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Today's Lecture

Gaussian filtering

Sharpening

Bilateral filter

Non-local means filter

RegCov smoothing

Rolling guidance filter

Disclaimer: The material and slides for this lecture were borrowed from
— loannis Gkioulekas' 15-463/15-663/15-862 “Computational Photography” class

— Wojciech Jarosz's CS 89.15/189.5 “Computational Aspects of Digital Photography” class
— Steve Marschner's CS6640 “Computational Photography” class

— Jiaya Jia’'s slides on Rolling guidance filter



Filtering

 The name "“filter” is borrowed from frequency domain processing
» Accept or reject certain frequency components

e Fourier (1807):
Periodic functions
could be represented
as a weighted sum of
sines and cosines

Image courtesy of Technology Review



Signals

* A signal is composed of low and high frequency components

low frequency components: smooth / piecewise smooth

Neighboring pixels have similar brightness values
You're within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values
You're either at the edges or noise points




Slide adapted from K. Grauman

Image Filtering

 |[dea: Use the information coming from the neighboring pixels for processing

* Design a transformation function of the local neighborhood at each pixel in the
Image

* Function specified by a “filter” or mask saying how to combine values from
neighbors.

 Various uses of filtering:
 Enhance an image (denoise, resize, etc)
» Extract information (texture, edges, etc)
» Detect patterns (template matching)



Filtering

* Processing done on a function

* can be executed in continuous form (e.g. analog circuit)

e but can also be executed using sampled representation

« Simple example: smoothing by averaging

» Can be modeled mathematically by convolution

continuous smoothing filter

| | |
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discrete smoothing filter
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Discrete convolution

« Simple averaging:

1 1=+r
bsmooth[i] — o + 1 Z b[J]
J=t—7r

e every sample gets the same weight

« Convolution: same idea but with weighted average
(axb)[i) = aljlbli — j]
j
» each sample gets its own weight (normally zero far away)

* This is all convolution iIs: It Is a moving weighted average




Filters

Sequence of weights a[j] is called a filter

Filter is nonzero over its region of support
» usually centered on zero: support radius r

Filter 1Is normalized so that it sums to 1.0
» this makes for a weighted average, not just any old
weighted sum
Most filters are symmetric about O

 since for images we usually want to treat left and
right the same

® o ¢ ¢
2r+ 1
0—@
-r 0
a box filter



Convolution and filtering

» Convolution applies with any sequence of weights
« Example: bell curve (gaussian-like) [..., 1,4, 6, 4, 1, ...]/16

- .....:061.&64100 .................
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Discrete filtering in 2D

Same equation, one more index

(axb)[i,j] = ald,j'bli —',5 — 5]
i/)j/
now the filter is a rectangle you slide around over a grid of numbers

Usefulness of associativity
often apply several filters one after another: (((a *b;) *b,) * bs)
this Is equivalent to applying one filter: a* (b; * b, * bs)
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Slide credit: S. Seitz

Moving Average |n 2D

Flz, y]

Glz, y]
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Slide credit: S. Seitz

Moving Average |n 2D

Flz, y]

Glz, y]
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Slide credit: S. Seitz

Moving Average In 2D

Flz, y]
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Slide adapted from K. Grauman

Averaging Filter

* \What values belong in the kernel H for the moving average example?

F[ZB,y] X Hlu,v] G[a:,y]
1 1 1 01020 3o|r$.i
l 1 (2] 1
9 .
1 1 1
“"box filter”

G=HQXF



Slide adapted from K. Grauman

Smoothing by averaging

=

depicts box filter:
white = high value, black = low value

original

filtered

15



Gaussian Filtering



Slide credit: S. Seitz

Gaussian Filter

* \What if we want nearest neighboring pixels to have the most influence on the
output?

This kernel Is an
approximation of a 2d
Gaussian function:

1| 2 1 1 _u2—|—'v2
L 2| a2 h(u,fv)=2 ¢
16 mTo

1 2 1

Flz,y]

 Removes high-frequency components from the image (“low-pass filter”).
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Slide adapted from K. Grauman

Smoothing with a Gaussian

18



Slide adapted from K. Grauman

Smoothing with a Gaussian

Parameter o is the “scale” / “width"” / “spread” of the Gaussian kernel, and
controls the amount of smoothing.

