
Multiple Exposure Photo by Christoffer Relander

Lecture #05 – Gradient-Domain Image Processing
Erkut Erdem // Hacettepe University // Spring 2022

BBM444
FUNDAMENTALS OF
COMPUTATIONAL
PHOTOGRAPHY

Today’s Lecture
• Gradient-domain image processing

• Basics on images and gradients

• Integrable vector fields

• Poisson blending

• A more efficient Poisson solver

• Poisson image editing examples

• Flash/no-flash photography

• Gradient-domain rendering and cameras

Disclaimer: The material and slides for this lecture were borrowed from
—Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class

2

Gradient-domain image processing

3

originals copy-paste Poisson blending
4

Application: Poisson blending

Removing Glass Reflections

Seamless Image Stitching
5

More applications

Tonemapping

Fusing day and night photos

6

Yet more applications

7

Entire suite of image editing tools

Estimation
of Gradients

Manipulation of
Gradients

Edited
Gradient Fields

Integration of
Gradient Fields Edited ImagesOriginal Images

8

Main pipeline

Basics of gradients and fields

9

Scalar field: a function assigning a scalar to every point in space.

𝐼 𝑥, 𝑦 : ℝ! → ℝ

Vector field: a function assigning a vector to every point in space.

𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 :ℝ! → ℝ!

Can you think of examples of scalar fields and vector fields?

10

Some vector calculus definitions in 2D

Scalar field: a function assigning a scalar to every point in space.

Vector field: a function assigning a vector to every point in space.

Can you think of examples of scalar fields and vector fields?
• A grayscale image is a scalar field.
• A two-channel image is a vector field.
• A three-channel (e.g., RGB) image is also a vector field, but of higher-dimensional range

than what we will consider here.

𝐼 𝑥, 𝑦 : ℝ! → ℝ

𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 :ℝ! → ℝ!

11

Some vector calculus definitions in 2D

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Think of this as
a 2D vector.

12

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field.

Curl: cross product of nabla with a vector field.

∇𝐼 𝑥, 𝑦 = ?

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 = ?

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 = ?

Think of this as
a 2D vector.

13

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field.

∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑢
𝜕𝑥

𝑥, 𝑦 +
𝜕𝑣
𝜕𝑦

𝑥, 𝑦

Curl: cross product of nabla with a vector field.

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦 −
𝜕𝑢
𝜕𝑦

𝑥, 𝑦 2𝑘

What is the
dimension of this?

Think of this as
a 2D vector.

What is the
dimension of this?

What is the
dimension of this?

14

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field.

∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑢
𝜕𝑥

𝑥, 𝑦 +
𝜕𝑣
𝜕𝑦

𝑥, 𝑦

Curl: cross product of nabla with a vector field.

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦 −
𝜕𝑢
𝜕𝑦

𝑥, 𝑦 2𝑘

This is a
vector field.

Think of this as
a 2D vector.

This is a
scalar field.

This is a vector field.

15

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field.

∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑢
𝜕𝑥

𝑥, 𝑦 +
𝜕𝑣
𝜕𝑦

𝑥, 𝑦

Curl: cross product of nabla with a vector field.

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦 −
𝜕𝑢
𝜕𝑦

𝑥, 𝑦 2𝑘

This is a
vector field.

Think of this as
a 2D vector.

This is a
scalar field.

This is a vector field.
This is a scalar field.

16

Some vector calculus definitions in 2D

Divergence of the gradient:

Curl of the gradient:

∇ . ∇𝐼 𝑥, 𝑦 = ?

∇×∇𝐼 𝑥, 𝑦 = ?

17

Combinations

Divergence of the gradient:

Curl of the gradient:

∇ . ∇𝐼 𝑥, 𝑦 =
𝜕!

𝜕𝑥!
𝐼 𝑥, 𝑦 +

𝜕!

𝜕𝑦!
𝐼 𝑥, 𝑦 ≡ ∆𝐼 𝑥, 𝑦

∇×∇𝐼 𝑥, 𝑦 =
𝜕!

𝜕𝑦𝜕𝑥
𝐼 𝑥, 𝑦 −

𝜕!

𝜕𝑥𝜕𝑦
𝐼 𝑥, 𝑦

Laplacian: scalar differential operator.

∆ ≡ ∇ . ∇ =
𝜕!

𝜕𝑥!
+
𝜕!

𝜕𝑦!
Inner product of
del with itself!

18

Combinations

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

Gradient (grad): product of nabla with a scalar field.

Curl: cross product of nabla with a vector field.

This is a
vector field.

Think of this as
a 2D vector.

This is a
scalar field.

This is a vector field.
This is a scalar field.

∇ = " #

∇𝐼 = 𝐼" 𝐼#

∇ . 𝑢 𝑣 = 𝑢" + 𝑣#

∇× 𝑢 𝑣 = 𝑣" − 𝑢# 2𝑘
19

Simplified notation

Divergence of the gradient:

Curl of the gradient:

∇ . ∇𝐼 = 𝐼"" + 𝐼## ≡ ∆𝐼

∇×∇𝐼 = 𝐼#" − 𝐼"#

Laplacian: scalar differential operator.

