Review - Fourier Transform

We want to understand the frequency \(w \) of our signal. So, let’s reparametrize the signal by \(w \) instead of \(x \):

\[
\begin{align*}
 f(x) & \quad \rightarrow \quad \text{Fourier Transform} \quad \rightarrow \quad F(w) \\
 F(\omega) & = R(\omega) + iI(\omega) \\
 A & = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \\
 \phi & = \tan^{-1} \frac{I(\omega)}{R(\omega)}
\end{align*}
\]

For every \(w \) from 0 to inf, \(F(w) \) holds the amplitude \(A \) and phase \(f \) of the corresponding sine

\(\sin(\omega x + \phi) \)

- How can \(F \) hold both? Complex number trick!

We can always go back:

\[
\begin{align*}
 F(w) & \quad \rightarrow \quad \text{Inverse Fourier Transform} \quad \rightarrow \quad f(x)
\end{align*}
\]

- Amplitude: \(A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \)
- Phase: \(\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)} \)

Review – Frequency Domain Techniques

- Thinking images in terms of frequency.
- Treat images as infinite-size, continuous periodic functions.

Review - Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

- Slide credit: A. Efros
Review - Discrete Fourier transform

- Forward transform

\[F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)} \]

for \(u = 0, 1, 2, \ldots, M - 1, v = 0, 1, 2, \ldots, N - 1 \)

- Inverse transform

\[f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)} \]

for \(x = 0, 1, 2, \ldots, M - 1, y = 0, 1, 2, \ldots, N - 1 \)

\(u, v \): the transform or frequency variables
\(x, y \): the spatial or image variables

Review - The Fourier Transform

- Represent function on a new basis
 - Think of functions as vectors, with many components
 - We now apply a linear transformation to transform the basis
 - dot product with each basis element

- In the expression, \(u \) and \(v \) select the basis element, so a function of \(x \) and \(y \) becomes a function of \(u \) and \(v \)

- basis elements have the form \(e^{-j2\pi(ux+vy)} \)

Review - Properties of Fourier Transforms

- Linearity \(\mathcal{F}[ax(t) + by(t)] = a \mathcal{F}[x(t)] + b \mathcal{F}[y(t)] \)

- Fourier transform of a real signal is symmetric about the origin

- The energy of the signal is the same as the energy of its Fourier transform
Review - The Convolution Theorem

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

\[F[g * h] = F[g]F[h] \]

- The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

\[F^{-1}[gh] = F^{-1}[g] * F^{-1}[h] \]

- **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!

Slide credit: A. Efros

Review - Filtering in frequency domain

Slide credit: D. Hoiem

Today

- Sampling
- Gabor wavelets, Steerable filters

Slide credit: A. Efros

Today

- Sampling
- Gabor wavelets, Steerable filters
Why does a lower resolution image still make sense to us? What do we lose?

Sampling

Sampling

Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function’s values at many points

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - how can we be sure we are filling in the gaps correctly?

Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to “guessing” what the function did in between
Sampling Theorem

Continuous signal:
(Real world signal)

\[f(x) \]

Shah function (Impulse train):
(What the image measures)

\[s(x) = \sum_{n=-\infty}^{\infty} \delta(x - nx_0) \]

Sampled function:

\[f_s(x) = f(x) \delta(x) = f(x) \sum_{n=-\infty}^{\infty} \delta(x - nx_0) \]

Fourier Transform Pairs

FT of an “impulse train” is an impulse train!

Sampling Theorem

Sampled function:

\[f_s(x) = f(x) \delta(x) = f(x) \sum_{n=-\infty}^{\infty} \delta(x - nx_0) \]

Sampling Theorem

Sampled function:

\[f_s(x) = f(x) \delta(x) = f(x) \sum_{n=-\infty}^{\infty} \delta(x - nx_0) \]

\[F_s(u) = F(u) * S(u) = F(u) * \frac{1}{x_0} \sum_{n=-\infty}^{\infty} \delta \left(u - \frac{n}{x_0} \right) \]

Slide credit: S. Narasimhan

Note that these are derived using angular frequency \(e^{\text{iut}} \)
Sampling Theorem

Sampled function:

\[f_s(x) = f(x) = \sum_{n=-\infty}^{\infty} \delta(x - nx_0) \]

Sampling frequency \(\frac{1}{x_0} \)

\[F_s(u) = F(u) * S(u) = F(u) * \frac{1}{x_0} \sum_{n=-\infty}^{\infty} \delta(u - \frac{n}{x_0}) \]

Slide credit: S. Narasimhan

Subsampling by a factor of 2

Throw away every other row and column to create a 1/2 size image

Slide credit: D. Hoiem

Undersampling

- What if we “missed” things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - aliasing: signals “traveling in disguise” as other frequencies

Slide credit: S. Marschner

Undersampling

- What if we “missed” things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - aliasing: signals “traveling in disguise” as other frequencies

Slide credit: S. Marschner
Undersampling

- What if we “missed” things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - aliasing: signals “traveling in disguise” as other frequencies

Slide credit: S. Marschner
Aliasing problem

- Sub-sampling may be dangerous….
- Characteristic errors may appear:
 - “Wagon wheels rolling the wrong way in movies”
 - “Checkerboards disintegrate in ray tracing”
 - “Striped shirts look funny on color television”

More examples

Check out Moire patterns on the web.