H )
10 10
20 Z0
30 30

0 10 20 30 0 10 20 30 0 10 20 30
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Strategy for Smoothing Images

* [mages are not smooth because adjacent pixels are different.
« Smoothing = making adjacent pixels look more similar.

« Smoothing strategy
pixel ~ average of its neighbors

20



Sharpening



Slide adapted from F. Durand

How can we sharpen?

e Blurring was easy

« Sharpening is not as obvious

22



Slide adapted from F. Durand

How can we sharpen?

Blurring was easy

Sharpening is not as obvious

|dea: amplify the stuff not in the blurry image

output = i1nput + k*(input-blur(input))

23



Slide adapted from F. Durand

Sharpening

“input

RN L &
"'§ ) ot 1

blurred

high pass

high pass

sharpened
Image
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Slide adapted from F. Durand

Sharpening: kernel view

e Recall

fr=Ff+k«(f-f&g)

fis the input

" Is a sharpened image

g Is a blurring kernel

k I1s a scalar controlling the strength of sharpening

25



Slide adapted from F. Dura

Sharpening: kernel view

e Recall

fr=Ff+kx(f=f@g)

* Denote 6 the Dirac kernel (pure impulse)

f=foo

26



Sharpening: kernel view

e Recall

fr=Ff+k«(f-f®g)
frf=f@ditkx(feéi-fog)
ff=rfe(k+1)-g)

. * Sharpening is also a convolution



Slide adapted from F. Durand

Sharpening kernel

* Note: many other sharpening kernels exist
(Just like we saw multiple blurring kernels)

 Amplity the difference between a pixel and its neighbors

fr=rfe(k+1)s-g)

-

blue: positive
red: negative

28



Slide adapted from F. Durand

Alternate interpretation

« out = 1nput + k*(input-blur(input))
(1 + K*1nput - k*blur(input)
lerp(blur(input), input, 1+k)

e OUt

e OUt

linearly extrapolate from the blurred image “past” the original input image

29



Slide adapted from F. Durand

Sharpening

“input

RN L &
"'§ ) ot 1

blurred

high pass

high pass

sharpened
Image
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Slide adapted from F. Durand

Unsharp

mask

« Sharpening is often called “unsharp mask” because photographers used to
sandwich a negative with a blurry positive film in order to sharpen

[ assar— == e — =
. it Il
Negative .I“ (|l
E— l
5 fask uptioesd plaste spacer prodeces o pap
Unsharp Mask 1y conteod amnust of shurpness

http://www.tech-diy.com/UnsharpMasks.htm



Unsharp

mask

Flg.4: The two
examples here shaw
a detail of the brick-
work 1o the left of
the church door. The
one on the left was
printed with the
negative alone - the
one on the right was
printed with both
nogative and mask
as a sandwich. The
Increase in local
contrast and edge
sharpnuss s minute,
but clearty visible.
Grade 2.5 was used
for the straight print
but increased to 4.5
for the sandwiched
Image 10 compon-
sate for the reduced
contrast,

Fig.5: These two
examples show a
dotall of the lower
right hand side of
the church door.
Here the difference
In sharpness s
clearly visible
betwoon the (left)
negative and (right)
sandwich prints,

. ! h |

. . 3

o A Ay
R ’..

) .
:-.n:"‘.’..:u

Al photos © Ralph W Lombeaoht
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Slide adapted from F. Durand

Problem with excess

* Haloes around strong edges

33



Bilateral Filter



Gaussian Filter

|dea: weighted average of pixels.

per-pixel multiplication

output

GBl1], = Z_Iq

qes 1

normalized
Gaussian function

1
oI -
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Spatial Parameter

GBI, = 3Gyl p-al)1,

f

small o

limited smoothing

>

qes

size of the window

A

large o

strong smoothing
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Properties of Gaussian Blur

* \Weights independent of spatial location
* linear convolution
» well-known operation
 efficient computation (recursive algorithm, FFT...)