∆ ≡ ∇ . ∇ =
𝜕!

𝜕𝑥!
+
𝜕!

𝜕𝑦!
Inner product of
del with itself!

20

Simplified notation

We can treat grayscale images as scalar fields (i.e., two dimensional functions)

𝐼 𝑥, 𝑦 : ℝ! → ℝ

21

Image representation

Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

22

Image gradients

Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

• How do we do this differentiation in real discrete images?

23

Image gradients

What convolution kernel
does this correspond to?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦

24

Finite differences

?
?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦 1 -1

-1 1

25

Finite differences

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

partial-x derivative filter

Note: common to use central difference, but we will not use it in this lecture.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 =
𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥 − 1, 𝑦

2

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦 1 -1

26

Finite differences

High-school reminder: definition of a derivative using forward difference.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

For discrete scalar fields: remove limit and set h = 1.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦 1 -1

partial-x derivative filter

Similarly for partial-y derivative.

𝜕𝐼
𝜕𝑦

𝑥, 𝑦 = 𝐼 𝑥, 𝑦 + ℎ − 𝐼 𝑥, 𝑦 1
-1

partial-y derivative filter

27

Finite differences

How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

28

Discrete Laplacian

How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * = ?

What is this? What is this?
29

Discrete Laplacian

How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦
30

Discrete Laplacian

How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Very important to:
• use consistent

derivative and Laplacian
filters.

• account for boundary
shifting and padding
from convolution.

31

Discrete Laplacian

Very important for the techniques discussed in this lecture to:
• use consistent derivative and Laplacian filters.
• account for boundary shifting and padding from convolution.
A correct implementation of differential operators should pass the following test:

Equality holds at all pixels except boundary
(first and last row, first and last column).

=∇ " ∇

Laplacian operatorgradient operator

divergence operator

∆

Typically requires implementing derivatives
in various differential operators differently.

32

Warning!

Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

33

Image gradients

Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

• Image gradients are very informative!

34

Image gradients

35

Application - Seam Carving
S

lid
e

cr
ed

it:
 K

. G
ra

um
an

[Shai & Avidan, SIGGRAPH 2007]

36

Application - Seam Carving

[Shai & Avidan, SIGGRAPH 2007]

S
lid

e
cr

ed
it:

 K
. G

ra
um

an

Content-aware resizing

Traditional resizing

37

Application - Seam Carving

38

Seam Carving: Main idea
S

lid
e

cr
ed

it:
 K

. G
ra

um
an

Content-aware resizing
Intuition:
• Preserve the most “interesting” content

à Prefer to remove pixels with low gradient energy

• To reduce or increase size in one dimension, remove
irregularly shaped “seams”
à Optimal solution via dynamic programming.

39

Seam Carving: Main idea
S

lid
e

cr
ed

it:
 K

. G
ra

um
an

=)(fEnergy

• Want to remove seams where they won’t be very noticeable:
• Measure “energy” as gradient magnitude
• Choose seam based on minimum total energy path across image, subject to

8-connectedness.

40

Seam Carving: Algorithm
S

lid
e

cr
ed

it:
 K

. G
ra

um
an

• Let a vertical seam s consist of h positions that form an 8-connected path.

• Let the cost of a seam be:

• Optimal seam minimizes this cost.

• Compute it efficiently with dynamic programming:

å
=

=
h

i
isfEnergyCost

1
))(()(s

)(min* ss
s
Cost=

s1

s2

s3

s4

s5

=)(fEnergy

Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

41

Image gradients

Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

• How do we do this differentiation in real discrete images?

• Can we go in the opposite direction, from gradients to images?
42

Image gradients

Two fundamental questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed?

43

Vector field integration

Integrable vector fields

44

Given an arbitrary vector field (u,	v), can we always integrate it into a scalar field I?

such that

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ! → ℝ 𝑣 𝑥, 𝑦 : ℝ! → ℝ𝑢 𝑥, 𝑦 : ℝ! → ℝ

𝜕𝐼
𝜕𝑦

𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?

45

Integrable fields

Curl of the gradient field equals zero:

What does that mean intuitively?

∇×∇𝐼 = 𝐼#" − 𝐼"# = 0

46

Property of twice-differentiable functions

Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇×∇𝐼 = 𝐼#" − 𝐼"# = 0

𝐼#" = 𝐼"#

47

Property of twice-differentiable functions

=

∇×∇𝐼∆𝐼

𝐼" 𝐼#

𝐼"# 𝐼#"

image 𝐼

48

Demonstration

Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇×∇𝐼 = 𝐼#" − 𝐼"# = 0

𝐼#" = 𝐼"#

Can you use this property to derive an integrability condition?
49

Property of twice-differentiable functions

Given an arbitrary vector field (u,	v), can we always integrate it into a scalar field I?

such that

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ! → ℝ 𝑣 𝑥, 𝑦 : ℝ! → ℝ𝑢 𝑥, 𝑦 : ℝ! → ℝ

𝜕𝐼
𝜕𝑦

𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?

∇× 𝑢 𝑥, 𝑦
𝑣 𝑥, 𝑦 = 0 ⇒

𝜕𝑢
𝜕𝑦

𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦

Only if:

50

Integrable fields

Two fundamental questions:

• When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed?

