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Today’s Lecture
• Gaussian filtering 

• Sharpening

• Bilateral filter

• Non-local means filter 

• RegCov smoothing

• Rolling guidance filter

Disclaimer: The material and slides for this lecture were borrowed from 
— Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

—Wojciech Jarosz’s CS 89.15/189.5 “Computational Aspects of Digital Photography” class

—Steve Marschner’s CS6640 “Computational Photography” class

—Jiaya Jia’s slides on Rolling guidance filter
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Filtering
• The name “filter” is borrowed from frequency domain processing

• Accept or reject certain frequency components

• Fourier (1807):
Periodic functions 
could be represented
as a weighted sum of 
sines and cosines

Image courtesy of Technology Review
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Signals
• A signal is composed of low and high frequency components

low frequency components: smooth / piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points
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Image Filtering
• Idea: Use the information coming from the neighboring pixels for processing 

• Design a transformation function of the local neighborhood at each pixel in the 
image
• Function specified by a “filter” or mask saying how to combine values from 

neighbors.

• Various uses of filtering:
• Enhance an image (denoise, resize, etc)
• Extract information (texture, edges, etc)
• Detect patterns (template matching)

S
lid

e 
ad

ap
te

d 
fr

om
K

.G
ra

um
an

5



Filtering
• Processing done on a function

• can be executed in continuous form (e.g. analog circuit)
• but can also be executed using sampled representation

• Simple example: smoothing by averaging

• Can be modeled mathematically by convolution
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Discrete convolution
• Simple averaging:

• every sample gets the same weight

• Convolution: same idea but with weighted average

• each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a moving weighted average
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Filters
• Sequence of weights a[j] is called a filter

• Filter is nonzero over its region of support
• usually centered on zero: support radius r

• Filter is normalized so that it sums to 1.0
• this makes for a weighted average, not just any old 

weighted sum

• Most filters are symmetric about 0
• since for images we usually want to treat  left and 

right the same

a box filter
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Convolution and filtering
• Convolution applies with any sequence of weights

• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16
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Discrete filtering in 2D
• Same equation, one more index

• now the filter is a rectangle you slide around over a grid of numbers

• Usefulness of associativity
• often apply several filters one after another: (((a *	b1)	*	b2)	*	b3)
• this is equivalent to applying one filter: a	*	(b1 *	b2 *	b3)
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Moving Average In 2D
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

12S
lid

e 
cr

ed
it:

 S
. S

ei
tz



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

13S
lid

e 
cr

ed
it:

 S
. S

ei
tz

Moving Average In 2D



• What values belong in the kernel H for the moving average example?
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“box filter”
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depicts box filter: 
white = high value, black = low value

original filtered
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Gaussian Filtering
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• What if we want nearest neighboring pixels to have the most influence on the 
output?

• Removes high-frequency components from the image (“low-pass filter”).
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This kernel is an 
approximation of a 2d 
Gaussian function:

17S
lid

e 
cr

ed
it:

 S
. S

ei
tz

Gaussian Filter



18S
lid

e 
ad

ap
te

d 
fr

om
K

.G
ra

um
an

Smoothing with a Gaussian



…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and 
controls the amount of smoothing.
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Strategy for Smoothing Images
• Images are not smooth because adjacent pixels are different.

• Smoothing = making adjacent pixels look more similar.

• Smoothing strategy
pixel ~ average of its neighbors

20



Sharpening
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How can we sharpen?
• Blurring was easy 

• Sharpening is not as obvious
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How can we sharpen?
• Blurring was easy 

• Sharpening is not as obvious

• Idea: amplify the stuff not in the blurry image 

• output = input + k*(input-blur(input))
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Sharpening
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Sharpening: kernel view
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• Recall

f is the input
f’ is a sharpened image
g is a blurring kernel
k is a scalar controlling the strength of sharpening

Sharpening: kernel view
Recall 

f  is the input 
f’ is a sharpened image 
g is a blurring kernel 
k is a scalar controlling the strength of sharpening

CS 89/189: Computational Photography, Fall 2015 66

f 0 = f + k ⇤ ( f � f ⌦ g)
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Sharpening: kernel view
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• Recall

• Denote δ the Dirac kernel (pure impulse)