* Does smooth images

« But smoothes too much:
edges are blurred.
* Only spatial distance matters
 No edge term

GB(11, = > GRSl .

qesS space

Input

37



Blur Comes from Averaging across Edges

output

Same Gaussian kernel everywhere.

38



Bilateral Filter: No Averaging across Edges

output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi 98]

39



Bilateral Filter: An Additional Edge Term

Same idea: weighted average of pixels.

new

not new new

BF[I], =

normalization space weight range weight

: .

40



Bilateral Filter: An Additional Edge Term

Same idea: weighted average of pixels.

new

not new new

BF[I], =

normalization space weight range weight

: .

favor similar pixels

favor nearby pixels
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Space and Range Parameters

6 (lp-al)G, (11, -1, 1)1,

1
O S

* space o,: spatial extent of the kernel, size of the considered neighborhood.

BF[I], =

* range o, : "“minimum” amplitude of an edge

42



Gaussian filtering visualization

him,n| = fim+k,n+1
[m, n k,l_[ ]

i
il
il
A

T
)
I

e

e
YR
A

Gaussian Filter

Input
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Bilateral filtering visualization

Tmn|ky ] f[m + k,n + ]

hlm,n| = Wl Z

mn.

Spatial range I ’ Intensity range

Output Bilateral Filter Input
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Exploring the Parameter Space

o, =0.1 o, =0.25

ihput

O, =0
(Gaussian blur)
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Bilateral Filtering Color Images

For gray-level images Intensity difference

BF[I], = Wi > G, (Ip—al) G, ()R

p 4qsS scalar

For color imaages .
d color difference

BFIT, = - 3G, (Ip-al)G, (RS

p ass 3D vector
(RGB, Lab)

46



Hard to Compute

 Nonlinear BF[[]p —

qes

« Complex, spatially varying kernels
« Cannot be precomputed, no FFT...

» Brute-force implementation is slow > 10min

Additional Reading: S. Paris and F. Durand, A Fast Approximation of the
Bilateral Filter using a Signal Processing Approach, In Proc. ECCV, 2006

> G, (Ip-al) CR
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Denoising

noisy input bilateral filtering median filtering

48



Contrast enhancement

How would you use bilateral filtering for sharpening?

VA A SR AR ' * A T SN
sharpening based on on
bilateral filtering Gaussian filtering

A .
WA o = R
\f\ s & 4

49
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Photo retouch




Photo retouching

original digital pore removal (aka bilateral filtering)
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Before

-

N A —







Close-up comparison

original

digital pore removal (aka bilateral
filtering)
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Cartoonization

cartoon rendition




Cartoonization

How would you create this effect?

56



Cartoonization

edges from bilaterally filtered image bilaterally filtered image cartoon rendition
WA R _

\(\( \ )/‘\'/

Note: Image cartoonization and abstraction are very active research areas.
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Is the bilateral filter:

Linear?

Shift-invariant?

58



Is the bilateral filter:

Linear?

 No.

Shift-invariant?

 No.

Does this have any bad implications?
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The bilateral grid

Real-time Edge-Aware Image Processing with the Bilateral Grid

Jiawen Chen Sylvain Paris Frédo Durand

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Figure 1: The bilateral grid enables edge-aware image manipulations such as local tone mapping on high resolution images in real time.
This 15 megapixel HDR panorama was tone mapped and locally refined using an edge-aware brush at 50 Hz. The inset shows the original
input. The process used about 1 MB of texture memory.

