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Today’s Lecture
• Gradient-domain image processing

• Basics on images and gradients

• Integrable vector fields

• Poisson blending

• A more efficient Poisson solver

• Poisson image editing examples

• Flash/no-flash photography

• Gradient-domain rendering and cameras

Disclaimer: The material and slides for this lecture were borrowed from 
—Ioannis Gkioulekas’ 15-463/15-663/15-862 “Computational Photography” class
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Gradient-domain image processing
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originals copy-paste Poisson blending
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Application: Poisson blending



Removing Glass Reflections

Seamless Image Stitching
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More applications



Tonemapping

Fusing day and night photos
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Yet more applications
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Entire suite of image editing tools



Estimation
of Gradients

Manipulation of 
Gradients

Edited 
Gradient Fields

Integration of 
Gradient Fields Edited ImagesOriginal Images
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Main pipeline



Basics of gradients and fields
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Scalar field: a function assigning a scalar to every point in space.

𝐼 𝑥, 𝑦 : ℝ! → ℝ

Vector field: a function assigning a vector to every point in space.

𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 :ℝ! → ℝ!

Can you think of examples of scalar fields and vector fields?
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Some vector calculus definitions in 2D



Scalar field: a function assigning a scalar to every point in space.

Vector field: a function assigning a vector to every point in space.

Can you think of examples of scalar fields and vector fields?
• A grayscale image is a scalar field.
• A two-channel image is a vector field.
• A three-channel (e.g., RGB) image is also a vector field, but of higher-dimensional range 

than what we will consider here.

𝐼 𝑥, 𝑦 : ℝ! → ℝ

𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 :ℝ! → ℝ!
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Some vector calculus definitions in 2D



Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Think of this as 
a 2D vector.
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Some vector calculus definitions in 2D



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field. 

Curl: cross product of nabla with a vector field.

∇𝐼 𝑥, 𝑦 = ?

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 = ?

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 = ?

Think of this as 
a 2D vector.
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Some vector calculus definitions in 2D



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field. 

∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑢
𝜕𝑥

𝑥, 𝑦 +
𝜕𝑣
𝜕𝑦

𝑥, 𝑦

Curl: cross product of nabla with a vector field.

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦 −
𝜕𝑢
𝜕𝑦

𝑥, 𝑦 2𝑘

What is the 
dimension of this?

Think of this as 
a 2D vector.

What is the 
dimension of this?

What is the 
dimension of this?
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Some vector calculus definitions in 2D



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field. 

∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑢
𝜕𝑥

𝑥, 𝑦 +
𝜕𝑣
𝜕𝑦

𝑥, 𝑦

Curl: cross product of nabla with a vector field.

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦 −
𝜕𝑢
𝜕𝑦

𝑥, 𝑦 2𝑘

This is a 
vector field.

Think of this as 
a 2D vector.

This is a 
scalar field.

This is a vector field.
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Some vector calculus definitions in 2D



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕
𝜕𝑥

𝜕
𝜕𝑦

Gradient (grad): product of nabla with a scalar field. 

∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

∇ . 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑢
𝜕𝑥

𝑥, 𝑦 +
𝜕𝑣
𝜕𝑦

𝑥, 𝑦

Curl: cross product of nabla with a vector field.

∇× 𝑢 𝑥, 𝑦 𝑣 𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦 −
𝜕𝑢
𝜕𝑦

𝑥, 𝑦 2𝑘

This is a 
vector field.

Think of this as 
a 2D vector.

This is a 
scalar field.

This is a vector field.
This is a scalar field.
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Some vector calculus definitions in 2D



Divergence of the gradient:

Curl of the gradient:

∇ . ∇𝐼 𝑥, 𝑦 = ?

∇×∇𝐼 𝑥, 𝑦 = ?
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Combinations



Divergence of the gradient:

Curl of the gradient:

∇ . ∇𝐼 𝑥, 𝑦 =
𝜕!

𝜕𝑥!
𝐼 𝑥, 𝑦 +

𝜕!

𝜕𝑦!
𝐼 𝑥, 𝑦 ≡ ∆𝐼 𝑥, 𝑦

∇×∇𝐼 𝑥, 𝑦 =
𝜕!