Sharpening: kernel view
Recall 

f  is the input 
f’ is a sharpened image 
g is a blurring kernel 
k is a scalar controlling the strength of sharpening
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Sharpening: kernel view
Recall 

Denote δ the Dirac kernel (pure impulse)
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Sharpening: kernel view
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• Recall

• Sharpening is also a convolution

Sharpening: kernel view
Recall 

f  is the input 
f’ is a sharpened image 
g is a blurring kernel 
k is a scalar controlling the strength of sharpening
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Sharpening: kernel view
Recall 

Sharpening is also a convolution
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f 0 = f + k ⇤ ( f � f ⌦ g)

f 0 = f ⌦ d + k ⇤ ( f ⌦ d � f ⌦ g)

f 0 = f ⌦ ((k + 1)d � g)
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Sharpening kernel

28S
lid

e 
ad

ap
te

d
fr

om
F.

D
ur

an
d

• Note: many other sharpening kernels exist 
(just like we saw multiple blurring kernels)

• Amplify the difference between a pixel and its neighbors

Sharpening kernel
Note: many other sharpening kernels exist  
(just like we saw multiple blurring kernels) 
Amplify the difference between a pixel and its neighbors
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blue: positive 
red: negative

f 0 = f ⌦ ((k + 1)d � g)
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Alternate interpretation
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• out = input + k*(input-blur(input))
• out = (1 + k)*input - k*blur(input)
• out = lerp(blur(input), input, 1+k)

linearly extrapolate from the blurred image “past” the original input image



Sharpening
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Unsharp mask
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• Sharpening is often called “unsharp mask” because photographers used to 
sandwich a negative with a blurry positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Unsharp mask
Sharpening is often called “unsharp mask” because 
photographers used to sandwich a negative with a 
blurry positive film in order to sharpen 
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http://www.tech-diy.com/UnsharpMasks.htm
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Problem with excess
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• Haloes around strong edges
Problem with excess
Haloes around strong edges
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Bilateral Filter
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normalized
Gaussian function
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Idea: weighted average of pixels.

0

1
average

input

per-pixel multiplication

output*
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size of the window

( )å
Î

-=
S

IGIGB
q

qp qp ||||][ s

small σ large σ

input

limited smoothing strong smoothing
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Spatial Parameter



Properties of Gaussian Blur
• Weights independent of spatial location

• linear convolution
• well-known operation
• efficient computation (recursive algorithm, FFT…)

• Does smooth images

• But smoothes too much:
edges are blurred.
• Only spatial distance matters
• No edge term

input

output
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space
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*

*

*

input output

Same Gaussian kernel everywhere.
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Blur Comes from Averaging across Edges



*

*

*

input output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi 98] 39

Bilateral Filter: No Averaging across Edges



range weight

new

space weight

not new

normalization
factor

new
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Same idea: weighted average of pixels.
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Bilateral Filter: An Additional Edge Term



range weight

new

space weight

not new

normalization
factor

new
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Same idea: weighted average of pixels.

favor nearby pixels favor similar pixels
41

Bilateral Filter: An Additional Edge Term



Space and Range Parameters

• space σs : spatial extent of the kernel, size of the considered neighborhood.

• range σr : “minimum” amplitude of an edge
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Output Gaussian Filter Input

43

Gaussian filtering visualization



Output Bilateral Filter Input

Spatial range Intensity range

44

Bilateral filtering visualization



σs = 2

σs = 6

σs = 18

σr = 0.1 σr = 0.25
σr = ∞

(Gaussian blur)

input

45

Exploring the Parameter Space



( ) ( )å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

( ) ( )å
Î

--=
S

GG
W

IBF
q

qqp
p

p CCCqp ||||||||1][
rs ss

For gray-level images 

For color images 

intensity difference

color difference

scalar

3D vector 
(RGB, Lab)

input

output
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Bilateral Filtering Color Images



• Nonlinear

• Complex, spatially varying kernels

• Cannot be precomputed, no FFT…

• Brute-force implementation is slow > 10min
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Additional Reading: S. Paris and F. Durand, A Fast Approximation of the 
Bilateral Filter using a Signal Processing Approach, In Proc. ECCV, 2006
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Hard to Compute



noisy input bilateral filtering median filtering

48

Denoising



input sharpening based on 
bilateral filtering

sharpening based on 
Gaussian filtering

How would you use bilateral filtering for sharpening?
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Contrast enhancement



50

Photo retouching



original digital pore removal (aka bilateral filtering)
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Photo retouching
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Before



53

After



original digital pore removal (aka bilateral 
filtering)
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Close-up comparison



input cartoon rendition

55

Cartoonization



How would you create this effect?