51

Vector field integration

• Reconstructing height fields from gradients
Applications: shape from shading, photometric stereo

• Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

• Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
• Integration must be done approximately.

52

Different types of integration problems

A prototypical integration problem:
Poisson blending

53

originals copy-paste Poisson blending
54

Application: Poisson blending

When blending, retain the gradient information as best as possible

5
5

source destination copy-paste Poisson blending
55

Key idea

add image
here

Which one is the unknown?

𝑔: source function

Ω: destination domain

𝑓: interpolant function

𝑓∗: destination function

Notation

𝑆: destination

56

Definitions and notation

add image
here

𝑔: source function

Ω: destination domain

𝑓: interpolant function

𝑓∗: destination function

Notation

𝑆: destination

How should we determine 𝑓?
• Should it be similar to 𝑔?
• Should it be similar to 𝑓∗?

57

Definitions and notation

add image
here

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.

𝑆: destination

𝑔: source function

Ω: destination domain

𝑓: interpolant function

𝑓∗: destination function

Notation

Poisson blending: integrate
vector field ∇𝑔 with Dirichlet

boundary conditions 𝑓∗.
58

Definitions and notation

Least-squares integration
and the Poisson problem

59

Variational problem

what does this
term do?

what does this
term do?

Nabla operator definition

Recall ...

is this known?

“Variational” means
optimization where
the unknown is an

entire function

60

Least-squares integration

Variational problem

gradient of f looks
like vector field v

f is equivalent to
f* at the

boundaries

Yes, this is the vector
field we are
integrating

“Variational” means
optimization where
the unknown is an

entire function

61

Nabla operator definition

Recall ...

Why do we need
boundary conditions

for least-squares
integration?

Least-squares integration

Laplacian

Divergence

what does this term do?

62

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:
This can be

derived
using the

Euler-
Lagrange
equation.

Equivalently

Poisson equation (with Dirichlet boundary conditions)

Laplacian

Divergence

Laplacian of f same as
divergence of vector field v

63

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:
This can be

derived
using the

Euler-
Lagrange
equation.

Equivalently

Poisson equation (with Dirichlet boundary conditions)

64

What does the input vector field equal
in Poisson blending?

The stationary point of the variational loss is the solution to the:

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

65

What does the input vector field equal
in Poisson blending?

The stationary point of the variational loss is the solution to the:

What does the divergence of the input
vector field equal in Poisson blending?

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.

66

What does the input vector field equal
in Poisson blending?

The stationary point of the variational loss is the solution to the:

What does the divergence of the input
vector field equal in Poisson blending?

so make these ...

equal

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.

Laplacian

Divergence

67

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:

How do we solve the Poisson equation?

Equivalently

Poisson equation (with Dirichlet boundary conditions)

∆𝑓 𝑥, 𝑦 = ∇ . 𝐯 𝑥, 𝑦

So for each pixel, do:

Or for discrete images:

68

1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x
derivative filter

Recall ...

partial-y
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)

∆𝑓 𝑥, 𝑦 = ∇ . 𝐯 𝑥, 𝑦

So for each pixel, do:

Or for discrete images:

69

−4𝑓 𝑥, 𝑦 + 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦
+𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1

= 𝑢 𝑥 + 1, 𝑦 − 𝑢 𝑥, 𝑦 + 𝑣 𝑥, 𝑦 + 1
− 𝑣 𝑥, 𝑦

1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x
derivative filter

Recall ...

partial-y
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)

∆𝑓 ' = ∇ . 𝐯 '

So for each pixel, do (more compact notation):

Or for discrete images (more compact notation):

70

−4𝑓' +C
(∈*!

𝑓(= 𝑢" ' + 𝑣# '
1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x
derivative filter

Recall ...

partial-y
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)

In vector form:

linear equation
of P variables

one for each
pixel p = 1, …,

P

71

−4𝑓' +C
(∈*!

𝑓(= 𝑢" ' + 𝑣# '

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ " 𝐯 !
⋮

∇ " 𝐯 "!
⋮

∇ " 𝐯 ""
∇ " 𝐯 #
∇ " 𝐯 "#
⋮

∇ " 𝐯 "$
⋮

∇ " 𝐯 $

𝐴 𝑓 𝑏

(each pixel adds another ‘sparse’ row here)

We can rewrite this as

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ " 𝐯 !
⋮

∇ " 𝐯 "!
⋮

∇ " 𝐯 ""
∇ " 𝐯 #
∇ " 𝐯 "#
⋮

∇ " 𝐯 "$
⋮

∇ " 𝐯 $

𝐴 𝑓 𝑏

In vector form:

linear equation
of P variables

one for each
pixel p = 1, …,

P

what is
this?

72

−4𝑓' +C
(∈*!

𝑓(= 𝑢" ' + 𝑣# '

what are the sizes of these?