𝜕𝑦𝜕𝑥
𝐼 𝑥, 𝑦 −

𝜕!

𝜕𝑥𝜕𝑦
𝐼 𝑥, 𝑦

Laplacian: scalar differential operator.

∆ ≡ ∇ . ∇ =
𝜕!

𝜕𝑥!
+
𝜕!

𝜕𝑦!
Inner product of 
del with itself!
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Combinations



Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

Gradient (grad): product of nabla with a scalar field. 

Curl: cross product of nabla with a vector field.

This is a 
vector field.

Think of this as 
a 2D vector.

This is a 
scalar field.

This is a vector field.
This is a scalar field.

∇ = " #

∇𝐼 = 𝐼" 𝐼#

∇ . 𝑢 𝑣 = 𝑢" + 𝑣#

∇× 𝑢 𝑣 = 𝑣" − 𝑢# 2𝑘
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Simplified notation



Divergence of the gradient:

Curl of the gradient:

∇ . ∇𝐼 = 𝐼"" + 𝐼## ≡ ∆𝐼

∇×∇𝐼 = 𝐼#" − 𝐼"#

Laplacian: scalar differential operator.

∆ ≡ ∇ . ∇ =
𝜕!

𝜕𝑥!
+
𝜕!

𝜕𝑦!
Inner product of 
del with itself!
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Simplified notation



We can treat grayscale images as scalar fields (i.e., two dimensional functions)

𝐼 𝑥, 𝑦 : ℝ! → ℝ
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Image representation



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦
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Image gradients



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

• How do we do this differentiation in real discrete images?
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Image gradients



What convolution kernel 
does this correspond to?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦
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Finite differences



?
?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦 1 -1

-1 1
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Finite differences



High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

partial-x derivative filter

Note: common to use central difference, but we will not use it in this lecture.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 =
𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥 − 1, 𝑦

2

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦 1 -1
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Finite differences



High-school reminder: definition of a derivative using forward difference.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = lim
$→&

𝐼 𝑥 + ℎ, 𝑦 − 𝐼 𝑥, 𝑦
ℎ

For discrete scalar fields: remove limit and set h = 1.

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝐼 𝑥 + 1, 𝑦 − 𝐼 𝑥, 𝑦 1 -1

partial-x derivative filter

Similarly for partial-y derivative.

𝜕𝐼
𝜕𝑦

𝑥, 𝑦 = 𝐼 𝑥, 𝑦 + ℎ − 𝐼 𝑥, 𝑦 1
-1

partial-y derivative filter
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Finite differences



How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦
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Discrete Laplacian



How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * = ?

What is this? What is this?
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Discrete Laplacian



How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦
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Discrete Laplacian



How do we compute the image Laplacian?

∆𝐼 𝑥, 𝑦 =
𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦 +
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

𝜕!𝐼
𝜕𝑥!

𝑥, 𝑦
𝜕!𝐼
𝜕𝑦!

𝑥, 𝑦

Very important to: 
• use consistent 

derivative and Laplacian 
filters.

• account for boundary 
shifting and padding 
from convolution.
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Discrete Laplacian



Very important for the techniques discussed in this lecture to: 
• use consistent derivative and Laplacian filters.
• account for boundary shifting and padding from convolution.
A correct implementation of differential operators should pass the following test:

Equality holds at all pixels except boundary 
(first and last row, first and last column).

=∇ " ∇

Laplacian operatorgradient operator

divergence operator

∆

Typically requires implementing derivatives 
in various differential operators differently.
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Warning!



