
Images filtered by Karacan et al., 2013

Lecture #05 – Image Filtering
Erkut Erdem // Hacettepe University // Spring 2022

BBM444
FUNDAMENTALS OF
COMPUTATIONAL
PHOTOGRAPHY

Today’s Lecture
• Gaussian filtering

• Sharpening

• Bilateral filter

• Non-local means filter

• RegCov smoothing

• Rolling guidance filter

Disclaimer: The material and slides for this lecture were borrowed from
— Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

—Wojciech Jarosz’s CS 89.15/189.5 “Computational Aspects of Digital Photography” class

—Steve Marschner’s CS6640 “Computational Photography” class

—Jiaya Jia’s slides on Rolling guidance filter
2

Filtering
• The name “filter” is borrowed from frequency domain processing

• Accept or reject certain frequency components

• Fourier (1807):
Periodic functions
could be represented
as a weighted sum of
sines and cosines

Image courtesy of Technology Review

3

Signals
• A signal is composed of low and high frequency components

low frequency components: smooth / piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points

4

Image Filtering
• Idea: Use the information coming from the neighboring pixels for processing

• Design a transformation function of the local neighborhood at each pixel in the
image
• Function specified by a “filter” or mask saying how to combine values from

neighbors.

• Various uses of filtering:
• Enhance an image (denoise, resize, etc)
• Extract information (texture, edges, etc)
• Detect patterns (template matching)

S
lid

e
ad

ap
te

d
fr

om
K

.G
ra

um
an

5

Filtering
• Processing done on a function

• can be executed in continuous form (e.g. analog circuit)
• but can also be executed using sampled representation

• Simple example: smoothing by averaging

• Can be modeled mathematically by convolution

6

Discrete convolution
• Simple averaging:

• every sample gets the same weight

• Convolution: same idea but with weighted average

• each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a moving weighted average

7

Filters
• Sequence of weights a[j] is called a filter

• Filter is nonzero over its region of support
• usually centered on zero: support radius r

• Filter is normalized so that it sums to 1.0
• this makes for a weighted average, not just any old

weighted sum

• Most filters are symmetric about 0
• since for images we usually want to treat left and

right the same

a box filter

8

Convolution and filtering
• Convolution applies with any sequence of weights

• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16

9

Discrete filtering in 2D
• Same equation, one more index

• now the filter is a rectangle you slide around over a grid of numbers

• Usefulness of associativity
• often apply several filters one after another: (((a *	b1)	*	b2)	*	b3)
• this is equivalent to applying one filter: a	*	(b1 *	b2 *	b3)

10

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

11S
lid

e
cr

ed
it:

 S
. S

ei
tz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

12S
lid

e
cr

ed
it:

 S
. S

ei
tz

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

13S
lid

e
cr

ed
it:

 S
. S

ei
tz

Moving Average In 2D

• What values belong in the kernel H for the moving average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

“box filter”

?

14S
lid

e
ad

ap
te

d
fr

om
K

.G
ra

um
an

Averaging Filter

depicts box filter:
white = high value, black = low value

original filtered

15S
lid

e
ad

ap
te

d
fr

om
K

.G
ra

um
an

Smoothing by averaging

Gaussian Filtering

16

• What if we want nearest neighboring pixels to have the most influence on the
output?

• Removes high-frequency components from the image (“low-pass filter”).

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

This kernel is an
approximation of a 2d
Gaussian function:

17S
lid

e
cr

ed
it:

 S
. S

ei
tz

Gaussian Filter

18S
lid

e
ad

ap
te

d
fr

om
K

.G
ra

um
an

Smoothing with a Gaussian

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and
controls the amount of smoothing.

19S
lid

e
ad

ap
te

d
fr

om
K

.G
ra

um
an

Smoothing with a Gaussian

Strategy for Smoothing Images
• Images are not smooth because adjacent pixels are different.

• Smoothing = making adjacent pixels look more similar.