(each pixel adds another ‘sparse’ row here)

We can rewrite this as

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ " 𝐯 !
⋮

∇ " 𝐯 "!
⋮

∇ " 𝐯 ""
∇ " 𝐯 #
∇ " 𝐯 "#
⋮

∇ " 𝐯 "$
⋮

∇ " 𝐯 $

𝐴 𝑓 𝑏

In vector form:

linear equation
of P variables

one for each
pixel p = 1, …,

P

73

−4𝑓' +C
(∈*!

𝑓(= 𝑢" ' + 𝑣# '

We call this the
Laplacian matrix

(each pixel adds another ‘sparse’ row here)

We can rewrite this as

𝐷+×+ =

−4 1 0 0 0 ⋯ 0
1 −4 1 0 0 ⋯ 0
0 1 −4 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 −4 1 0
0 ⋯ ⋯ 0 1 −4 1
0 ⋯ ⋯ ⋯ 0 1 −474

For a𝑚×𝑛 image, we can re-organize this matrix into block tridiagonal form as:

𝐴+-×+- =

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

This requires ordering pixels in
column-major order.

𝐼+×+ is the 𝑚×𝑚
identity matrix

Laplacian matrix

75

𝐴𝑓 = 𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source)

After discretization, equivalent to:

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Linear system of equations:

How would you solve this?

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

f = A \ b

Note: You almost never want to
compute the inverse of a matrix.

76

Solving the linear system

77

𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:

What is the size of this matrix?

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Discrete Poisson equation

WARNING: requires special treatment at the borders
(target boundary values are same as source)

Poisson equation (with Dirichlet boundary conditions)

78

𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Matrix is 𝑃×𝑃 → billions of entries

Discrete Poisson equation

WARNING: requires special treatment at the borders
(target boundary values are same as source)

Poisson equation (with Dirichlet boundary conditions)

• Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

• Acceleration techniques:
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
…

• Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.

79

Integration procedures

A more efficient Poisson solver

80

Variational problem

gradient of f looks
like vector field v

f is equivalent to f*
at the boundaries

Nabla operator definition

Recall ...

Input vector field:

81

Let’s look again at our optimization problem

Variational problem

gradient of f looks
like vector field v

Nabla operator definition

Recall ...

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

Input vector field:

82

Let’s look again at our optimization problem

f is equivalent to f*
at the boundaries

Discrete problem
What are G, f, and v?

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
!

𝐺𝑓 − 𝑣 "

83

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

Nabla operator definition

Recall ...

Let’s look again at our optimization problem

Discrete problem
matrix G formed by stacking
together discrete gradients

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
!

𝐺𝑓 − 𝑣 "

vectorized version of
the unknown image

vectorized version of the
target gradient field

Image gradient

Recall ...

84

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

Let’s look again at our optimization problem

Discrete problem
matrix G formed by stacking
together discrete gradients

We can use the
gradient

approximation to
discretize the

variational problem

min
!

𝐺𝑓 − 𝑣 "

vectorized version of
the unknown image

vectorized version of the
target gradient field

Image gradient

Recall ...

85

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

How do we solve
this optimization

problem?

Let’s look again at our optimization problem

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

=?

86

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we do what with it?

87

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we set that to zero:

𝜕𝐸
𝜕𝑓

= 0 ⇒ 𝐺#𝐺𝑓 = 𝐺#𝑣
What is this matrix?

What is this vector?

88

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we set that to zero:

𝜕𝐸
𝜕𝑓

= 0 ⇒ 𝐺#𝐺𝑓 = 𝐺#𝑣
It is equal to the

Laplacian matrix A we
derived previously!

It is equal to the vector
b we derived
previously!

89

Approach 1: Compute stationary points

90

𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:

We arrive at the same system, no matter whether we discretize the
continuous Poisson equation or the variational optimization problem.

Same system as:

𝐺#𝐺𝑓 = 𝐺#𝑣

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we set that to zero:

𝜕𝐸
𝜕𝑓

= 0 ⇒ 𝐺#𝐺𝑓 = 𝐺#𝑣
Solving this is exactly as
expensive as what we

had before.

91

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣 = 𝐴𝑓 − 𝑏 ≡ −𝑟 We call this term
the residual

92

Approach 2: Use gradient descent

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣 = 𝐴𝑓 − 𝑏 ≡ −𝑟

… and then we iteratively compute a solution:

𝑓$%& = 𝑓$ + η$𝑟$
are positive step sizesη$

for i =	0,	1,	…,	N, where

93

We call this term
the residual

Approach 2: Use gradient descent

Make derivative of loss function with respect to equal to zero:η$

𝐸 𝑓$%& = 𝐺 𝑓$ + η$𝑟$ − 𝑣
"

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

94

Selecting optimal step sizes

𝐸 𝑓$%& = 𝐺 𝑓$ + η$𝑟$ − 𝑣
"

𝜕𝐸 𝑓$%&

𝜕η$
= 𝑏 − 𝐴 𝑓$ + η$𝑟$ #𝑟$ = 0 ⇒ η$ =

𝑟$
#
𝑟$

𝑟$ #𝐴𝑟$

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

95

Selecting optimal step sizes
Make derivative of loss function with respect to equal to zero:η$

Minimize by iteratively computing:

𝑟$ = 𝑏 − 𝐴𝑓$, η$ = '!
"
'!

'!
"
('!