56

Cartoonization



edges from bilaterally filtered image bilaterally filtered image

+ =

cartoon rendition

Note: image cartoonization and abstraction are very active research areas.
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Cartoonization



Shift-invariant?

Linear?

58

Is the bilateral filter:



Shift-invariant?

Linear?

• No.

• No.

Does this have any bad implications?

59

Is the bilateral filter:



Data structure for fast 
edge-aware image 

processing.

60

The bilateral grid



Lots of great examples at: https://www.inf.ufrgs.br/~eslgastal/DomainTransform/
61

Modern edge-aware filtering: domain transform



62

Modern edge-aware filtering: guided filter



Flash/no-flash photography
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Red Eye
64



Unflattering Lighting
65



Motion Blur
66



Noise
67



A lot of Noise
68



Ruined Ambiance
69



No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look
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Lock Focus
& Aperture

1

time

71

Image acquisition



1/30 s
ISO 3200

No-Flash ImageLock Focus
& Aperture

21

time

72

Image acquisition



1/30 s
ISO 3200

1/125 s
ISO 200

No-Flash ImageLock Focus
& Aperture

Flash Image

2 31

time

73

Image acquisition



Denoising Result
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No-Flash
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Denoising Result
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Denoise the no-flash image while maintaining the edge structure of the flash image
• How would you do this using the image editing techniques we’ve learned about?

77

Key idea



Joint bilateral filtering
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noisy input bilateral filtering median filtering

79

Denoising with bilateral filtering



• However, results still have noise or blur (or both)

ambient

flash
Bilateral 

filter

spatial kernel

intensity kernel

80

Denoising with bilateral filtering



• In the flash image there are many more details
• Use the flash image F to find edges
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Denoising with joint bilateral filtering



Bilateral 
filter

Joint Bilateral 
filter

The difference

82

Denoising with joint bilateral filtering



Can you think of any types of edges that may exist in the flash image but 
not the ambient one?

83

Not all edges in the flash image are real



shadows

specularities

• May cause over- or under-blur in joint bilateral filter
• We need to eliminate their effect

84

Not all edges in the flash image are real



• Observation: the pixels in the flash shadow should be similar to the ambient image.

• Not identical:

1. Noise.

2. Inter-reflected flash.

• Compute a shadow mask.

• Take pixel p if 

• is manually adjusted

• Mask is smoothed and dilated
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Detecting shadows



• Take pixels where sensor input is close to maximum (very bright).

• Over fixed threshold 

• Create a specularity mask.

• Also smoothed.

• M – the combination of shadow and specularity masks:

Where Mp=1,  we use ABase.  For other pixels we use ANR.

86

Detecting specularities



• Denoising cannot add details missing in the ambient image
• Exist in flash image because of high SNR
• We use a quotient image:

• Multiply with ANR to add the details
• Masked in the same way

Reduces the 
effect of 
noise in F 

Why does this quotient 
image make sense for 

detail?

Bilateral 
filtered

87

Detail transfer



• Denoising cannot add details missing in the ambient image
• Exist in flash image because of high SNR
• We use a quotient image: Reduces the 

effect of 
noise in F 

88

Detail transfer



89

Full pipeline



ambient-only joint bilateral and detail transfer
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Demonstration



Flash

91



No-Flash
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No-Flash

93



Result
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Flash

95



No-Flash
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No-Flash

97



Result
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Flash

99



No-Flash

100



Flash

101



No-Flash

102



Result
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One of two input 
images

Depth from disparity Guided filtering

Use joint bilateral filtering, with 
the input image as guide.

