BBM 444, Spring 2022 - Programming Assignment 1
Hacettepe University, Department of Computer Engineering

BBM 444 — Programming Assignment 1: Camera Pipeline
Due date: Tuesday, 8-3-2022, 11:59 PM.

Overview

The goal of this assignment is to get you familiarize with the standard camera pipeline of digital
photographyHYou will build your own version of a very basic image processing pipeline (without
denoising). You will use this to turn the RAW image into an image that can be displayed on a
computer monitor or printed on paper. The Python packages required for this assignment are
numpy, scipy, skimage, and matplotlib.

There is a “Hints and Information” section at the end of this document that is likely to help. It
is highly recommended that you read that section in full before starting to work on the assignment.

Developing RAW images

For this problem, you will use the file campus .nef within the assignment data ZIP archive provided
in the course webpage. This is a RAW image that was captured with a Nikon D3400 DSLR camera.
As discussed in class, RAW images do not look like standard images before first undergoing a
“development” processﬂ The developed image should look something like the image in Figure
The final result can vary greatly, depending on the choices you make in your implementation of
the image processing pipeline.

Figure 1: One possible developed version of the RAW image provided with the assignment.

! Adapted from the programming assignment developed by Ioannis Gkioulekas for his computational photography
class.

2The term “develop” comes from the analogy with the process of developing film into a photograph. As discussed
in class, the same process is often called “renderin” the RAW images.

Page 1

BBM 444, Spring 2022 - Programming Assignment 1
Hacettepe University, Department of Computer Engineering

1. Implement a basic image processing pipeline (80 points)

RAW image conversion (5 points). The RAW image file cannot be read directly by skimage.
You will first need to convert it into a .tiff file. You can do this conversion using a command-line
tool called dcraw (https://www.dechifro.org/dcraw/)). After you have downloaded and installed
dcraw, you will first do a “reconnaissance run” to extract some information about the RAW image.
For this, call dcraw as follows:

dcraw -4 -d -v -T <RAW_filename>

In the output, you will see (among other information) the following:

Scaling with darkness <black>, saturation <white>, and
multipliers <r_scale> <g_scale> <b_scale> <g_scale>

Make sure to record the integer numbers for <black> and <white>.
Calling dcraw as above will produce a .tiff file. Do not use this! Instead, delete the file, and
call dcraw once more as follows (note the different flags):

dcraw -4 -D -T <RAW_filename>

This will produce a new .tiff file that you can use for the rest of this problem.

Python initials (5 points). We will be using skimage function imread for reading images.
Originally, it will be in the form of a numpy 2D-array of unsigned integers. Check and report
how many bits per pixel the image has, its width, and its height. Then, convert the image into a
double-precision array. (See numpy functions shape, dtype and astype.)

Linearization (5 points). The 2D-array is not yet a linear image. It is possible that it has an
offset due to dark noise, and saturated pixels due to over-exposure. Additionally, even though the
original data-type of the image was 16 bits, only 14 of those have meaningful information, meaning
that the maximum possible value for pixels is 4095 (that’s 2! — 1). For the provided image file,
you can assume the following: All pixels with a value lower than <black> correspond to pixels that
would be black, were it not for noise. All pixels with a value above <white> are saturated. The
values <black> for the black level and <white> for saturation are those you recorded earlier from
the reconnaissance run of dcraw.

Convert the image into a linear array within the range [0, 1]. Do this by applying a linear
transformation (shift and scale) to the image, so that the value <black> is mapped to 0, and the
value <white> is mapped to 1. Then, clip negative values to 0, and values greater than 1 to 1.
(See numpy function clip.)

Identifying the correct Bayer pattern (20 points). As we discussed in class, most cameras
use the Bayer pattern in order to capture color. The same is true for the camera used to capture
our RAW image.

We do not know, however, the exact shift of the Bayer pattern. If you look at the top-left 2 x 2
square of the image file, it can correspond to any of four possible red-green-blue patterns, as shown
in Figure

Think of a way for identifying which Bayer pattern applies to your image file, and report the
one you identified. It will likely be easier to identify the correct Bayer pattern after performing
white balancing.