Data structure for fast
edge-aware Image
processing.
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Modern edge-aware filtering: domain transform

Domain Transform for Edge-Aware Image and Video Processing

Eduardo S. L. Gastal* Manuel M. Oliveiraf
Instituto de Informética — UFRGS

(d) Stylization (e) Recoloring (f) Pencil drawing (g) Depth-of-field

Lots of great examples at: https://www.inf.ufrgs.br/~eslgastal/DomainTransform/,




Modern edge-aware filtering: guided filter

Guided Image Filtering

Kaiming He, Member, IEEE, Jian Sun, Member, IEEE, and Xiaoou Tang, Fellow, IEEE

qi = Pi-

filtering input p

filtering output g

filtering input p

spatial kernel Gy(x;-x;)

' bilateral kernel GG,

filtering output ¢

1

q,-=a]l-+b

range kernel G,(I-1)

guide /

\.




Flash/no-flash photography
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Image acquisition

Lock Focus
& Aperture

time
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Image acquisition

\
Lock Focus No-Flash Image
& Aperture

1/30 s
ISO 3200

time
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Image acquisition

\
Lock Focus No-Flash Image
& Aperture

'

Flash Image

1/30 s
ISO 3200

time
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Denoising Result

Es
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Denoising Result




Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image
 How would you do this using the image editing techniques we’ve learned about?
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Joint bilateral filtering



Denoising with bilateral filtering

noisy input bilateral filtering median filtering

79



Denoising with bilateral filtering

spatial kernel

Ir(Ap(cory = Ap'(cot)) Ap’ (con)

iIntensity kernel

e However, results still have noise or blur (or both)

Bilateral
filter

80



Denoising with joint bilateral filtering

Ir(Fp(coty = Fp'(coty )Ap' (cor)

* [n the flash image there are many more details
» Use the flash image F to find edges

81



Denoising with joint bilateral filtering

NR —

1
A = E (p—=2")
p(col) ga\lPp — P
k(p(col)) o
9r (Fpeot) = Fp!con) )Ap' con)

Bilateral The difference | Joint Bilateral
filter filter




Not all edges in the flash image are real

Can you think of any types of edges that may exist in the flash image but
not the ambient one?

83



Not all edges in the flash image are real

specularities

shadows

* May cause over- or under-blur in joint bilateral filter
* \We need to eliminate their effect

84



Detecting shadows

» Observation: the pixels in the flash shadow should be similar to the ambient image.

 Not identical;
1. Noise.

2. Inter-reflected flash.
 Compute a shadow mask.
» Take pixel p if Fil ) —ASRon < Tshadow
* Tshadow IS Manually adjusted

 Mask i1s smoothed and dilated

85



Detecting specularities

« Take pixels where sensor input Is close to maximum (very bright).

« Over fixed threshold Tspec
» Create a specularity mask.
» Also smoothed.

* M —the combination of shadow and specularity masks:

Where M =1, we use AB2¢. For other pixels we use ANR.

86



Detail transfer

Denoising cannot add details missing in the ambient image

Exist in flash image because of high SNR

* \We use a quotient image: F i Reduces the
pDetail _ p(col) T € effect of
pcel) Fg&fﬁ) + € noise in F
« Multiply with ANR to add the details E;ﬂggﬁ
* Masked In the same way Why does this quotient

Image make sense for
detall?



Detail transfer

* Denoising cannot add detalls missing in the ambient image

» Exist in flash image because of high SNR

* \We use a quotient image:

FDetail _ D

p

F

(col) +& ——

R

)+8

Reduces the
effect of
noise in F
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Full pipeline

A F
No-Flash | Flash
Image Image | | .
FLm A Lin
Bilateral Joint Bilateral Shadow &
Hilter Bilateral Filter Specularity
Filter Detection
FBase
ABase ANR FDetail Mask M
Artifact
Denoising Detail Transfer = detection

AFinal — (1 _ M)ANRFDetail I MABase




Demonstration

ambient-only

il

,,sui.“.

joint bilateral and detail transfer
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Edge-aware depth denoising

1 !
Ap(cor) = k(p(col)) ,,Ze:ﬂgd(lp -rD Use joint bilateral filtering, with

the Input Image as quide.
o) P J J

One of two input
Images

Depth from disparity Guided filtering
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Other applications of joint bilateral filtering