104

Edge-aware depth denoising



105

Other applications of joint bilateral filtering



Non-Local Means Filter

106



107

Redundancy in natural images



NL-Means Filter (Buades 2005)

• Same goals: ‘Smooth within Similar Regions’

• KEY INSIGHT: Generalize, extend ‘Similarity’
• Bilateral: 

Averages neighbors with similar intensities;
• NL-Means:  

Averages neighbors with similar neighborhoods!
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109

NL-Means Method

• For each and

every pixel p: 



• For each and

every pixel p: 

• Define a small, simple 
fixed size neighborhood;

110

NL-Means Method



Vp = 

0.74
0.32
0.41
0.55
…
…
…

111

NL-Means Method

• For each and

every pixel p: 

• Define a small, simple 
fixed size neighborhood;
• Define vector Vp: a list of neighboring pixel values.



‘Similar’ pixels p, q

à SMALL
vector distance;

|| Vp – Vq ||2
p

q

112

NL-Means Method



‘Dissimilar’ pixels  p, q

à LARGE
vector distance;

|| Vp – Vq ||2
p

q

q

NL-Means Method
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‘Dissimilar’ pixels  p, q

à LARGE
vector distance;

Filter with this!

|| Vp – Vq ||2
p

q

NL-Means Method
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p, q neighbors define

a vector distance;

Filter with this:
No spatial term!

|| Vp – Vq ||2 p
q
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NL-Means Method
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pixels  p, q neighbors
Set a vector distance;

Vector Distance to p sets 
weight for each pixel q

|| Vp – Vq ||2 p
q
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p
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NL-Means Method
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NL-Means Method

117



NL-Means Method
• Noisy

source
image:

118



NL-Means Method
• Gaussian Filter

Low noise,

Low detail
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NL-Means Method
• Anisotropic

Diffusion

Note ‘stairsteps’:
~ piecewise constant
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NL-Means Method
• Bilateral Filter

Better, but similar
‘stairsteps’: 
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NL-Means Method
• NL-Means:

Sharp,

Low noise,

Few artifacts.
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NL-Means Method



http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
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NL-Means Method



RegCov Smoothing
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A�Modern�Paradigm:�Measuring�
Similarity�Between…

Images
Patches

Pixels

Pixels

Patches
Images

Similarities can be defined at different scales..

From pixels to patches and to images
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Pixelwise similarity metrics
• To measure the similarity of two pixels, we can consider 
• Spatial distance
• Gray‐level distance

Defining�a�pointͲwise�measure

• To�measure�the�similarity�of�two�pixels,�consider
– Spatial distance

– GrayͲlevel distance

Spatial ǻ
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y-
le

ve
l ǻ

x

y

127S
lid

e 
cr

ed
it:

 P
. M

ila
nf

ar



Euclidean metrics

• Natural ways to incorporate the two Δs:
• Bilateral Kernel [Tomasi, Manduchi, ‘98] (pixelwise)
• Non‐Local Means Kernel [Buades, et al. ‘05] (patchwise)

Euclidean�measures

• Natural�ways�to�incorporate�the�two�ȴs:
– Bilateral Kernel�[Tomasi,�Manduchi,�‘98]�(pointwise)
– NonͲLocal�Means Kernel�[Buades,�et�al.�‘05]�(patchwise)

Spatial ǻ

G
ra

y-
le

ve
lǻ

x

y “Euclidean” distance
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Bilateral�Kernel�(BL)�[Tomasi et�al.�‘98]

Pixel similarity Spatial similarity

=

Pixels

Bilateral Kernel (BL) [Tomasi et al. ‘98]
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NonͲlocal�Means�(NLM)��[Buades et�al.�‘05]

Patch similarity Spatial similarity

=

Æ Smoothing�effect

Patches

Smoothing effect

130

Non-local Means (NLM) [Buades et al. ‘05]
S

lid
e 

cr
ed

it:
 P

. M
ila

nf
ar



• Decomposing an image into structure and texture components

Input Image

131

Structure-Texture Decomposition



Structure Component

• Decomposing an image into structure and texture components
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Structure-Texture Decomposition



Texture Component

• Decomposing an image into structure and texture components

133

Structure-Texture Decomposition
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F x, y = ϕ(I, x, y)

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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• Region covariances capture local structure 
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• Similar regions have similar statistics.
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =
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↵
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dLi if 1  i  d
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p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:
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where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
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the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1
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(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =
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�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
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with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.
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where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Final representation

Resulting kernel function

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
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I(x, y)
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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k (Cp)� (Cq)k
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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• An alternative way is to use statistical similarity measures.