White balancing (10 points). After identifying the correct Bayer pattern, we want to perform
white balancing. Implement both the white world and gray world automatic white balancing al-
gorithms, as discussed in class. Additionally, implement a third white balancing algorithm, where

Page 2

https://www.dechifro.org/dcraw/

BBM 444, Spring 2022 - Programming Assignment 1
Hacettepe University, Department of Computer Engineering

Figure 2: From left to right: ’grbg’, *rggb’, bggr’, ’gbrg’.

you multiply the red, green, and blue channels with the <r_scale>, <g_scale>, and <b_scale>
values you recorded earlier from the reconnaissance run of dcraw. These values correspond to the
white balancing presets used by the camera. After completing the entire developing process, check
what the image looks like when using each of the three white balancing algorithms, and decide
which one you like best. (See numpy functions max and mean.)

Demosaicing (10 points). Once white balancing is done, it is time to demosaic the image. Use
bilinear interpolation for demosaicing, as discussed in class. Do not implement bilinear interpola-
tion on your own! Instead, use scipy’s built-in interp2d function.

Color space correction (10 points). You now have an RGB image that is viewable with the
standard matplotlib display functions. However, the image color does not look quite right. This
is because the image pixels have RGB coordinates in the color space determined by the camera’s
spectral sensitivity functions, and not in the “standard” color space that image viewing software
expects. We use scary quotes for “standard” because what color space the image viewing software
actually assumes, and what color space it should assume, are neither the same nor trivial to
determine. A good default choice is to use the linear sSRGB color space [1].

To transform your image to the linear SRGB color space, implement a function that applies
the following linear transformation to the RGB vector [Rcam, Geam, Bcam]—r of each pixel of your
demosaiced image:

RSRGB 1 Rcam
GSRGB = (MSRGB—)C(MTL)_ : Gcam . (1)
BSRGB Bcam

The 3 x 3 matrix MgragB—cam transforms a 3 x 1 color vector from the sRGB color space to the
camera-specific RGB color space. We use its inverse to apply the transformation in the reverse
way.

Computing the matrix MgraB_cam involves a sequence of steps. Here, we describe these steps
at a high level, with just enough detail for you to be able to implement them. We write the matrix
MRGB 5 cam as:

M REB—cam = MxyYZ—cam - MsRGB—XYZ- (2)

As the notation suggests, the 3 x 3 matrix Migrap_xyz transforms a 3 x 1 color vector from the
sRGB to the XYZ color space; and analogously, the 3 x 3 matrix Mxyz_scam transforms a 3 x1 color
vector from the XYZ to the camera-specific RGB color space. Their product, then, implements the
transformation from the sRGB to the camera-specific RGB color space, as we want. The XYZ color
space is an intermediate reference color space that color management systems use to accurately
perform color space transformations.

The sRGB standard [1] provides the following values that you can use in your implementation:

0.4124564 0.3575761 0.1804375
MgreBoxyz = |0.2126729 0.7151522 0.0721750] . (3)
0.0193339 0.1191920 0.9503041

Page 3

BBM 444, Spring 2022 - Programming Assignment 1
Hacettepe University, Department of Computer Engineering

You can find the values of the camera-specific matrix Mxyz_scam in the raw code of dcraw, under
the function adobe_coeff. Look for the entry corresponding to the camera used to capture the
RAW image you are developing. Note that the dcraw code provides the matrix values multiplied by
10,000, so make sure to adjust the matrix you use in your implementation accordingly. Additionally,
the dcraw code shows the matrix as a 1 x 9 vector, which you should rearrange to a 3 x 3 matrix
assuming row-major ordering.

After computing the matrix MgragB—_cam as in Equation (2), normalize it so that its rows sum
to 1. You need to do this so that you do not have to perform white balancing a second time.
Finally, plug the normalized matrix into Equation (1) to correct the color space of your image.

Brightness adjustment and gamma encoding (10 points). You now have a 16-bit, full-
resolution, linear RGB image. Because of the scaling you did at the start of the assignment, the
image pixel values may not be in a range appropriate for display. Moreover, the image is not yet
gamma-encoded. As we discussed in class, this means that when you display the image, it will
appear very dark.

Brighten the image by linearly scaling it. Select the scale to set the post-brightening mean
grayscale intensity to some value in the range [0, 1]. After the scaling, clip all intensity values
greater than 1 to 1. (See skimage function rgb2gray for converting the image to grayscale, and
numpy function clip for clipping.) What the best value is is a highly subjective judgment, so you
should experiment with many percentages and report and use the one that looks best to you.
For the photographically inclined, selecting a post-brightening mean value of 0.25 is equivalent to
scaling the image so that there are two stops of bright area detail.