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦
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Image gradients



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

• Image gradients are very informative!
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Image gradients
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Application - Seam Carving
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[Shai & Avidan, SIGGRAPH 2007]
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Application - Seam Carving

[Shai & Avidan, SIGGRAPH 2007]
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Content-aware resizing

Traditional resizing
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Application - Seam Carving
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Seam Carving: Main idea
S
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Content-aware resizing
Intuition: 
• Preserve the most “interesting” content

à Prefer to remove pixels with low gradient energy

• To reduce or increase size in one dimension, remove 
irregularly shaped “seams”
à Optimal solution via dynamic programming.
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Seam Carving: Main idea
S

lid
e 

cr
ed
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. G
ra
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an

=)( fEnergy

• Want to remove seams where they won’t be very noticeable:
• Measure “energy” as gradient magnitude
• Choose seam based on minimum total energy path across image, subject to 

8-connectedness.
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Seam Carving: Algorithm
S

lid
e 
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ed
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• Let a vertical seam s consist of h positions that form an 8-connected  path.

• Let the cost of a seam be:

• Optimal seam minimizes this cost.

• Compute it efficiently with dynamic programming:

å
=

=
h

i
isfEnergyCost

1
))(()(s

)(min* ss
s
Cost=

s1

s2

s3

s4

s5

=)( fEnergy



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦
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Image gradients



Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼 𝑥, 𝑦 : ℝ! → ℝ ∇𝐼 𝑥, 𝑦 =
𝜕𝐼
𝜕𝑥

𝑥, 𝑦
𝜕𝐼
𝜕𝑦

𝑥, 𝑦

• How do we do this differentiation in real discrete images?

• Can we go in the opposite direction, from gradients to images?
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Image gradients



Two fundamental questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed? 
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Vector field integration



Integrable vector fields

44



Given an arbitrary vector field (u,	v), can we always integrate it into a scalar field I?

such that 

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ! → ℝ 𝑣 𝑥, 𝑦 : ℝ! → ℝ𝑢 𝑥, 𝑦 : ℝ! → ℝ

𝜕𝐼
𝜕𝑦

𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?
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Integrable fields



Curl of the gradient field equals zero:

What does that mean intuitively?

∇×∇𝐼 = 𝐼#" − 𝐼"# = 0

46

Property of twice-differentiable functions



Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇×∇𝐼 = 𝐼#" − 𝐼"# = 0

𝐼#" = 𝐼"#

47

Property of twice-differentiable functions



=

∇×∇𝐼∆𝐼

𝐼" 𝐼#

𝐼"# 𝐼#"

image 𝐼

48

Demonstration



Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇×∇𝐼 = 𝐼#" − 𝐼"# = 0

𝐼#" = 𝐼"#

Can you use this property to derive an integrability condition?
49

Property of twice-differentiable functions



Given an arbitrary vector field (u,	v), can we always integrate it into a scalar field I?

such that 

𝜕𝐼
𝜕𝑥

𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ! → ℝ 𝑣 𝑥, 𝑦 : ℝ! → ℝ𝑢 𝑥, 𝑦 : ℝ! → ℝ

𝜕𝐼
𝜕𝑦

𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?

∇× 𝑢 𝑥, 𝑦
𝑣 𝑥, 𝑦 = 0 ⇒

𝜕𝑢
𝜕𝑦

𝑥, 𝑦 =
𝜕𝑣
𝜕𝑥

𝑥, 𝑦

Only if:
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Integrable fields



Two fundamental questions:

• When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed? 

51

Vector field integration



• Reconstructing height fields from gradients
Applications: shape from shading, photometric stereo

• Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

• Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
• Integration must be done approximately.
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Different types of integration problems



A prototypical integration problem: 
Poisson blending
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originals copy-paste Poisson blending
54

Application: Poisson blending



When blending, retain the gradient information as best as possible

5
5

source destination copy-paste Poisson blending
55

Key idea



add image 
here

Which one is the unknown?

𝑔: source function

Ω: destination domain

𝑓: interpolant function

𝑓∗: destination function

Notation

𝑆: destination

56

Definitions and notation



add image 
here

𝑔: source function

Ω: destination domain

𝑓: interpolant function

𝑓∗: destination function

Notation

𝑆: destination

How should we determine 𝑓?
• Should it be similar to 𝑔?
• Should it be similar to 𝑓∗?

57

Definitions and notation



add image 
here

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.