• A Mahalanobis-like distance measure to compare to image patches.
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image pixel is represented with a 7-dimensional feature vector:
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@
2
I

@x2

����

����
@
2
I

@y2

���� x y

iT

(6)
where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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image pixel is represented with a 7-dimensional feature vector:
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)

176:4        •        L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

Resulting kernel

140

RegCov Smoothing – Model 2



resulted from a discussion with Rahul Narain (Berkeley University)

• We use Kullback-Leibler(KL)-Divergence measure from probability theory.

• A KL-Divergence form  is used to calculate statistical distance between two 
multivariate normal distribution

p
q

Algorithm 1 Structure preserving image smoothing
Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.( 28) (Model 1), Eq.( 30) (Model 2),or

Eq.( 32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.

dKL(p,q) =
1

2

 
tr(Cq

�1Cp) + (µp � µq)
TCq

�1(µp � µq)� k � ln
⇣detCp

detCq

⌘!
(31)

wpq /
dKL(p,q)

2�2
(32)

Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).
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Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).
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FIGURE 3.2.: Our filtering kernels consider local image geometry on calculation of filtering
weights by capturing texture information.

[�1 2 � 1], and (x, y) denotes the pixel location. Hence, the covariance descriptor of an
image patch is computed as a 7⇥ 7 matrix. Including (x, y) into the feature set is important
since it allows us to encode the correlation of other features with the spatial coordinates. The
feature set can be extended to include other features, like for example rotationally invariant
forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch similarity weights wpq

using the intensity information and taking the weighted average over the corresponding RGB
vectors rather than the intensity values in Equation 23. We empirically found that including
RGB components to the feature set does not change the results much but increases the run-
ning times.

3.3. Model 1

Using the set S defined by Equation (21), a vectorial representation of a covariance matrix
can be obtained by simply concatenating the elements of S . Moreover, first-order statistics
can be easily incorporated to this representation scheme by including the mean vector of the
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Rolling Guidance Filter
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Scale-Aware Filtering

Large Scale

Small Scale
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Main Idea
• Scale Space Theory [Lindeberg, 1994]:
• An object of size t, will be largely smoothed away with Gaussian filter of 

variance t2.
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RGF: A scale-aware Filter

Step 1
Small 

Structures 
Removal

Step 2
Edge Recovery

176



Step 1: Small Structures Removal

Gaussian Filter
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Step 2: Edge Recovery

• A rolling guidance

Joint Bilateral Filter
GuidanceInput

Output

Use it as new guidance

Repeat the iteration

The output of Step 1Original Input
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Rolling Guidance
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Rolling Guidance
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Guidance for the 1st 
iteration
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iteration

181

Rolling Guidance



Guidance for the 3rd 
iteration

182

Rolling Guidance



Guidance for the 5th 
iteration

183

Rolling Guidance



OutputInput

Small structures are removed.
Large structure are NOT blurred.
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Rolling Guidance Filter (RGF) has only 1 line of code

Implementation
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Fig. 5. 1D signal examples and their results in rolling guidance. (a) One small structure.
(b) One edge of a large structure.

in the t-th iteration. Initially, J1 is set as G in Eq. (2), which is the output of
Gaussian filtering. The value of J t+1 in the t-th iteration is obtained in a joint
bilateral filtering form given the input I and the value in previous iteration J t:

J t+1(p) =
1

Kp

∑

q∈N(p)

exp
(
− ‖p− q‖2

2σ2
s

− ‖J t(p)− J t(q)‖2

2σ2
r

)
I(q), (3)

where

Kp =
∑

q∈N(p)

exp
(
− ‖p− q‖2

2σ2
s

− ‖J t(p)− J t(q)‖2

2σ2
r

)

for normalization. I is the same input image used in Eq. (2). σs and σr control
the spatial and range weights respectively.

This expression can be understood as a filter that smoothes the input I guided
by the structure of J t. This process is different by nature from how previous
methods employ joint bilateral filter – we iteratively change the guidance image
in passes. It yields illuminating effects, explained below. We name this iterative
operation rolling guidance.