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what’s happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

```
frame 0  frame 1  frame 2  frame 3  frame 4
```

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)
Sampling Theorem

Sampled function:

\[f_s(x) = f(x)h(x) = f(x) \sum_{n=-\infty}^{\infty} \delta(x - nx_0) \]

\[F_s(u) = F(u) \ast S(u) = F(u) \ast \frac{1}{x_0} \sum_{n=-\infty}^{\infty} \delta(u - \frac{n}{x_0}) \]

When can we recover \(F(u) \) from \(F_s(u) \)?

Only if \(u_{\text{max}} \leq \frac{1}{2x_0} \) (Nyquist Frequency)

We can use

\[C(u) = \begin{cases} x_0 & |u| < \frac{1}{2x_0} \\ 0 & \text{otherwise} \end{cases} \]

Then \(F(u) = F_s(u)C(u) \) and \(f(x) = \text{IFT}[F(u)] \)

Sampling frequency must be greater than \(2u_{\text{max}} \)
Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be \(\geq 2 \times f_{\text{max}} \)
- \(f_{\text{max}} = \text{max frequency of the input signal} \)
- This will allow to reconstruct the original perfectly from the sampled version

Antialiased

Solutions:
- Sample more often
- Get rid of all frequencies that are greater than half the new sampling frequency
 - Will lose information
 - But it's better than aliasing
 - Apply a smoothing filter

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)
Impulse Train

- Define a *comb* function (impulse train) in 1D as follows:

\[
\text{comb}_M(x) = \sum_{k=-\infty}^{\infty} \delta(x - kM)
\]

where \(M \) is an integer.

![Comb function diagram](image)

Impulse Train in 2D (bed of nails)

\[
\text{comb}_{M,N}(x, y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x - kM, y - lN)
\]

- Fourier Transform of an impulse train is also an impulse train:

\[
\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x - kM, y - lN) \Leftrightarrow \frac{1}{MN} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta\left(\frac{u}{M}, \frac{v}{N}\right)
\]

\[
\text{comb}_{M,N}(x, y) \quad \leftrightarrow \quad \text{comb}_{M \cdot N}(u, v)
\]

As the comb samples get further apart, the spectrum samples get closer together!

Sampling low frequency signal

\[
f(x) \Leftrightarrow F(u)
\]

- **Multiply:**

\[
f(x) \ast \text{comb}_{M}(x) \Leftrightarrow F(u) \ast \text{comb}_{\frac{1}{M}}(u)
\]

- **Convolve:**

\[
f(x) \ast \text{comb}_{M}(x) \Leftrightarrow F(u) \ast \text{comb}_{\frac{1}{M}}(u)
\]

Impulse Train in 1D

- Recall:

\[
\text{comb}_{\frac{1}{2}}(x) \quad \text{and} \quad \frac{1}{2} \text{comb}_{\frac{1}{2}}(u)
\]

- **Remember:**

Scaling:

\[
f(ax) \Leftrightarrow \frac{1}{|a|} F\left(\frac{u}{a}\right)
\]

Slide credit: B. K. Gunturk
Sampling low frequency signal

If there is no overlap, the original signal can be recovered from its samples by low-pass filtering.

“No problem” if \(\frac{1}{M} > 2W \)

Slide credit: B. K. Gunturk

Sampling high frequency signal

Overlap: The high frequency energy is folded over into low frequency. It is “aliasing” as lower frequency energy. And you cannot fix it once it has happened.

Slide credit: B. K. Gunturk
Sampling high frequency signal

- Without anti-aliasing filter:
 \[f(x) \ast \text{comb}_M(x) \]

- With anti-aliasing filter:
 \[[f(x) \ast h(x)] \ast \text{comb}_M(x) \]

Algorithm for downsampling by factor of 2

1. Start with image
2. Apply low-pass filter
3. Sample every other pixel

Anti-aliasing

<table>
<thead>
<tr>
<th>256x256</th>
<th>128x128</th>
<th>64x64</th>
<th>32x32</th>
<th>16x16</th>
</tr>
</thead>
</table>

Subsampling without pre-filtering

- 256x256
- 128x128
- 64x64
- 32x32
- 16x16

- 1/2
- 1/4 (2x zoom)
- 1/8 (4x zoom)
Subsampling with Gaussian pre-filtering

Gaussian 1/2
G 1/4
G 1/8

Gaussian 1/2
G 1/4
G 1/8

1000 pixel width

Up-sampling

How do we compute the values of pixels at fractional positions?

by dropping pixels

gaussian filter

250 pixel width
Up-sampling

How do we compute the values of pixels at fractional positions?