𝑆: destination

𝑔: source function

Ω: destination domain

𝑓: interpolant function

𝑓∗: destination function

Notation

Poisson blending: integrate
vector field ∇𝑔 with Dirichlet 

boundary conditions 𝑓∗.
58

Definitions and notation



Least-squares integration 
and the Poisson problem

59



Variational problem

what does this 
term do?

what does this 
term do?

Nabla operator definition

Recall ...

is this known?

“Variational” means 
optimization where 
the unknown is an 

entire function

60

Least-squares integration



Variational problem

gradient of f looks 
like vector field v

f is equivalent to 
f* at the 

boundaries

Yes, this is the vector 
field we are 
integrating

“Variational” means 
optimization where 
the unknown is an 

entire function

61

Nabla operator definition

Recall ...

Why do we need 
boundary conditions 

for least-squares 
integration?

Least-squares integration



Laplacian

Divergence

what does this term do?
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Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:
This can be 

derived 
using the 

Euler-
Lagrange 
equation.

Equivalently

Poisson equation (with Dirichlet boundary conditions)



Laplacian

Divergence

Laplacian of f same as 
divergence of vector field v
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Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:
This can be 

derived 
using the 

Euler-
Lagrange 
equation.

Equivalently

Poisson equation (with Dirichlet boundary conditions)
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What does the input vector field equal 
in Poisson blending?

The stationary point of the variational loss is the solution to the:

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)
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What does the input vector field equal 
in Poisson blending?

The stationary point of the variational loss is the solution to the:

What does the divergence of the input 
vector field equal in Poisson blending?

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.



66

What does the input vector field equal 
in Poisson blending?

The stationary point of the variational loss is the solution to the:

What does the divergence of the input 
vector field equal in Poisson blending?

so make these ...

equal

In the Poisson blending example…

Poisson equation (with Dirichlet boundary conditions)

Find 𝑓 such that:
• ∇𝑓 = ∇𝑔 inside Ω.
• 𝑓 = 𝑓∗ at the boundary 𝜕Ω.



Laplacian

Divergence
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Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:

How do we solve the Poisson equation?

Equivalently

Poisson equation (with Dirichlet boundary conditions)



∆𝑓 𝑥, 𝑦 = ∇ . 𝐯 𝑥, 𝑦

So for each pixel, do:

Or for discrete images:
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1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x 
derivative filter

Recall ...

partial-y 
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)



∆𝑓 𝑥, 𝑦 = ∇ . 𝐯 𝑥, 𝑦

So for each pixel, do:

Or for discrete images:
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−4𝑓 𝑥, 𝑦 + 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦
+𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1

= 𝑢 𝑥 + 1, 𝑦 − 𝑢 𝑥, 𝑦 + 𝑣 𝑥, 𝑦 + 1
− 𝑣 𝑥, 𝑦

1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x 
derivative filter

Recall ...

partial-y 
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)



∆𝑓 ' = ∇ . 𝐯 '

So for each pixel, do (more compact notation):

Or for discrete images (more compact notation):
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−4𝑓' +C
(∈*!

𝑓( = 𝑢" ' + 𝑣# '
1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x 
derivative filter

Recall ...

partial-y 
derivative filter

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)



In vector form:

linear equation 
of P variables

one for each 
pixel p = 1, …, 

P
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−4𝑓' +C
(∈*!

𝑓( = 𝑢" ' + 𝑣# '

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ " 𝐯 !
⋮

∇ " 𝐯 "!
⋮

∇ " 𝐯 ""
∇ " 𝐯 #
∇ " 𝐯 "#
⋮

∇ " 𝐯 "$
⋮

∇ " 𝐯 $

𝐴 𝑓 𝑏

(each pixel adds another ‘sparse’ row here)

We can rewrite this as



⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ " 𝐯 !
⋮

∇ " 𝐯 "!
⋮

∇ " 𝐯 ""
∇ " 𝐯 #
∇ " 𝐯 "#
⋮

∇ " 𝐯 "$
⋮

∇ " 𝐯 $

𝐴 𝑓 𝑏

In vector form:

linear equation 
of P variables

one for each 
pixel p = 1, …, 

P

what is 
this?
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−4𝑓' +C
(∈*!

𝑓( = 𝑢" ' + 𝑣# '

what are the sizes of these?