To demonstrate how it works, we show simple 1D examples in Fig. 5 where
one small structure and one edge of a large structure are presented. The four rows
show inputs and J t obtained by rolling guidance respectively. Since this process
uses J t to compute the affinity between pixels, it makes resulting structures
similar to J t. Put differently, it yields structure transform from J to I.

Small Structure In the first example (Fig. 5(a)), since the edges of the small
structure are completely removed in J1 by Gaussian filter, J1 is mostly flat. In
Eq. (3), the term ‖J t(p)−J t(q)‖ is almost zero for any (p, q) pairs, which makes
the joint bilateral filter behave like a Gaussian filter due to the inoperative range
weight. Therefore, the output J2 remains flat. All following iterations cannot add
the detail back.

Small Structure

Guidance  (output of step 1)Input 

Joint Bilateral Filter

It becomes a Gaussian filter

Same
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Large Structure

Input Image

Result of Step 1

Due to this range weight
It generates sharper results than Gaussian!

Rolling Guidance Filter (RGF) 7
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Fig. 5. 1D signal examples and their results in rolling guidance. (a) One small structure.
(b) One edge of a large structure.

in the t-th iteration. Initially, J1 is set as G in Eq. (2), which is the output of
Gaussian filtering. The value of J t+1 in the t-th iteration is obtained in a joint
bilateral filtering form given the input I and the value in previous iteration J t:

J t+1(p) =
1

Kp

∑

q∈N(p)

exp
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− ‖p− q‖2
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I(q), (3)

where
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exp
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− ‖p− q‖2
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− ‖J t(p)− J t(q)‖2

2σ2
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)

for normalization. I is the same input image used in Eq. (2). σs and σr control
the spatial and range weights respectively.

This expression can be understood as a filter that smoothes the input I guided
by the structure of J t. This process is different by nature from how previous
methods employ joint bilateral filter – we iteratively change the guidance image
in passes. It yields illuminating effects, explained below. We name this iterative
operation rolling guidance.

To demonstrate how it works, we show simple 1D examples in Fig. 5 where
one small structure and one edge of a large structure are presented. The four rows
show inputs and J t obtained by rolling guidance respectively. Since this process
uses J t to compute the affinity between pixels, it makes resulting structures
similar to J t. Put differently, it yields structure transform from J to I.

Small Structure In the first example (Fig. 5(a)), since the edges of the small
structure are completely removed in J1 by Gaussian filter, J1 is mostly flat. In
Eq. (3), the term ‖J t(p)−J t(q)‖ is almost zero for any (p, q) pairs, which makes
the joint bilateral filter behave like a Gaussian filter due to the inoperative range
weight. Therefore, the output J2 remains flat. All following iterations cannot add
the detail back.
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Large Structure

Recovered

Take-home message

Rolling guidance recovers an edge as long as 
it still exists in the blurred image after Gaussian smoothing.
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Rolling Guidance Filter

Large Structure

Small Structure

Step 1
Gaussian

Step 2
Rolling 
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Result Comparison

Input [Subr et al.] [Karacan et al.] [Xu et al.] RGF
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Performance Comparison

Input [Subr et al., 2009][Karacan et al., 
2013]

478 
seconds

1044 
seconds

58
seconds

2 
seconds

[Xu et al., 2012]RGF

For 4 Megapixel Image
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Performance Comparison

Algorithms Time (seconds/Megapixel)

Local Extrema [Subr et al., 2009] 95

RTV [Xu et al., 2012] 14

Region Covariance [Karacan et al., 2013] 240

RGF 0.05(Real-time)
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Texture Removal
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Texture Removal
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Halftone Image
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Halftone Image
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Boundary DetectionInput Boundary DetectionFiltered Input

Boundary detection
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Multi-Scale Filtering

Input= 2= 3= 4= 6= 10= 30

determine the scale. 
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Limitations
• Sharp corners could be rounded
• It is because sharp corner presents high frequency change.
• In other words, sharp corners are small-scale structures.
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Recap
• Filtering plays a key role for many applications.

• Filtering by taking into account image content generally gives better 
results.
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Next Lecture: 
Edge-aware filtering, 

Gradient-domain image 
processing
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