, 𝑓$%& = 𝑓$ + η$𝑟$, 𝑖 = 0,… , 𝑁

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

Is this cheaper than the pseudo-inverse approach?

96

Gradient descent

𝑟$ = 𝑏 − 𝐴𝑓$, η$ = '!
"
'!

'!
"
('!

, 𝑓$%& = 𝑓$ + η$𝑟$, 𝑖 = 0,… , 𝑁

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

97

Gradient descent

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

98

𝑟$ = 𝑏 − 𝐴𝑓$, η$ = '!
"
'!

'!
"
('!

, 𝑓$%& = 𝑓$ + η$𝑟$, 𝑖 = 0,… , 𝑁

Gradient descent

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.
• Because A is the Laplacian matrix, these matrix-vector products can be efficiently

computed using convolutions with the Laplacian kernel.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

99

𝑟$ = 𝑏 − 𝐴𝑓$, η$ = '!
"
'!

'!
"
('!

, 𝑓$%& = 𝑓$ + η$𝑟$, 𝑖 = 0,… , 𝑁

Gradient descent

Minimize by iteratively computing:

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

100

𝑑$ = 𝑟$ + 𝛽$𝑑$, η$ = '!
"
'!

)!
"
()!

, 𝑓$%& = 𝑓$ + η$𝑑$, 𝑖 = 0,… , 𝑁

𝑟$%& = 𝑟$ − η$𝐴𝑑$, 𝛽$ = '!#$
"
'!#$

'!
"
'!

• Smarter way for selecting
update directions

• Everything can still be done
using convolutions

• Only one convolution needed
per iteration

In practice: conjugate gradient descent

Does the initialization f0 matter?

101

Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final fwe converge to, because the loss function is
convex.

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

102

Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final fwe converge to, because the loss function is
convex.

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

• It does matter in terms of convergence speed.
• We can use a multi-resolution approach:

- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

…
- Use the solution to initialize gradient descent for an f with the original resolution PxP.

• Multi-grid algorithms alternative between higher and lower resolutions during the
(conjugate) gradient descent iterative procedure.

103

Note: initialization

104

𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:

Remember that what we are
doing is equivalent to solving

this linear system.

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)

We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?

105

Note: preconditioning

We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?

106

Note: preconditioning

We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research.

107

𝑃+,-./0 = diag 𝐴

Note: preconditioning

We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research.

108

𝑃+,-./0 = diag 𝐴

Preconditioning can be
incorporated in the conjugate
gradient descent algorithm.

Is this effective for Poisson solvers?

Note: preconditioning

109

𝐴𝑓 = 𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source)

After discretization, equivalent to:

Linear system of equations:𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Matrix is 𝑃×𝑃 → billions of entries

x

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)

• Form a mask B that is 0 for pixels that should not
be updated (pixels on S-Ω and 𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over
the entire image.

• Use (conjugate) gradient descent rules to only
update pixels for which the mask is 1. Equivalently,
change the update rules to:

𝑓$%& = 𝑓$ + 𝐵η$𝑟$

𝑓$%& = 𝑓$ + 𝐵η$𝑑$
(gradient descent)

(conjugate gradient descent)
110

Note: handling (Dirichlet) boundary conditions

𝑓$%& = 𝑓$ + 𝐵η$𝑟$

𝑓$%& = 𝑓$ + 𝐵η$𝑑$

In practice, masking is also required
at other steps of (conjugate)

gradient descent, to deal with
invalid boundaries (e.g., from

convolutions).

111

Note: handling (Dirichlet) boundary conditions

• Form a mask B that is 0 for pixels that should not
be updated (pixels on S-Ω and 𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over
the entire image.

• Use (conjugate) gradient descent rules to only
update pixels for which the mask is 1. Equivalently,
change the update rules to:

(gradient descent)

(conjugate gradient descent)

Poisson image editing examples

112

Slightly more advanced version
of what we covered here:
• Uses higher-order derivatives

113

Photoshop’s “healing brush”

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

114

Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.

115

Contrast problem

copy-paste Poisson blendingoriginals
116

More blending

117

Blending transparent objects

source destination

118

Blending objects with holes

119

Editing

How would you do this
with Poisson blending?

120

Concealment

How would you do this
with Poisson blending?

• Insert a copy of the
background.

121

Concealment

122

Texture swapping

How would you do this?

123

Special case: membrane interpolation

How would you do this?

Poisson problem

Laplacian problem

124

Special case: membrane interpolation

125

Entire suite of image editing tools

Flash/no-flash photography

126

No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look

127

Denoising Result

128

No-Flash

129

Denoising Result

130

Denoise the no-flash image while maintaining the edge structure of the flash image.

131

Key idea

Can we do similar flash/no-flash fusion tasks with gradient-domain processing?