(each pixel adds another ‘sparse’ row here)

We can rewrite this as



⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
"

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ " 𝐯 !
⋮

∇ " 𝐯 "!
⋮

∇ " 𝐯 ""
∇ " 𝐯 #
∇ " 𝐯 "#
⋮

∇ " 𝐯 "$
⋮

∇ " 𝐯 $

𝐴 𝑓 𝑏

In vector form:

linear equation 
of P variables

one for each 
pixel p = 1, …, 

P
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−4𝑓' +C
(∈*!

𝑓( = 𝑢" ' + 𝑣# '

We call this the 
Laplacian matrix

(each pixel adds another ‘sparse’ row here)

We can rewrite this as



𝐷+×+ =

−4 1 0 0 0 ⋯ 0
1 −4 1 0 0 ⋯ 0
0 1 −4 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 −4 1 0
0 ⋯ ⋯ 0 1 −4 1
0 ⋯ ⋯ ⋯ 0 1 −474

For a𝑚×𝑛 image, we can re-organize this matrix into block tridiagonal form as: 

𝐴+-×+- =

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

This requires ordering pixels in 
column-major order.

𝐼+×+ is the 𝑚×𝑚
identity matrix

Laplacian matrix
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𝐴𝑓 = 𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source )

After discretization, equivalent to:

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Linear system of equations:

How would you solve this?

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)



Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

f = A \ b

Note: You almost never want to 
compute the inverse of a matrix.

76

Solving the linear system
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𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:

What is the size of this matrix?

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Discrete Poisson equation

WARNING: requires special treatment at the borders
(target boundary values are same as source )

Poisson equation (with Dirichlet boundary conditions)



78

𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Matrix is 𝑃×𝑃 → billions of entries

Discrete Poisson equation

WARNING: requires special treatment at the borders
(target boundary values are same as source )

Poisson equation (with Dirichlet boundary conditions)



• Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

• Acceleration techniques: 
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
…

• Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.
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Integration procedures



A more efficient Poisson solver

80



Variational problem

gradient of f looks 
like vector field v

f is equivalent to f* 
at the boundaries

Nabla operator definition

Recall ...

Input vector field:

81

Let’s look again at our optimization problem



Variational problem

gradient of f looks 
like vector field v

Nabla operator definition

Recall ...

1 -1

1
-1

partial-x 
derivative filter

partial-y 
derivative filter

And for discrete images:

Input vector field:
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Let’s look again at our optimization problem

f is equivalent to f* 
at the boundaries



Discrete problem
What are G, f, and v?

We can use the 
gradient 

approximation to 
discretize the 

variational problem

We will ignore the 
boundary conditions 

for now.min
!

𝐺𝑓 − 𝑣 "
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1 -1

1
-1

partial-x 
derivative filter

partial-y 
derivative filter

And for discrete images:

Nabla operator definition

Recall ...

Let’s look again at our optimization problem



Discrete problem
matrix G formed by stacking 
together discrete gradients

We can use the 
gradient 

approximation to 
discretize the 

variational problem

We will ignore the 
boundary conditions 

for now.min
!

𝐺𝑓 − 𝑣 "

vectorized version of 
the unknown image

vectorized version of the 
target gradient field

Image gradient

Recall ...
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1 -1

1
-1

partial-x 
derivative filter

partial-y 
derivative filter

And for discrete images:

Let’s look again at our optimization problem



Discrete problem
matrix G formed by stacking 
together discrete gradients

We can use the 
gradient 

approximation to 
discretize the 

variational problem

min
!

𝐺𝑓 − 𝑣 "

vectorized version of 
the unknown image

vectorized version of the 
target gradient field

Image gradient

Recall ...
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1 -1

1
-1

partial-x 
derivative filter

partial-y 
derivative filter

And for discrete images:

How do we solve 
this optimization 

problem?

Let’s look again at our optimization problem



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

=?

86

Approach 1: Compute stationary points



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we do what with it?
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Approach 1: Compute stationary points



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we set that to zero:

𝜕𝐸
𝜕𝑓

= 0 ⇒ 𝐺#𝐺𝑓 = 𝐺#𝑣
What is this matrix?