• Smoothing strategy
pixel ~ average of its neighbors

20

Sharpening

21

How can we sharpen?
• Blurring was easy

• Sharpening is not as obvious

22S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

How can we sharpen?
• Blurring was easy

• Sharpening is not as obvious

• Idea: amplify the stuff not in the blurry image

• output = input + k*(input-blur(input))

23S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

Sharpening

24S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

high pass

sharpened
image

+k* =

=-

Sharpening: kernel view

25S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

• Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

Sharpening: kernel view
Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

CS 89/189: Computational Photography, Fall 2015 66

f 0 = f + k ⇤ (f � f ⌦ g)

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

Sharpening: kernel view

26S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

• Recall

• Denote δ the Dirac kernel (pure impulse)

Sharpening: kernel view
Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

CS 89/189: Computational Photography, Fall 2015 66

f 0 = f + k ⇤ (f � f ⌦ g)

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

Sharpening: kernel view
Recall

Denote δ the Dirac kernel (pure impulse)

CS 89/189: Computational Photography, Fall 2015 67

f 0 = f + k ⇤ (f � f ⌦ g)

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d f = f ⌦ d

Sharpening: kernel view

27S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

• Recall

• Sharpening is also a convolution

Sharpening: kernel view
Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

CS 89/189: Computational Photography, Fall 2015 66

f 0 = f + k ⇤ (f � f ⌦ g)

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

Sharpening: kernel view
Recall

Sharpening is also a convolution

CS 89/189: Computational Photography, Fall 2015 68

f 0 = f + k ⇤ (f � f ⌦ g)

f 0 = f ⌦ d + k ⇤ (f ⌦ d � f ⌦ g)

f 0 = f ⌦ ((k + 1)d � g)

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

Sharpening kernel

28S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

• Note: many other sharpening kernels exist
(just like we saw multiple blurring kernels)

• Amplify the difference between a pixel and its neighbors

Sharpening kernel
Note: many other sharpening kernels exist  
(just like we saw multiple blurring kernels)
Amplify the difference between a pixel and its neighbors

CS 89/189: Computational Photography, Fall 2015 69

blue: positive 
red: negative

f 0 = f ⌦ ((k + 1)d � g)

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

blue: positive
red: negative

Alternate interpretation

29S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

• out = input + k*(input-blur(input))
• out = (1 + k)*input - k*blur(input)
• out = lerp(blur(input), input, 1+k)

linearly extrapolate from the blurred image “past” the original input image

Sharpening

30S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

high pass

sharpened
image

+k* =

=-

Unsharp mask

31S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

• Sharpening is often called “unsharp mask” because photographers used to
sandwich a negative with a blurry positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Unsharp mask
Sharpening is often called “unsharp mask” because
photographers used to sandwich a negative with a
blurry positive film in order to sharpen

CS 89/189: Computational Photography, Fall 2015 73

http://www.tech-diy.com/UnsharpMasks.htm
Af

te
r a

 sl
id

e
by

 F
ré

do
 D

ur
an

d

32

CS 89/189: Computational Photography, Fall 2015 74

ht
tp

://
w

w
w.

te
ch

-d
iy.

co
m

/im
ag

es
/u

ns
ha

rp
2.

jp
g

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

Unsharp
mask

Problem with excess

33S
lid

e
ad

ap
te

d
fr

om
F.

D
ur

an
d

• Haloes around strong edges
Problem with excess
Haloes around strong edges

CS 89/189: Computational Photography, Fall 2015 77

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

Bilateral Filter

34

normalized
Gaussian function

()å
Î

-=
S

IGIGB
q

qp qp ||||][s

Idea: weighted average of pixels.

0

1
average

input

per-pixel multiplication

output*

35

Gaussian Filter

size of the window

()å
Î

-=
S

IGIGB
q

qp qp ||||][s

small σ large σ

input

limited smoothing strong smoothing

36

Spatial Parameter

Properties of Gaussian Blur
• Weights independent of spatial location

• linear convolution
• well-known operation
• efficient computation (recursive algorithm, FFT…)

• Does smooth images

• But smoothes too much:
edges are blurred.
• Only spatial distance matters
• No edge term

input

output

()å
Î

-=
S

IGIGB
q

qp qp ||||][s
space

37

*

*

*

input output

Same Gaussian kernel everywhere.

38

Blur Comes from Averaging across Edges

*

*

*

input output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi 98] 39

Bilateral Filter: No Averaging across Edges

range weight

new

space weight

not new

normalization
factor

new

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

Same idea: weighted average of pixels.

40

Bilateral Filter: An Additional Edge Term

range weight

new

space weight

not new

normalization
factor

new

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

Same idea: weighted average of pixels.

favor nearby pixels favor similar pixels
41

Bilateral Filter: An Additional Edge Term

Space and Range Parameters

• space σs : spatial extent of the kernel, size of the considered neighborhood.