Ambient Flash

132

Removing self-reflections and hot-spots

Ambient Flash

Hands

Face

Tripod

133

Removing self-reflections and hot-spots

Result
Ambient

Flash

Reflection Layer

134

Removing self-reflections and hot-spots

Same gradient vector
direction

Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections
135

Idea: look at how gradients are affected

Reflection Ambient Gradient
VectorDifferent gradient

vector direction

With reflections

Ambient Flash

Flash Gradient Vector

136

Idea: look at how gradients are affected

Residual
Gradient
Vector

Result Gradient Vector

Result Residual

Flash Gradient Vector

137

Gradient projections

Ambient Flash

2D

Integration

Flash

Ambient

X

Y

X

Y

Intensity Gradient

Vector Projection

Result X

Result Y

Result

2D Integration

138

Flash/no-flash with gradient-domain processing

Gradient-domain rendering

139

140

141

Primal domain Gradient domain 142

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

143

144

Can I go from one image to the other?

differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson solver)

145

Can I go from one image to the other?

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

146

Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples)

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

147

Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) on

rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

Why not all?

148

Rendering

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image)
in primal domain, to use as boundary conditions in the Poisson solver.
• In practice, do image-space stratified sampling to select these pixels.

149

Rendering

A lot of papers since SIGGRAPH 2013
(first introduction of gradient-domain
rendering) that are looking to extend
basically all primal-domain rendering
algorithms to the gradient domain.

150

Gradient-Domain Rendering

151

Does it help?

Gradient-domain path tracing (2 minutes) 152

Primal-domain path tracing (2 minutes) 153

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

154

Does it help?

Remember this idea (we’ll come back to it)

155

Modern Gradient-Domain Rendering

https://github.com/mkettune/ngpt

Deep Convolutional Reconstruction For Gradient-Domain Rendering

MARKUS KETTUNEN, Aalto University
ERIK HÄRKÖNEN, Aalto University
JAAKKO LEHTINEN, Aalto University and Nvidia

Input (Ours) NFOR [Bitterli et al. 2016] KPCN [Bako et al. 2017] NGPT (Ours) Ground Truth

Fig. 1. Comparison of the primal-domain denoisers NFOR [Bi�erli et al. 2016] and KPCN [Bako et al. 2017] to our gradient-domain reconstruction NGPT from
very noisy equal-time inputs (8 samples for ours and 20 for others). Generally outperforming the comparison methods, our results show that gradient sampling
is useful also in the context of non-linear neural image reconstruction, o�en resolving e.g. shadows be�er than techniques that do not make use of gradients.

It has been shown that rendering in the gradient domain, i.e., estimating �nite
di�erence gradients of image intensity using correlated samples, and com-
bining them with direct estimates of pixel intensities by solving a screened
Poisson problem, often o�ers fundamental bene�ts over merely sampling
pixel intensities. The reasons can be traced to the frequency content of the
light transport integrand and its interplay with the gradient operator. How-
ever, while they often yield state of the art performance among algorithms
that are based on Monte Carlo sampling alone, gradient-domain rendering
algorithms have, until now, not generally been competitive with techniques
that combine Monte Carlo sampling with post-hoc noise removal using
sophisticated non-linear �ltering.

Drawing on the power of modern convolutional neural networks, we
propose a novel reconstruction method for gradient-domain rendering. Our
technique replaces the screened Poisson solver of previous gradient-domain
techniques with a novel dense variant of the U-Net autoencoder, addition-
ally taking auxiliary feature bu�ers as inputs. We optimize our network to
minimize a perceptual image distance metric calibrated to the human visual
system. Our results signi�cantly improve the quality obtained from gradient-
domain path tracing, allowing it to overtake state-of-the-art comparison
techniques that denoise traditional Monte Carlo samplings. In particular,
we observe that the correlated gradient samples — that o�er information
about the smoothness of the integrand unavailable in standard Monte Carlo
sampling — notably improve image quality compared to an equally powerful
neural model that does not make use of gradient samples.

Authors’ addresses: Markus Kettunen, Aalto University, markus.kettunen@aalto.�; Erik
Härkönen, Aalto University, erik.harkonen@aalto.�; Jaakko Lehtinen, Aalto University
and Nvidia, jaakko.lehtinen@aalto.�.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/7-ART126 $15.00
https://doi.org/10.1145/3306346.3323038

CCS Concepts: • Computing methodologies → Neural networks; Ray
tracing.

Additional Key Words and Phrases: gradient-domain rendering, gradient-
domain reconstruction, screened poisson, ray tracing

ACM Reference Format:
Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. 2019. Deep Con-
volutional Reconstruction For Gradient-Domain Rendering. ACM Trans.
Graph. 38, 4, Article 126 (July 2019), 12 pages. https://doi.org/10.1145/3306346.
3323038

1 INTRODUCTION
Realistic image synthesis seeks to produce realistic virtual pho-
tographs by computationally solving the Rendering Equation [Ka-
jiya 1986], often by randomly sampling paths that carry light from
the light sources to the sensor. Rendering with too few samples
leaves the image with visually distracting noise. Unsurprisingly,
practical applications constantly struggle with striking a balance be-
tween the complexity of content (slower, more noise) and available
computational resources.

Since many Monte Carlo samples are required for a high qual-
ity image, this leaves four main approaches for making rendering
faster: (1) making samples faster to evaluate (e.g. GPU rendering,
ray tracing hardware, optimized low-level algorithms), (2) sharing
contributions between nearby paths (e.g. photon mapping), (3) being
clever in choosing the light paths to sample (e.g. Bidirectional Path
Tracing, adaptive importance samplers), and, �nally, (4) denoising
or reconstruction, attempting to produce a better picture out of the
samples by relying on various smoothness assumptions or analytic
models of the transport phenomena being modeled.