What is this vector?
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Approach 1: Compute stationary points



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we set that to zero:

𝜕𝐸
𝜕𝑓

= 0 ⇒ 𝐺#𝐺𝑓 = 𝐺#𝑣
It is equal to the 

Laplacian matrix A we 
derived previously!

It is equal to the vector 
b we derived 
previously!

89

Approach 1: Compute stationary points
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𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:

We arrive at the same system, no matter whether we discretize the 
continuous Poisson equation or the variational optimization problem.

Same system as:

𝐺#𝐺𝑓 = 𝐺#𝑣

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣

… and we set that to zero:

𝜕𝐸
𝜕𝑓

= 0 ⇒ 𝐺#𝐺𝑓 = 𝐺#𝑣
Solving this is exactly as 
expensive as what we 

had before.
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Approach 1: Compute stationary points



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣 = 𝐴𝑓 − 𝑏 ≡ −𝑟 We call this term 
the residual
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Approach 2: Use gradient descent



Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

… we compute its derivative:

𝜕𝐸
𝜕𝑓

= 𝐺#𝐺𝑓 − 𝐺#𝑣 = 𝐴𝑓 − 𝑏 ≡ −𝑟

… and then we iteratively compute a solution:

𝑓$%& = 𝑓$ + η$𝑟$
are positive step sizesη$

for i =	0,	1,	…,	N, where
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We call this term 
the residual

Approach 2: Use gradient descent



Make derivative of loss function with respect to equal to zero:η$

𝐸 𝑓$%& = 𝐺 𝑓$ + η$𝑟$ − 𝑣
"

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

94

Selecting optimal step sizes



𝐸 𝑓$%& = 𝐺 𝑓$ + η$𝑟$ − 𝑣
"

𝜕𝐸 𝑓$%&

𝜕η$
= 𝑏 − 𝐴 𝑓$ + η$𝑟$ #𝑟$ = 0 ⇒ η$ =

𝑟$
#
𝑟$

𝑟$ #𝐴𝑟$

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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Selecting optimal step sizes
Make derivative of loss function with respect to equal to zero:η$



Minimize by iteratively computing:

𝑟$ = 𝑏 − 𝐴𝑓$,     η$ = '!
"
'!

'!
"
('!

,     𝑓$%& = 𝑓$ + η$𝑟$,     𝑖 = 0,… , 𝑁

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

Is this cheaper than the pseudo-inverse approach?
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Gradient descent



𝑟$ = 𝑏 − 𝐴𝑓$,     η$ = '!
"
'!

'!
"
('!

,     𝑓$%& = 𝑓$ + η$𝑟$,     𝑖 = 0,… , 𝑁

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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Gradient descent



Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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𝑟$ = 𝑏 − 𝐴𝑓$,     η$ = '!
"
'!

'!
"
('!

,     𝑓$%& = 𝑓$ + η$𝑟$,     𝑖 = 0,… , 𝑁

Gradient descent



Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.
• Because A is the Laplacian matrix, these matrix-vector products can be efficiently 

computed using convolutions with the Laplacian kernel.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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𝑟$ = 𝑏 − 𝐴𝑓$,     η$ = '!
"
'!

'!
"
('!

,     𝑓$%& = 𝑓$ + η$𝑟$,     𝑖 = 0,… , 𝑁

Gradient descent



Minimize by iteratively computing:

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

100

𝑑$ = 𝑟$ + 𝛽$𝑑$,     η$ = '!
"
'!

)!
"
()!

,     𝑓$%& = 𝑓$ + η$𝑑$,     𝑖 = 0,… , 𝑁

𝑟$%& = 𝑟$ − η$𝐴𝑑$,     𝛽$ = '!#$
"
'!#$

'!
"
'!

• Smarter way for selecting 
update directions

• Everything can still be done 
using convolutions

• Only one convolution needed 
per iteration

In practice: conjugate gradient descent



Does the initialization f0 matter?

101

Note: initialization



Does the initialization f0 matter?

• It doesn’t matter in terms of what final fwe converge to, because the loss function is 
convex. 