• range σr : “minimum” amplitude of an edge

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

42

Output Gaussian Filter Input

43

Gaussian filtering visualization

Output Bilateral Filter Input

Spatial range Intensity range

44

Bilateral filtering visualization

σs = 2

σs = 6

σs = 18

σr = 0.1 σr = 0.25
σr = ∞

(Gaussian blur)

input

45

Exploring the Parameter Space

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

() ()å
Î

--=
S

GG
W

IBF
q

qqp
p

p CCCqp ||||||||1][
rs ss

For gray-level images

For color images

intensity difference

color difference

scalar

3D vector
(RGB, Lab)

input

output

46

Bilateral Filtering Color Images

• Nonlinear

• Complex, spatially varying kernels

• Cannot be precomputed, no FFT…

• Brute-force implementation is slow > 10min

() ()å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

Additional Reading: S. Paris and F. Durand, A Fast Approximation of the
Bilateral Filter using a Signal Processing Approach, In Proc. ECCV, 2006

47

Hard to Compute

noisy input bilateral filtering median filtering

48

Denoising

input sharpening based on
bilateral filtering

sharpening based on
Gaussian filtering

How would you use bilateral filtering for sharpening?

49

Contrast enhancement

50

Photo retouching

original digital pore removal (aka bilateral filtering)

51

Photo retouching

52

Before

53

After

original digital pore removal (aka bilateral
filtering)

54

Close-up comparison

input cartoon rendition

55

Cartoonization

How would you create this effect?

56

Cartoonization

edges from bilaterally filtered image bilaterally filtered image

+ =

cartoon rendition

Note: image cartoonization and abstraction are very active research areas.
57

Cartoonization

Shift-invariant?

Linear?

58

Is the bilateral filter:

Shift-invariant?

Linear?

• No.

• No.

Does this have any bad implications?

59

Is the bilateral filter:

Data structure for fast
edge-aware image

processing.

60

The bilateral grid

Lots of great examples at: https://www.inf.ufrgs.br/~eslgastal/DomainTransform/
61

Modern edge-aware filtering: domain transform

62

Modern edge-aware filtering: guided filter

Flash/no-flash photography

63

Red Eye
64

Unflattering Lighting
65

Motion Blur
66

Noise
67

A lot of Noise
68

Ruined Ambiance
69

No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look

70

Lock Focus
& Aperture

1

time

71

Image acquisition

1/30 s
ISO 3200

No-Flash ImageLock Focus
& Aperture

21

time

72

Image acquisition

1/30 s
ISO 3200

1/125 s
ISO 200

No-Flash ImageLock Focus
& Aperture

Flash Image

2 31

time

73

Image acquisition

Denoising Result

74

No-Flash

75

Denoising Result

76

Denoise the no-flash image while maintaining the edge structure of the flash image
• How would you do this using the image editing techniques we’ve learned about?

77

Key idea

Joint bilateral filtering

78

noisy input bilateral filtering median filtering

79

Denoising with bilateral filtering

• However, results still have noise or blur (or both)

ambient

flash
Bilateral

filter

spatial kernel

intensity kernel

80

Denoising with bilateral filtering

• In the flash image there are many more details
• Use the flash image F to find edges

81

Denoising with joint bilateral filtering

Bilateral
filter

Joint Bilateral
filter

The difference

82

Denoising with joint bilateral filtering

Can you think of any types of edges that may exist in the flash image but
not the ambient one?

83

Not all edges in the flash image are real

shadows

specularities

• May cause over- or under-blur in joint bilateral filter
• We need to eliminate their effect

84

Not all edges in the flash image are real

• Observation: the pixels in the flash shadow should be similar to the ambient image.

• Not identical:

1. Noise.

2. Inter-reflected flash.

• Compute a shadow mask.

• Take pixel p if

• is manually adjusted

• Mask is smoothed and dilated

85

Detecting shadows

• Take pixels where sensor input is close to maximum (very bright).

• Over fixed threshold

• Create a specularity mask.

• Also smoothed.

• M – the combination of shadow and specularity masks:

Where Mp=1, we use ABase. For other pixels we use ANR.

86

Detecting specularities

• Denoising cannot add details missing in the ambient image
• Exist in flash image because of high SNR
• We use a quotient image:

• Multiply with ANR to add the details
• Masked in the same way

Reduces the
effect of
noise in F

Why does this quotient
image make sense for

detail?