Bilinear sampling:
\[f(x + a, y + b) = \]
\[(1 - a)(1 - b)f(x, y) + \]
\[a(1 - b)f(x + 1, y) + \]
\[(1 - a)b f(x, y + 1) + \]
\[ab f(x + 1, y + 1) \]

Bicubic sampling fits a higher order function using a larger area of support.

Up-sampling Methods

Nearest neighbor Bilinear Bicubic

Nearest neighbor Bilinear Bicubic
Today

- Sampling
- Gabor wavelets, Steerable filters

Fourier Filtering

Multiply by a filter in the frequency domain \Rightarrow convolve with the filter in spatial domain.

Phase Carries More Information

Raw Images:

Magnitude and Phase:

Reconstruct (inverse FFT) mixing the magnitude and phase images

Phase “Wins”

What is a good representation for image analysis?

- Fourier transform domain tells you “what” (textural properties), but not “where”.
- Pixel domain representation tells you “where” (pixel location), but not “what”.
- Want an image representation that gives you a local description of image events—what is happening where.

Images from Steve Lehar http://cns-alumni.bu.edu/~slehar An Intuitive Explanation of Fourier Theory

Slide credit: S. Thrun

Slide credit: B. Freeman and A. Torralba
Analyzing local image structures

The image through the Gaussian window

Analysis of local frequency

Gabor wavelets

Fourier basis:
\[e^{j 2 \pi u_0 x} \]

Gabor wavelet:
\[\psi(x, y) = e^{\frac{-x^2 + y^2}{2\sigma^2}} e^{j 2 \pi u_0 x} \]

We can look at the real and imaginary parts:
\[\psi_r(x, y) = e^{\frac{-x^2 + y^2}{2\sigma^2}} \cos(2\pi u_0 x) \]
\[\psi_i(x, y) = e^{\frac{-x^2 + y^2}{2\sigma^2}} \sin(2\pi u_0 x) \]

\(h(x, y) = e^{\frac{-x^2 + y^2}{2\sigma^2}} \)

\[\psi_r(x, y) = e^{\frac{-x^2 + y^2}{2\sigma^2}} \cos(2\pi u_0 x) \]
\[\psi_i(x, y) = e^{\frac{-x^2 + y^2}{2\sigma^2}} \sin(2\pi u_0 x) \]

\(u_0 = 0 \)
\(u_0 = 0.1 \)
\(u_0 = 0.2 \)

Too much
Too little

Too much
Too little

Too little

Probably still too little... ...but hard enough for now

Slide credit: B. Freeman and A. Torralba
Gabor filters

- **Top row** shows anti-symmetric (or odd) filters; these are good for detecting odd-phase structures like edges.
- **Bottom row** shows the symmetric (or even) filters, good for detecting line phase contours.

Quadrature filter pairs

- A quadrature filter is a complex filter whose real part is related to its imaginary part via a Hilbert transform along a particular axis through the origin.
Quadrature filter pairs

Contrast invariance! (same energy response for white dot on black background as for a black dot on a white background).

Slide credit: B. Freeman and A. Torralba

How quadrature pair filters work

Figure 3-5: Frequency content of two bandpass filters in quadrature. (a) even phase filter, called G in text, and (b) odd phase filter, H. Plus and minus signs illustrate relative sign of regions in the frequency domain. See Fig. 3-6 for calculation of the frequency content of the energy measure derived from these two filters.

Slide credit: B. Freeman and A. Torralba
Oriented Filters

- **Gabor wavelet:**
 \[y(x, y) = e^{-\frac{x^2+y^2}{2\sigma^2}} e^{i2\pi \Psi} \]

- **Tuning filter orientation:**
 \[x' = \cos(\alpha)x + \sin(\alpha)y \]
 \[y' = -\sin(\alpha)x + \cos(\alpha)y \]

Steerable filters

Derivatives of a Gaussian:

\[h(x, y) = \frac{\partial y(x, y)}{\partial x} = -\frac{x}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \]

\[h_y(x, y) = \frac{\partial y(x, y)}{\partial y} = -\frac{y}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \]

An arbitrary orientation can be computed as a linear combination of those two basis functions:

\[h_{\alpha}(x, y) = \cos(\alpha)h_x(x, y) + \sin(\alpha)h_y(x, y) \]

The representation is “shiftable” on orientation: We can interpolate any other orientation from a finite set of basis functions.
Steerable filters

Fig. 3. Steerable filter system block diagram. A bank of dedicated filters process the image. Their outputs are multiplied by a set of gain maps that adaptively control the orientation of the synthesized filter.

Local image representations

V1 sketch: hypercolumns

Summary

- Sampling
- Gabor wavelets, Steerable filters
Next lecture

• Image pyramids