Despite a long history, and continuous research progress in all of
these areas, signi�cant problems remain. Only naturally, the quality
obtained by “more pure” techniques that rely on few assumptions or
heuristics tends to lag behind those that assume more. For instance,

ACM Trans. Graph., Vol. 38, No. 4, Article 126. Publication date: July 2019.

https://github.com/mkettune/ngpt

156

Modern Gradient-Domain Rendering

https://github.com/iRedBean/Deep-Poisson-Reconstruction

GradNet: Unsupervised Deep Screened Poisson Reconstruction for
Gradient-Domain Rendering

JIE GUO∗, State Key Lab for Novel So"ware Technology, Nanjing University
MENGTIAN LI∗, State Key Lab for Novel So"ware Technology, Nanjing University
QUEWEI LI, State Key Lab for Novel So"ware Technology, Nanjing University
YUTING QIANG, State Key Lab for Novel So"ware Technology, Nanjing University
BINGYANG HU, State Key Lab for Novel So"ware Technology, Nanjing University
YANWEN GUO†, State Key Lab for Novel So"ware Technology, Nanjing University
LING-QI YAN†, University of California, Santa Barbara

%DVH�,PDJH������VSS� 2XU�5HFRQVWUXFWLRQ 5HIHUHQFH %%DDVVHH��,,PPDDJJHH������������VVSSSS�� 22XXUU��55HHFFRRQQVVWWUUXXFFWWLLRRQQ 55HHIIHHUUHHQQFFHH

Fig. 1. We propose an unsupervised deep neural network (GradNet) for reconstructing high-quality images from noisy base images and the corresponding
image gradients generated by gradient-domain renderers. Even with unlabeled training data, our network can still reproduce noise-free images closely
matching the references.

Monte Carlo (MC)methods for light transport simulation are !exible and gen-
eral but typically su"er from high variance and slow convergence. Gradient-
domain rendering alleviates this problem by additionally generating image
gradients and reformulating rendering as a screened Poisson image recon-
struction problem. To improve the quality and performance of the recon-
struction, we propose a novel and practical deep learning based approach in
this paper. The core of our approach is a multi-branch auto-encoder, termed
∗Both authors contributed equally to the paper
†Corresponding authors

Authors’ addresses: Jie Guo, State Key Lab for Novel Software Technology, Nanjing Uni-
versity, guojie@nju.edu.cn; Mengtian Li, State Key Lab for Novel Software Technology,
Nanjing University, lemonsky@smail.nju.edu.cn; Quewei Li, State Key Lab for Novel
Software Technology, Nanjing University, liquewei@163.com; Yuting Qiang, State Key
Lab for Novel Software Technology, Nanjing University, qiangyuting.new@gmail.com;
Bingyang Hu, State Key Lab for Novel Software Technology, Nanjing University,
fhymyang@gmail.com; Yanwen Guo, State Key Lab for Novel Software Technology,
Nanjing University, ywguo@nju.edu.cn; Ling-Qi Yan, University of California, Santa
Barbara, lingqi@cs.ucsb.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro$t or commercial advantage and that copies bear this notice and the full citation
on the $rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci$c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART223 $15.00
https://doi.org/10.1145/3355089.3356538

GradNet, which end-to-end learns a mapping from a noisy input image and
its corresponding image gradients to a high-quality image with low variance.
Once trained, our network is fast to evaluate and does not require manual
parameter tweaking. Due to the di%culty in preparing ground-truth images
for training, we design and train our network in a completely unsupervised
manner by learning directly from the input data. This is the $rst solution in-
corporating unsupervised deep learning into the gradient-domain rendering
framework. The loss function is de$ned as an energy function including a
data $delity term and a gradient $delity term. To further reduce the noise of
the reconstructed image, the loss function is reinforced by adding a regular-
izer constructed from selected rendering-speci$c features. We demonstrate
that our method improves the reconstruction quality for a diverse set of
scenes, and reconstructing a high-resolution image takes far less than one
second on a recent GPU.

CCS Concepts: • Computing methodologies→ Ray tracing; Neural net-
works.

Additional Key Words and Phrases: Gradient-domain rendering, Deep learn-
ing, Unsupervised learning, Image reconstruction

ACM Reference Format:
Jie Guo, Mengtian Li, Quewei Li, Yuting Qiang, Bingyang Hu, Yanwen Guo,
and Ling-Qi Yan. 2019. GradNet: Unsupervised Deep Screened Poisson Re-
construction for Gradient-Domain Rendering. ACM Trans. Graph. 38, 6, Arti-
cle 223 (November 2019), 13 pages. https://doi.org/10.1145/3355089.3356538

ACM Trans. Graph., Vol. 38, No. 6, Article 223. Publication date: November 2019.

https://github.com/iRedBean/Deep-Poisson-Reconstruction

Gradient cameras

157

Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

158

Gradient camera

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

159

What implication would this have on a camera?