Deep Bilateral Learning for Real-Time Image Enhancement

MICHAEL GHARBI, MIT CSAIL

JIAWEN CHEN, Google Research

JONATHAN T. BARRON, Google Research

SAMUEL W. HASINOFF, Google Research

FREDO DURAND, MIT CSAIL / Inria, Université Cote d’Azur

LOW-RES COEFFICIENT PREDICTION 8841 Tl Teatitres If

§3.2 bilateral grid

ﬁ ﬁ of coefficients
& .
§3.1.4 fusion

F

full-res input I low-res input I §3.1.1 low-level features S* §3.1.3 global features G

FULL-RES PROCESSING

L8R

pﬁtO

roab it

§3.3 sliced coefficients A

§3.4.1 guidance mapg §3.4.2 full-res out
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Non-Local Means Filter



Redundancy in natural images
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NL-Means Filter (Buades 2005)

« Same goals: ‘Smooth within Similar Regions’

« KEY INSIGHT: Generalize, extend ‘Similarity’

 Bilateral:
Averages neighbors with similar intensities;

 NL-Means:
Averages neighbors with similar neighborhoods!

108



\,N 3

I

NL-Means Method

N

 For each and

every pixel p:
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NL-Means Method

L

5L
—~
G
_
”~
R

o)

e !
ot

5

‘m' E ‘. 1\\

L

'4.*'(-

* For each and
every pixel p:

ek
O
o ~
-
‘.,: ;
.

* Define a small, simple
fixed size neighborhood;
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NL-Means Method

0.74
0.32
0.41
P 0.55

<
|

e Foreachand L
every pixel p:

* Define a small, simple
fixed size neighborhood;

» Define vector Vp: a list of neighboring pixel values.



NL-Means Method

‘Similar’ pixels p, g

- SMALL
vector distance;

H Vp _ Vq HZ
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NL-Means Method

‘Dissimilar’ pixels p, g

- LARGE
vector distance;

H Vp - Vq HZ

113



NL-Means Method

L

Jdi
-~
g,

_
"
R

o)

e !
o 12

5

‘m' E ‘. 1\\

‘Dissimilar’ pixels p, g

- LARGE
vector distance;

r"

S
y

H Vp - Vq HZ

A
o
:
‘.,: |
.

Filter with this!
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NL-Means Method

5\
.
&

-
g
V! .3

b5
&5
%
e

=
S
5

P, g neighbors define
a vector distance;

H vp _ vq HZ

Filter with this: 5 Y
No spatial term! ; » g{ e oy’

1 \
v, 5o S

p 9ge€S
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NL-Means Method

pixels p, g neighbors
Set a vector distance;

H Vp _ Vq HZ

Vector Distance to p sets
weight for each pixel g

1
v, - .
p

qes
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NL-Means Method

W%.A llI' -




NL-Means Method

* Noisy
source
Image:
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NL-Means Method

 Gaussian Filter

Low noise,
Low detall
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NL-Means Method

* Anisotropic
Diffusion

Note ‘stairsteps':
~ plecewise constant
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NL-Means Method

e Bilateral Filter

Better, but similar
‘stairsteps:
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NL-Means Method

 NL-Means:

Sharp,
Low noise,
Few artifacts.
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NL-Means Method

Figure 4. Method noise experience on a natural image. Displaying of the image difference u — Dy, (u). From left to
right and from top to bottom: original image, Gauss filtering, anisotropic filtering, Total variation minimization,
Neighborhood filtering and NL-means algorithm. The visual experiments corroborate the formulas of section 2.
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NL-Means Method

original noisy, standard deviation 15 denoised

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
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RegCov Smoothing



Slide credit: P. Milanfar

From pixels to patches and to images

Patches

Similarities can be defined at different scales..
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redit: P. Milanfar

Slide ¢

Pixelwise similarity metrics

* To measure the similarity of two pixels, we can consider
» Spatial distance
» Gray-level distance

Gray-level A

T?TTT

Spatial A
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redit: P. Milanfar