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "
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Note: initialization



Does the initialization f0 matter?

• It doesn’t matter in terms of what final fwe converge to, because the loss function is 
convex. 

𝐸 𝑓 = 𝐺𝑓 − 𝑣 "

• It does matter in terms of convergence speed.
• We can use a multi-resolution approach: 

- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

…
- Use the solution to initialize gradient descent for an f with the original resolution PxP.

• Multi-grid algorithms alternative between higher and lower resolutions during the 
(conjugate) gradient descent iterative procedure.

103

Note: initialization
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𝐴𝑓 = 𝑏

After discretization, equivalent to:

Linear system of equations:

Remember that what we are 
doing is equivalent to solving 

this linear system.

𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)



We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
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Note: preconditioning



We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But 

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more 

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
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Note: preconditioning



We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But 

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more 

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research. 
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𝑃+,-./0 = diag 𝐴

Note: preconditioning



We are solving this linear system:

𝐴𝑓 = 𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃*&𝐴𝑓 = 𝑃*&𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But 

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more 

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research. 
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𝑃+,-./0 = diag 𝐴

Preconditioning can be 
incorporated in the conjugate 
gradient descent algorithm.

Is this effective for Poisson solvers?

Note: preconditioning
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𝐴𝑓 = 𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source )

After discretization, equivalent to:

Linear system of equations:𝐷 𝐼 0 0 0 ⋯ 0
𝐼 𝐷 𝐼 0 0 ⋯ 0
0 𝐼 𝐷 𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼 𝐷 𝐼 0
0 ⋯ ⋯ 0 𝐼 𝐷 𝐼
0 ⋯ ⋯ ⋯ 0 𝐼 𝐷

'

𝑓!
⋮
𝑓"!
⋮
𝑓""
𝑓#
𝑓"#
⋮
𝑓"$
⋮
𝑓$

=

∇ ' 𝐯 !
⋮

∇ ' 𝐯 "!
⋮

∇ ' 𝐯 ""
∇ ' 𝐯 #

∇ ' 𝐯 "#
⋮

∇ ' 𝐯 "$
⋮

∇ ' 𝐯 $

Matrix is 𝑃×𝑃 → billions of entries

x

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)



• Form a mask B that is 0 for pixels that should not 
be updated (pixels on S-Ω and 𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over 
the entire image.

• Use (conjugate) gradient descent rules to only 
update pixels for which the mask is 1. Equivalently,
change the update rules to:

𝑓$%& = 𝑓$ + 𝐵η$𝑟$

𝑓$%& = 𝑓$ + 𝐵η$𝑑$
(gradient descent)

(conjugate gradient descent)
110

Note: handling (Dirichlet) boundary conditions



𝑓$%& = 𝑓$ + 𝐵η$𝑟$

𝑓$%& = 𝑓$ + 𝐵η$𝑑$

In practice, masking is also required 
at other steps of (conjugate) 

gradient descent, to deal with 
invalid boundaries (e.g., from 

convolutions). 

111

Note: handling (Dirichlet) boundary conditions

• Form a mask B that is 0 for pixels that should not 
be updated (pixels on S-Ω and 𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over 
the entire image.

• Use (conjugate) gradient descent rules to only 
update pixels for which the mask is 1. Equivalently,
change the update rules to:

(gradient descent)

(conjugate gradient descent)



Poisson image editing examples
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Slightly more advanced version 
of what we covered here:
• Uses higher-order derivatives

113

Photoshop’s “healing brush”



Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

114

Contrast problem



Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.

115

Contrast problem



copy-paste Poisson blendingoriginals
116

More blending
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Blending transparent objects

source destination
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Blending objects with holes



119

Editing



How would you do this 
with Poisson blending?

120

Concealment



How would you do this 
with Poisson blending?

• Insert a copy of the 
background.

121

Concealment



122

Texture swapping



How would you do this?

123

Special case: membrane interpolation



How would you do this?

Poisson problem

Laplacian problem

124

Special case: membrane interpolation



125

Entire suite of image editing tools



Flash/no-flash photography

126



No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look

127



Denoising Result

128



No-Flash

129



Denoising Result

130



Denoise the no-flash image while maintaining the edge structure of the flash image.