Bilateral
filtered

87

Detail transfer

• Denoising cannot add details missing in the ambient image
• Exist in flash image because of high SNR
• We use a quotient image: Reduces the

effect of
noise in F

88

Detail transfer

89

Full pipeline

ambient-only joint bilateral and detail transfer

90

Demonstration

Flash

91

No-Flash

92

No-Flash

93

Result

94

Flash

95

No-Flash

96

No-Flash

97

Result

98

Flash

99

No-Flash

100

Flash

101

No-Flash

102

Result

103

One of two input
images

Depth from disparity Guided filtering

Use joint bilateral filtering, with
the input image as guide.

104

Edge-aware depth denoising

105

Other applications of joint bilateral filtering

Non-Local Means Filter

106

107

Redundancy in natural images

NL-Means Filter (Buades 2005)

• Same goals: ‘Smooth within Similar Regions’

• KEY INSIGHT: Generalize, extend ‘Similarity’
• Bilateral:

Averages neighbors with similar intensities;
• NL-Means:

Averages neighbors with similar neighborhoods!

108

109

NL-Means Method

• For each and

every pixel p:

• For each and

every pixel p:

• Define a small, simple
fixed size neighborhood;

110

NL-Means Method

Vp =

0.74
0.32
0.41
0.55
…
…
…

111

NL-Means Method

• For each and

every pixel p:

• Define a small, simple
fixed size neighborhood;
• Define vector Vp: a list of neighboring pixel values.

‘Similar’ pixels p, q

à SMALL
vector distance;

|| Vp – Vq ||2
p

q

112

NL-Means Method

‘Dissimilar’ pixels p, q

à LARGE
vector distance;

|| Vp – Vq ||2
p

q

q

NL-Means Method

113

‘Dissimilar’ pixels p, q

à LARGE
vector distance;

Filter with this!

|| Vp – Vq ||2
p

q

NL-Means Method

114

p, q neighbors define

a vector distance;

Filter with this:
No spatial term!

|| Vp – Vq ||2 p
q

() ()å
Î

--=
S

IVVGG
W

INLMF
q

qqp
p

p qp 2||||||||1][
rs

!!

ss

NL-Means Method

115

pixels p, q neighbors
Set a vector distance;

Vector Distance to p sets
weight for each pixel q

|| Vp – Vq ||2 p
q

()å
Î

-=
S

IVVG
W

INLMF
q

qqp
p

p
2||||1][

r

!!

s

NL-Means Method

116

NL-Means Method

117

NL-Means Method
• Noisy

source
image:

118

NL-Means Method
• Gaussian Filter

Low noise,

Low detail

119

NL-Means Method
• Anisotropic

Diffusion

Note ‘stairsteps’:
~ piecewise constant

120

NL-Means Method
• Bilateral Filter

Better, but similar
‘stairsteps’:

121

NL-Means Method
• NL-Means:

Sharp,

Low noise,

Few artifacts.

122

123

NL-Means Method

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

124

NL-Means Method

RegCov Smoothing

125

A�Modern�Paradigm:�Measuring�
Similarity�Between…

Images
Patches

Pixels

Pixels

Patches
Images

Similarities can be defined at different scales..

From pixels to patches and to images

126S
lid

e
cr

ed
it:

 P
. M

ila
nf

ar

Pixelwise similarity metrics
• To measure the similarity of two pixels, we can consider
• Spatial distance
• Gray‐level distance

Defining�a�pointͲwise�measure

• To�measure�the�similarity�of�two�pixels,�consider
– Spatial distance

– GrayͲlevel distance

Spatial ǻ

G
ra

y-
le

ve
l ǻ

x

y

127S
lid

e
cr

ed
it:

 P
. M

ila
nf

ar

Euclidean metrics

• Natural ways to incorporate the two Δs:
• Bilateral Kernel [Tomasi, Manduchi, ‘98] (pixelwise)
• Non‐Local Means Kernel [Buades, et al. ‘05] (patchwise)

Euclidean�measures

• Natural�ways�to�incorporate�the�two�ȴs:
– Bilateral Kernel�[Tomasi,�Manduchi,�‘98]�(pointwise)
– NonͲLocal�Means Kernel�[Buades,�et�al.�‘05]�(patchwise)

Spatial ǻ

G
ra

y-
le

ve
lǻ

x

y “Euclidean” distance

128S
lid

e
cr

ed
it:

 P
. M

ila
nf

ar

Bilateral�Kernel�(BL)�[Tomasi et�al.�‘98]

Pixel similarity Spatial similarity

=

Pixels

Bilateral Kernel (BL) [Tomasi et al. ‘98]

129S
lid

e
cr

ed
it:

 P
. M

ila
nf

ar

NonͲlocal�Means�(NLM)��[Buades et�al.�‘05]

Patch similarity Spatial similarity

=

Æ Smoothing�effect

Patches

Smoothing effect

130

Non-local Means (NLM) [Buades et al. ‘05]
S

lid
e

cr
ed

it:
 P

. M
ila

nf
ar

• Decomposing an image into structure and texture components

Input Image

131

Structure-Texture Decomposition

Structure Component

• Decomposing an image into structure and texture components

132

Structure-Texture Decomposition

Texture Component

• Decomposing an image into structure and texture components

133

Structure-Texture Decomposition

Structure

Texture

Input Image

• Decomposing an image into structure and texture components

134

Structure-Texture Decomposition

Tuzel et al., ECCV 2006

F x, y = ϕ(I, x, y)

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

135

Structure-Texture Decomposition

1
3

• Region covariances capture local structure
and texture information.

• Similar regions have similar statistics.

137

Structure-Texture Decomposition

• Structure-texture decomposition via
smoothing

• Smoothing as weighted averaging

• Different kernels (wpq) result in different
types of filters.

• Three novel patch-based kernels for structure
texture decomposition.

• L. Karacan, A. Erdem, E. Erdem, “Structure
Preserving Image Smoothing via Region
Covariances”, ACM TOG 2013
(SIGGRAPH Asia 2013)

p
q

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

wpq

138

RegCov Smoothing - Formulation

• Depends on sigma-points representation of covariance matrices
(Hong et al.,CVPR’09)

p
q

wpq

Cholesky Decomposition

Sigma Points

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances • 176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

Final representation

Resulting kernel function

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

139

RegCov Smoothing – Model 1

• An alternative way is to use statistical similarity measures.

• A Mahalanobis-like distance measure to compare to image patches.

p
q

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,

��� @I@x

���,
��� @I@x

���,
��� @

2I
@x2

���,
��� @

2I
@y2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4 • L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

Resulting kernel

140

RegCov Smoothing – Model 2

resulted from a discussion with Rahul Narain (Berkeley University)

• We use Kullback-Leibler(KL)-Divergence measure from probability theory.

• A KL-Divergence form is used to calculate statistical distance between two
multivariate normal distribution

p
q

Algorithm 1 Structure preserving image smoothing
Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.(28) (Model 1), Eq.(30) (Model 2),or

Eq.(32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.

dKL(p,q) =
1

2

tr(Cq

�1Cp) + (µp � µq)
TCq

�1(µp � µq)� k � ln
⇣detCp

detCq

⌘!
(31)

wpq /
dKL(p,q)

2�2
(32)

Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).

22

Algorithm 1 Structure preserving image smoothing
Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.(28) (Model 1), Eq.(30) (Model 2),or

Eq.(32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.

dKL(p,q) =
1

2

tr(Cq

�1Cp) + (µp � µq)
TCq

�1(µp � µq)� k � ln
⇣detCp

detCq

⌘!
(31)

wpq /
dKL(p,q)

2�2
(32)

Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).

22

Resulting kernel

141

RegCov Smoothing – Model 3

N
ei

gh
bo

rh
oo

d
B

LF
N

LM
M

od
el

2

FIGURE 3.2.: Our filtering kernels consider local image geometry on calculation of filtering
weights by capturing texture information.

[�1 2 � 1], and (x, y) denotes the pixel location. Hence, the covariance descriptor of an
image patch is computed as a 7⇥ 7 matrix. Including (x, y) into the feature set is important
since it allows us to encode the correlation of other features with the spatial coordinates. The
feature set can be extended to include other features, like for example rotationally invariant
forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch similarity weights wpq

using the intensity information and taking the weighted average over the corresponding RGB
vectors rather than the intensity values in Equation 23. We empirically found that including
RGB components to the feature set does not change the results much but increases the run-
ning times.

