u=0}^{k} \sum_{v=0}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ?

Predict the outputs using correlation filtering

\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array} \]

\[\ast \]

\[= ? \]

\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array} \]

\[\ast \]

\[= ? \]

\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{array} \]

\[\ast \]

\[\frac{1}{9} \begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array} \]

\[= ? \]

Practice with linear filters

Original

\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array} \]

Filtered

\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array} \]

(no change)

Practice with linear filters

Original

\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array} \]

Filtered

\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array} \]

(no change)
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

?

Slide credit: D. Lowe

Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array}
\]

Shifted left by 1 pixel with correlation

Slide credit: D. Lowe

Practice with linear filters

Original

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

?

Slide credit: D. Lowe

Practice with linear filters

Original

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

Blur (with a box filter)

Slide credit: D. Lowe
Practice with linear filters

Original

0 0 0
0 2 0
0 0 0
- \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}

?

Sharpening filter:
accentuates differences with local average

Filtering examples: sharpening

before

after

Sharpening

• What does blurring take away?

Let's add it back:

original

smoothed (5x5)

detail

original

detail

original
detail

Sharpened

Slide credit: D. Lowe

Slide credit: K. Grauman

Slide credit: S. Lazebnik
Unsharp mask filter

\[f + \alpha (f - f \ast g) = (1 + \alpha) f - \alpha f \ast g = f \ast ((1 + \alpha) e - g) \]

Unsharp Masking

Sharpening using Unsharp Mask Filter

Other filters

Vertical Edge (absolute value)
Other filters

- Sobel

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

(horizontal edge (absolute value))

Median filters

- A **Median Filter** operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter

Median filter

- Salt and pepper noise
- Median filtered

- Plots of a row of the image
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers
 - Median filter is edge preserving

Nextweek

- Introduction to frequency domain techniques
- The Fourier Transform