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

160

Gradient camera

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

161

Gradient camera

Can you think how?

162

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+

-

operational amplifier
(amplify difference

of inputs)

firing
mechanism ← what is this for? 163

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+

-

operational amplifier
(amplify difference

of inputs)

firing
mechanism

Any disadvantages of this sensor?

Why is this better than computing
gradients in post-processing?

What about Poisson noise?

164

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+

-

operational amplifier
(amplify difference

of inputs)

firing
mechanism

Any disadvantages of this sensor?
• Spatial resolution is reduced by 2x.
• Photosensitive area is reduced.
Why is this better than computing
gradients in post-processing?
• Additive noise is reduced.
• Acquisition is faster thanks to the firing

mechanism and sparsity of edges.
What about Poisson noise?
• Poisson noise is the same in both

cases.

165

Change the sensor

+

-

𝐿!

𝐿"

(we will
ignore
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*(∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = ?

𝜎 𝐼 < = ?

Digital subtraction
in post-processing

Analog subtraction
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'() 166

Noise considerations

+

-

𝐿!

𝐿"

(we will
ignore
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*(∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = 𝜎 𝐿; − 𝐿< < + 2) 𝜎=>?@
< ⋅ 𝑔< + 2) 𝜎ABC<

𝜎 𝐼 < = 𝜎 𝐿; − 𝐿< < + 𝜎DE?FE< ⋅ 𝑔< + 𝜎=>?@< ⋅ 𝑔< + 𝜎ABC<

Digital subtraction
in post-processing

Analog subtraction
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()

which variance is better?

167

Noise considerations

+

-

𝐿!

𝐿"

(we will
ignore
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*(∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = 𝜎 𝐿; − 𝐿< < + 2) 𝜎=>?@
< ⋅ 𝑔< + 2) 𝜎ABC<

𝜎 𝐼 < = 𝜎 𝐿; − 𝐿< < + 𝜎DE?FE< ⋅ 𝑔< + 𝜎=>?@< ⋅ 𝑔< + 𝜎ABC<

Digital subtraction
in post-processing

Analog subtraction
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()

terms related to Poisson
noise are the same

additive noise is reduced
if opamp is well-designed

168

Noise considerations

+

-

𝐿!

𝐿"

(we will
ignore
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*(∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = 𝜎 𝐿; − 𝐿< < + 2) 𝜎=>?@
< ⋅ 𝑔< + 2) 𝜎ABC<

𝜎 𝐼 < = 𝜎 𝐿; − 𝐿< < + 𝜎DE?FE< ⋅ 𝑔< + 𝜎=>?@< ⋅ 𝑔< + 𝜎ABC<

Digital subtraction
in post-processing

Analog subtraction
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()

what is the distribution of
the difference 𝐿; − 𝐿<?

169

Noise considerations

+

-

𝐿!

𝐿"

(we will
ignore
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*(∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = 𝜎 𝐿; − 𝐿< < + 2) 𝜎=>?@
< ⋅ 𝑔< + 2) 𝜎ABC<

𝜎 𝐼 < = 𝜎 𝐿; − 𝐿< < + 𝜎DE?FE< ⋅ 𝑔< + 𝜎=>?@< ⋅ 𝑔< + 𝜎ABC<

Digital subtraction
in post-processing

Analog subtraction
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()

𝐿; − 𝐿< ∼ Skellam 𝑡 ⋅ 𝑎 ⋅ Φ; −Φ< , 𝑡 ⋅ 𝑎 ⋅ Φ; +Φ< + 2 ⋅ 𝐷

170

Noise considerations

Can you think how?

171

Change the optics

photodetectors

lenslet

refractive
slab

template
(edge filter)

resulting image

Physical Layout Impulse Response
(2D)

Optical filtering Angle-sensitive pixels

172

Change the optics

photodetectors

lenslet

refractive
slab

template
(edge filter)

resulting image

Physical Layout Impulse Response
(2D)

Optical filtering Angle-sensitive pixels

173

Change the optics

Any disadvantages?

photodetectors

lenslet

refractive
slab

template
(edge filter)

resulting image

Physical Layout Impulse Response
(2D)

Optical filtering Angle-sensitive pixels

174

Change the optics

Any disadvantages?
• Reduced light efficiency (we block light).
• We can’t do subtraction very easily in optics.

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is

significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
• Change the sensor.
• Change the optics.

175

Gradient camera

event-based cameras (a.k.a.
dynamic vision sensors, or DVS)

Concept figure for event-based camera:

https://www.youtube.com/watch?v=kPCZESVfHoQ

High-speed output on a quadcopter:

https://www.youtube.com/watch?v=LauQ6LWTkxM

Simulator:

http://rpg.ifi.uzh.ch/esim 176

We can also compute temporal gradients

https://www.youtube.com/watch?v=kPCZESVfHoQ
https://www.youtube.com/watch?v=LauQ6LWTkxM
http://rpg.ifi.uzh.ch/esim

177

Slowly becoming popular in robotics and vision

Next Lecture:
Focal stacks and depth from

(de)focus, Lightfields

178