3.3. Model 1

Using the set S defined by Equation (21), a vectorial representation of a covariance matrix
can be obtained by simply concatenating the elements of S . Moreover, first-order statistics
can be easily incorporated to this representation scheme by including the mean vector of the

17

142

RegCov Smoothing – Smoothing Kernels

Input
143

Results

Model1 Model2 Model3

144

Results

/home/levent/Dropbox/acmsiggraph_Date2April_Time1108/barbara_original.png

Input

Input

146

146

/home/levent/Dropbox/acmsiggraph_Date2April_Time1108/barbara_original.
png

Model2 Structure

Input

Structure

147

147

/home/levent/Dropbox/acmsiggraph_Date2April_Time1108/barbara_original.png

Model2 Texture

Input

Structure

Texture

148

148

Model2 Model3Input

149

Results

Input

150

Experimental evaluation

TV
Rudin et al. 1992

151

Experimental evaluation

Bilateral
Filter

152

Experimental evaluation

Envelope
Extraction
Subr et al. 2009

153

Experimental evaluation

RTV
Xu et al. 2012

154

Experimental evaluation

Model 1

155

Experimental evaluation

Model 2

156

Experimental evaluation

Model 3

157

Experimental evaluation

Input Local Exrema RTV

Model1 Model2

Shading preserved No unintuitive edgeStructure preserved

Model3

158

Experimental evaluation

159

Multiscale decomposition

S1(k = 5)

160

Multiscale decomposition

S2(k = 7)

161

Multiscale decomposition

S3(k = 9)

162

Multiscale decomposition

Model2Input

164

Challenging cases

Model2+Model1Input Model2 Texture

165

Challenging cases

166

Edge detection

167

Edge detection

Canny edges of original image Canny edges of smoothed image

168

Edge detection

169

Image abstraction

170

Image abstraction

171

Detail boosting

172

Image composition

Rolling Guidance Filter

173

Scale-Aware Filtering

Large Scale

Small Scale

174

Main Idea
• Scale Space Theory [Lindeberg, 1994]:
• An object of size t, will be largely smoothed away with Gaussian filter of

variance t2.

175

RGF: A scale-aware Filter

Step 1
Small

Structures
Removal

Step 2
Edge Recovery

176

Step 1: Small Structures Removal

Gaussian Filter

177

Step 2: Edge Recovery

• A rolling guidance

Joint Bilateral Filter
GuidanceInput

Output

Use it as new guidance

Repeat the iteration

The output of Step 1Original Input

178

Rolling Guidance

Joint Bilateral Filter
GuidanceInput

Rolling Guidance

Unchanged
Changing

179

Guidance for the 1st
iteration

180

Rolling Guidance

Guidance for the 2nd
iteration

181

Rolling Guidance

Guidance for the 3rd
iteration

182

Rolling Guidance

Guidance for the 5th
iteration

183

Rolling Guidance

OutputInput

Small structures are removed.
Large structure are NOT blurred.

184

Rolling Guidance

Rolling Guidance Filter (RGF) has only 1 line of code

Implementation

185

Rolling Guidance Filter (RGF) 7

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

(a) (b)

J
1

I

J
2

J
4

J
1

I

J
2

J
4

Fig. 5. 1D signal examples and their results in rolling guidance. (a) One small structure.
(b) One edge of a large structure.

in the t-th iteration. Initially, J1 is set as G in Eq. (2), which is the output of
Gaussian filtering. The value of J t+1 in the t-th iteration is obtained in a joint
bilateral filtering form given the input I and the value in previous iteration J t:

J t+1(p) =
1

Kp

∑

q∈N(p)

exp
(
− ‖p− q‖2

2σ2
s

− ‖J t(p)− J t(q)‖2

2σ2
r

)
I(q), (3)

where

Kp =
∑

q∈N(p)

exp
(
− ‖p− q‖2

2σ2
s

− ‖J t(p)− J t(q)‖2

2σ2
r

)

for normalization. I is the same input image used in Eq. (2). σs and σr control
the spatial and range weights respectively.

This expression can be understood as a filter that smoothes the input I guided
by the structure of J t. This process is different by nature from how previous
methods employ joint bilateral filter – we iteratively change the guidance image
in passes. It yields illuminating effects, explained below. We name this iterative
operation rolling guidance.

To demonstrate how it works, we show simple 1D examples in Fig. 5 where
one small structure and one edge of a large structure are presented. The four rows
show inputs and J t obtained by rolling guidance respectively. Since this process
uses J t to compute the affinity between pixels, it makes resulting structures
similar to J t. Put differently, it yields structure transform from J to I.