Slide ¢

Fuclidean metrics

* Natural ways to incorporate the two As:
* Bilateral Kernel [Tomasi, Manduchi, 98] (pixelwise)
* Non-Local Means Kernel [Buades, et al. ‘0b] (patchwise)

“Euclidean” distance

Gray-level A

<T7ITT

Spatial A

X
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Slide credit: P. Milanfar

Bilateral Kernel (BL) [Tomasi et al. ‘98]

Pixels
ly —oll® % —x?

hz
4

Pixel similarity

K(XZ,X, ylay) = €XP —

QOOOOOO0O0O0O0O0O0O0O0O0O0O0V0O0O0
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Smoothing effect
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Non-local Means (NLM) [Buades et al. ‘05]
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Structure-Texture Decomposition

 Decomposing an image into structure and texture components

Input Image
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Structure-Texture Decomposition

 Decomposing an image into structure and texture components

Structure Component
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Structure-Texture Decomposition

 Decomposing an image into structure and texture components

Texture Component




Structure-Texture Decomposition

« Decomposing an image into structure and texture Components

Structure

Input Image

Texture
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Structure-Texture Decomposition

F(x,y) = ¢(Lxy)

\ ¢

oI oI O%T 0?1 T
‘ F(fﬂyy):[f(ﬂfay) O |3U' 92 9y? L y}
Cr— — S e — )z — )"

R_”_lzzo k— WI\Zr — W

Tuzel et al., ECCV 2006
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Structure-Texture Decomposition

« Region covariances capture local structure
and texture information.

« Similar regions have similar statistics.

AR /7 =<
A - = R
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RegCov Smoothing - Formulation

I=5+T « Structure-texture decomposition via
smoothing

« Smoothing as weighted averaging

e Different kernels (Wpg) result in different
types of filters.

* Three novel patch-based kernels for structure
texture decomposition.

« |. Karacan, A. Erdem, E. Erdem, “Structure

Preserving Image Smoothing via Region
Covariances”, ACM TOG 2013
(SIGGRAPH Asia 2013)
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RegCov Smoothing — Model 1

* Depends on sigma-points representation of covariance matrices
(Hong et al.,CVPR'09)

C = LL?Y Cholesky Decomposition

S._{ avdL; if 1<i<d

— . Sigma Points
S =18i} —aVdL; if d+1<i<2d

Final representation

\IJ(C) — (:UHSla +++9SdySd+15 - - - 782d)T

Resulting kernel function

IV (Cp) — ‘P(Cq)HQ)
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RegCov Smoothing — Model 2

* An alternative way Is to use statistical similarity measures.
* A Mahalanobis-like distance measure to compare to image patches.

d(p,a) = v/(tp — pa)C~ (tp — piq)”

C=Cp+ Cq

d(p, q)2>

Resulting kernel Wpq X €XP (— 952
O
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RegCov Smoothing — Model 3

* \We use Kullback-Leibler(KL)-Divergence measure from probability theory.

« A KL-Divergence form is used to calculate statistical distance between two
multivariate normal distribution

L - det C
drr(p,q) = 9 (”(Cq 1Cp) + (1p ,uq)TCq 1(,up pe) — Kk — ln(det Cp
q
Resulting kernel I dk1(P,q)
pq 20_2

resulted from a discussion with Rahul Narain (Berkeley University)
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RegCov Smoothing — Smoothing Kernels
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Results
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Input
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Model2 Structure



Input

MMMM/\Q

Texture
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Model2 Texture
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Results




Experimental evaluation
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Experimental evaluation

TV

Rudin et al. 1992
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i
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Experimental evaluation

Bilateral
Filter
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Experimental evaluation

Envelope

Extraction
~ J Subretal. 2009
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Experimental evaluation

RTV

Xu et al. 2012
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Experimental evaluation
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Experimental evaluation

156



Experimental evaluation
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Experimental evaluation

| ocal Exrema

Shading preserved Structure preserved No unintuitive edge




Multiscale decomposition




Multiscale decomposition




Multiscale decomposition




Multiscale decomposition




hallenging cases

Model2
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Challenging cases

Model2 Texture Model2+Model1
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Edge detection




Edge detection




Edge detection

Canny edges of original image Canny edges of smoothed image
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Image abstraction
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Image abstraction
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Image composition

® @9
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Rolling Guidance Filter



Scale-Aware Filtering

Small Scale ¥ '|

Large Scale &

1 .