You are now one step away from having an image that can be properly displayed. The last
thing you need to take care of is tone reproduction (also known as gamma encoding). For this,
implement the following non-linear transformation, then apply it to the image:

12.92 - Clinear, Clinear < 0.0031308,
1
(140.055) - CZL —0.055, Clinear > 0.0031308,

linear

Cnon—linear = { (4)

where C' = {R, G, B} is each of the red, green, and blue channels. This odd-looking function is not
arbitrary: it corresponds to the tone reproduction curve specified in the sSRGB standard [1], which
also specifies the sSRGB color space you used earlier. It is a good default choice if the camera’s true
tone reproduction curve is unknown.

Compression (5 points). Finally, it is time to store the image, either with or without compres-
sion. Use skimage function imsave to store the image in .png format (no compression), and also
in .jpeg format with the quality parameter set to 95. This setting determines the amount of
compression. Can you tell the difference between the two files? The compression ratio is the ratio
between the size of the uncompressed file (in bytes) and the size of the compressed file (in bytes).
What is the compression ratio?

By changing the JPEG quality settings, determine the lowest setting for which the compressed
image is indistinguishable from the original. What is the compression ratio?

2. Perform manual white balancing (10 points)

As we discussed in class, one way to do manual white balancing is by: 1) selecting some patch in
the scene that you expect to be white; and 2) normalizing all three channels using weights that
make the red, green, and blue channel values of this patch be equal. Implement this algorithm,
and experiment with different patches in the scene. Show the corresponding results, and discuss
which patches work best. (See matplotlib function ginput for interactively recording image
coordinates).

Page 4

BBM 444, Spring 2022 - Programming Assignment 1
Hacettepe University, Department of Computer Engineering

3. Learn to use dcraw (10 points)

Besides converting RAW files to .tiff, dcraw provides options to emulate all steps in the image
processing pipeline, including steps that are camera-dependent. Read through dcraw’s documenta-
tion, and figure out what the correct flags are in order for dcraw to perform all the image processing
pipeline steps you implemented in Python. Make sure to report the exact dcraw flags you used.

Note that dcraw outputs images in .ppm format and does not have an option to use the .png
format. You will need to use an image editor to convert the image format. The command-line
utility pnmtopng, available in the Netpbm toolkit (http://netpbm.sourceforge.net/), is an easy
way to do the conversion. Alternatively, ImageMagick (https://www.imagemagick.org/)) also
does command-line format conversions.

You should now have (at least) two developed versions of the original RAW image: One (or
more) you produced using your implementation of the image processing pipeline, and another you
produced using dcraw. One more developed image is available as the file campus. jpg included
within the assignment data ZIP archive provided in the course webpage. This is the developed
image produced by the camera’s own image processing pipeline, alongside the RAW image you
have been using. Compare the three developed images, and explain any differences between them.
Which of the three images do you like best?

What to Hand In

Your submitted solution should include the following:

e A PDF report explaining what you did, including answers to all questions asked throughout
Problems 1-3. The report should include any figures and intermediate results that you think
may help. Make sure to include explanations of any issues that you may have run into that
prevented you from fully solving the assignment, as this will help us determine partial credit.
The report should also explain any .png files you include in your solution (see below).

e The codes you will submit should be well commented and in the form of a Jupyter notebook.

e For Problem 1: At least two .png files, showing the final images you created with the two
different types of automatic white balancing. You can also include .png files for various
experimental settings if you want (e.g., different brightness values).

e For Problem 2: .png files, showing the results of manual white balancing for different patch
selections.

e For Problem 3: The .png file produced by dcraw.

You should prepare a ZIP file named name-surname(s)-assgnl.zip containing your solution /
implementation assgnl.ipynb and your report assgnl-report.pdf, and submit it via email to
erkut@cs.hacettepe.edu.tr.

Late policy

You may use up to five extension days (in total) over the course of the semester for the programming
assignments. Late submission will not be allowed.