Small Structure In the first example (Fig. 5(a)), since the edges of the small
structure are completely removed in J1 by Gaussian filter, J1 is mostly flat. In
Eq. (3), the term ‖J t(p)−J t(q)‖ is almost zero for any (p, q) pairs, which makes
the joint bilateral filter behave like a Gaussian filter due to the inoperative range
weight. Therefore, the output J2 remains flat. All following iterations cannot add
the detail back.

Small Structure

Guidance (output of step 1)Input

Joint Bilateral Filter

It becomes a Gaussian filter

Same

186

Large Structure

Input Image

Result of Step 1

Due to this range weight
It generates sharper results than Gaussian!

Rolling Guidance Filter (RGF) 7

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

0.5

1

(a) (b)

J
1

I

J
2

J
4

J
1

I

J
2

J
4

Fig. 5. 1D signal examples and their results in rolling guidance. (a) One small structure.
(b) One edge of a large structure.

in the t-th iteration. Initially, J1 is set as G in Eq. (2), which is the output of
Gaussian filtering. The value of J t+1 in the t-th iteration is obtained in a joint
bilateral filtering form given the input I and the value in previous iteration J t:

J t+1(p) =
1

Kp

∑

q∈N(p)

exp
(
− ‖p− q‖2

2σ2
s

− ‖J t(p)− J t(q)‖2

2σ2
r

)
I(q), (3)

where

Kp =
∑

q∈N(p)

exp
(
− ‖p− q‖2

2σ2
s

− ‖J t(p)− J t(q)‖2

2σ2
r

)

for normalization. I is the same input image used in Eq. (2). σs and σr control
the spatial and range weights respectively.

This expression can be understood as a filter that smoothes the input I guided
by the structure of J t. This process is different by nature from how previous
methods employ joint bilateral filter – we iteratively change the guidance image
in passes. It yields illuminating effects, explained below. We name this iterative
operation rolling guidance.

To demonstrate how it works, we show simple 1D examples in Fig. 5 where
one small structure and one edge of a large structure are presented. The four rows
show inputs and J t obtained by rolling guidance respectively. Since this process
uses J t to compute the affinity between pixels, it makes resulting structures
similar to J t. Put differently, it yields structure transform from J to I.

Small Structure In the first example (Fig. 5(a)), since the edges of the small
structure are completely removed in J1 by Gaussian filter, J1 is mostly flat. In
Eq. (3), the term ‖J t(p)−J t(q)‖ is almost zero for any (p, q) pairs, which makes
the joint bilateral filter behave like a Gaussian filter due to the inoperative range
weight. Therefore, the output J2 remains flat. All following iterations cannot add
the detail back.

187

Guidance ImageInput Image

Previous guidance imageInput < <

Smoothing Range weight

Joint Bilateral Filter

Intermediate iterations

188

Processing

Input Image

Guidance Image

1st Iteration2nd Iteration3rd Iteration

189

Processing

Large Structure

Recovered

Take-home message

Rolling guidance recovers an edge as long as
it still exists in the blurred image after Gaussian smoothing.

190

Rolling Guidance Filter

Large Structure

Small Structure

Step 1
Gaussian

Step 2
Rolling

Guidance

Remove
Small

Structures

Edge
Recovery

191

Result Comparison

Input [Subr et al.] [Karacan et al.] [Xu et al.] RGF

192

Performance Comparison

Input [Subr et al., 2009][Karacan et al.,
2013]

478
seconds

1044
seconds

58
seconds

2
seconds

[Xu et al., 2012]RGF

For 4 Megapixel Image

193

Performance Comparison

Algorithms Time (seconds/Megapixel)

Local Extrema [Subr et al., 2009] 95

RTV [Xu et al., 2012] 14

Region Covariance [Karacan et al., 2013] 240

RGF 0.05(Real-time)

194

Texture Removal

195

Texture Removal

196

Halftone Image

197

Halftone Image

198

Boundary DetectionInput Boundary DetectionFiltered Input

Boundary detection

199

Multi-Scale Filtering

Input= 2= 3= 4= 6= 10= 30

determine the scale.
200

Limitations
• Sharp corners could be rounded
• It is because sharp corner presents high frequency change.
• In other words, sharp corners are small-scale structures.

201

Recap
• Filtering plays a key role for many applications.

• Filtering by taking into account image content generally gives better
results.

202

Next Lecture:
Edge-aware filtering,

Gradient-domain image
processing

203