Main Idea

» Scale Space Theory [Lindeberg, 1994]:

* An object of size 1, will be largely smoothed away with Gaussian filter of
variance
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RGF: A scale-aware Filter

Small
Structures
Removal

Edge Recovery
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Step 1: Small Structures Removal

Gaussian Filter
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Step 2: Edge Recovery

* A

Original Input The output of

Adance on . i

Re pw Output
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Rolling Guidance

Changi
Unchanged _W anging ‘

Rolling Guidance

Guidance
Joint Bilateral Filter

)|

N
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Rolling Guidance

Guidance for the 1st
Iteration
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Rolling Guidance

Guidance for the 2nd
iteration
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Rolling Guidance

Guidance for the 3rd
iteration

182



Rolling Guidance

Guidance for the b5th
iteration
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Rolling Guidance

Small structures are .
Large structure are blurred.
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Implementation

Rolling Guidance Filter (RGF) has only of code

1 Mat rollingGuidanceFilter(Mat im, float scale, int iter){
Mat res = im.mul(9);

(iter--) res = bilateralFilter(im,res,scale,SIGMA R);
res;
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Small Structure

Input Guidance (output of )

1 : :

0 : ® N : n

0 20 40 60 80 100

Jt—l—l( 1 |p — QH2 -
p)=— exp ||— ——— It becomes a Gaussian flter
K, 202
q€N (p)

l Joint Bilateral Filter
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Large Structure

Input Image

T .

0 20 40 60 80 100

Result of Step 1

v

0 20 10 " P geN(p)o 100 5

l. ) A

_ 2
05y t+1 ' Hp— CIH
gluanl , _7‘2 QXp(_— 052 |

17 (p) —Jt(Q)H2)

2
207

Due to
It generates

results than Gaussian!
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Processing

Input Image Guidance Image
1 1
05 0‘5/
Oo 20 10 50 20 o0 Oo 20 20 50 80 100
Input Intermediate iterations Previous guidance image
Oo 20 20 60 80 1-00 OO 20 40 60 80 160 0 20 40 50 80 I-OO
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Processing

Input Image

F :
o5} /
0 : :

0 20 40 60 80 100

Guidance Image

1 F
0.5
O : : . :
O 20 40 60 80
2 llteratiom

100
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Large Structure

If ' ' ' ' IF ' ' ;
0.5 ’/I/— 0.5t /
Ot : i : . ] 0 ; 3 . . ]
0 20 40 60 80 100 0 20 40 60 80 100

Take-home message

Rolling guidance recovers an edge as long as
it still exists in the blurred image after Gaussian smoothing.
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Rolling Guidance Filter

Rolling

Gaussian Guidance

Large Structure

Small Structure
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Result Comparison

g I -
'-'E- ‘*'.‘ : | r ¥ ; )
' -. y — I._.
g
i

y

-:;:__._ g 'ﬁ'! 4

B e -
2 . #

RGF

192



Performance Comparison

For 4 Megapixel Image
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Performance Comparison

Algorithms Time (seconds/Megapixel)
Local Extrema [Subr et al., 2009] 95
RTV [Xu et al., 2012] 14
Region Covariance [Karacan et al., 2013] 240
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Texture Removal




Texture Removal
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Halftone Image




Halftone Image
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Boundary detection

Boundary Detection Filtered Input Boundary Detection
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Multi-Scale Filtering

30

determine the scale.
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Limitations

« Sharp corners could be rounded

* [t is because sharp corner presents high frequency change.
* [n other words, sharp corners are small-scale structures.
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Recap

* Filtering plays a key role for many applications.

 Filtering by taking into account image content generally gives better
results.
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Next Lecture:
Edge-aware filtering,
Gradient-domain image
processing