Page 5

http://netpbm.sourceforge.net/
https://www.imagemagick.org/

BBM 444, Spring 2022 - Programming Assignment 1
Hacettepe University, Department of Computer Engineering

Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are encouraged
to discuss with your other classmates about the given assignments, but these discussions should
be carried out in an abstract way. That is, discussions related to a particular solution to a specific
problem (either in actual code or in the pseudocode) will not be tolerated. In short, turning in
someone else’s work, in whole or in part, as your own will be considered as a violation of academic
integrity. Please note that the former condition also holds for the material found on the web as
everything on the web has been written by someone else.

Hints and Information

o Make sure to download and install the latest version (version 9.28) of dcraw. In particular,
the default version that comes in older Windows versions does not support the cameras used
in this class, and will produce results with a strong purple hue.

e Make sure you have at least versions 1.19.1 for numpy, 1.5.0 for scipy, 0.16.2 for skimage,
and 3.3.1 for matplotlib. Newer versions should be fine.

e The package matplotlib is included with the skimage installation and is very useful for
visualizing intermediate results and creating figures for the report. For example, the following
code reads in two images and creates a single figure displaying them side by side:

import matplotlib.pyplot as plt

from skimage import io

read two images from current directory
iml = io.imread(‘imagel.tiff’)

im2 = io.imread(‘image2.tiff’)

display both images in a 1x2 grid

fig = plt.figure() # create a new figure

fig.add_subplot(l, 2, 1)

plt.imshow(iml) # draw first image

fig.add_subplot(l, 2, 2) # draw second image

plt.imshow(im2)

plt.savefig(’output.png’) # saves current figure as a PNG file
plt.show() # displays figure

Note that figures can also be saved by clicking on the save icon in the display window.

When displaying grayscale (single-channel) images, imshow maps pixel values in the [0,1]
range to colors from a default color map. If you want to display your image in grayscale, you
should use the following instead:

read a single-channel image

imgr = io.imread(‘image_gray.tiff’)
plt.imshow(imgr), cmap=‘gray’)
plt.show()

You will need this in several places in this assignment, as many of your images will be
grayscale.

Page 6

BBM 444, Spring 2022 - Programming Assignment 1
Hacettepe University, Department of Computer Engineering

¢ You can access subsets of numpy arrays using the standard Python slice syntax i:j:k, where
i is the start index, j is the end index, and k is the step size. The following example, given
an original image im, creates three other images, each with only one-fourth the pixels of the
originals. The pixels of each of the corresponding sub-images are shown in Figure You
can also use the numpy function dstack to combine these three images into a single 3-channel
RGB image.

import numpy as np

create three sub-images of im as shown in figure below
iml = im[0::2, 0::2]

im[0::2, 1::2]

im[1::2, 0::2]

im2
im3

combine the above images into an RGB image, such that iml is the red,
im2 is the green, and im3 is the blue channel
im_rgb = np.dstack((iml, im2, im3));

Im1 | Im2 | Iml]|Im2 | Iml | Im2

Im3 Im3 Im3

Im1 | Im2 | Iml|Im2]| Iml]| Im2

Im3 Im3 Im3

Im1 | Im2 | Iml]|Im2|Iml|Im2

Im3 Im3 Im3

e You will find it very helpful to display intermediate results while you are implementing the
image processing pipeline. However, before you apply brightening and gamma encoding,
you will find that displayed images will look completely black. To be able to see something
more meaningful, we recom- mend scaling and clipping intermediate image im_intermediate
before displaying with matplotlib.

plt.imshow(np.clip(im_intermediatex5, 0, 1), cmap=‘gray’)
plt.show()

Figure [3] shows what you should see with this command after the linearization step.

Additionally, the colors of intermediate images will be very off (e.g., have a very strong green
hue), even if you are doing everything correctly. You will not get reasonable colors until after
you have performed at least white balancing. This will come into play when you are trying
to determine the Bayer pattern.

References

[1] International Electrotechnical Commission and others. IEC 61966-2-1:1999. Multimedia sys-
tems and equipment—Colour measurements and management—Part 2-1: Colour management—Default
RGB colour space—sRGB, 1999.

Page 7

BBM 444, Spring 2022 - Programming Assignment 1
Hacettepe University, Department of Computer Engineering

Figure 3: Left: The linear RAW image (brightness increased by 5). Right: Crop showing the Bayer
pattern.

Page 8