131

Key idea

Can we do similar flash/no-flash fusion tasks with gradient-domain processing?



Ambient Flash

132

Removing self-reflections and hot-spots



Ambient Flash

Hands

Face

Tripod

133

Removing self-reflections and hot-spots



Result
Ambient

Flash

Reflection Layer

134

Removing self-reflections and hot-spots



Same gradient vector 
direction

Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections
135

Idea: look at how gradients are affected



Reflection Ambient Gradient 
VectorDifferent gradient 

vector direction

With reflections

Ambient Flash

Flash Gradient Vector

136

Idea: look at how gradients are affected



Residual 
Gradient 
Vector

Result Gradient Vector

Result Residual

Flash Gradient Vector

137

Gradient projections

Ambient Flash



2D 

Integration

Flash

Ambient

X

Y

X

Y

Intensity Gradient 

Vector Projection

Result X

Result Y

Result

2D Integration

138

Flash/no-flash with gradient-domain processing



Gradient-domain rendering

139



140



141



Primal domain Gradient domain 142



Primal domain Gradient domain

gradients of 
natural images 

are sparse 
(close to zero 

in most places)

143



144

Can I go from one image to the other?



differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson solver)

145

Can I go from one image to the other?



Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

146

Rendering



Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) 

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

147

Rendering



Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) on 

rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

Why not all?

148

Rendering



Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image) 
in primal domain, to use as boundary conditions in the Poisson solver.
• In practice, do image-space stratified sampling to select these pixels.

149

Rendering



A lot of papers since SIGGRAPH 2013 
(first introduction of gradient-domain 
rendering) that are looking to extend 
basically all primal-domain rendering 
algorithms to the gradient domain.

150

Gradient-Domain Rendering



151

Does it help?



Gradient-domain path tracing (2 minutes) 152



Primal-domain path tracing (2 minutes) 153



Primal domain Gradient domain

gradients of 
natural images 

are sparse 
(close to zero 

in most places)

154

Does it help?

Remember this idea (we’ll come back to it)
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Modern Gradient-Domain Rendering

https://github.com/mkettune/ngpt

Deep Convolutional Reconstruction For Gradient-Domain Rendering

MARKUS KETTUNEN, Aalto University
ERIK HÄRKÖNEN, Aalto University
JAAKKO LEHTINEN, Aalto University and Nvidia

Input (Ours) NFOR [Bitterli et al. 2016] KPCN [Bako et al. 2017] NGPT (Ours) Ground Truth

Fig. 1. Comparison of the primal-domain denoisers NFOR [Bi�erli et al. 2016] and KPCN [Bako et al. 2017] to our gradient-domain reconstruction NGPT from
very noisy equal-time inputs (8 samples for ours and 20 for others). Generally outperforming the comparison methods, our results show that gradient sampling
is useful also in the context of non-linear neural image reconstruction, o�en resolving e.g. shadows be�er than techniques that do not make use of gradients.

It has been shown that rendering in the gradient domain, i.e., estimating �nite
di�erence gradients of image intensity using correlated samples, and com-
bining them with direct estimates of pixel intensities by solving a screened
Poisson problem, often o�ers fundamental bene�ts over merely sampling
pixel intensities. The reasons can be traced to the frequency content of the
light transport integrand and its interplay with the gradient operator. How-
ever, while they often yield state of the art performance among algorithms
that are based on Monte Carlo sampling alone, gradient-domain rendering
algorithms have, until now, not generally been competitive with techniques
that combine Monte Carlo sampling with post-hoc noise removal using
sophisticated non-linear �ltering.

Drawing on the power of modern convolutional neural networks, we
propose a novel reconstruction method for gradient-domain rendering. Our
technique replaces the screened Poisson solver of previous gradient-domain
techniques with a novel dense variant of the U-Net autoencoder, addition-
ally taking auxiliary feature bu�ers as inputs. We optimize our network to
minimize a perceptual image distance metric calibrated to the human visual
system. Our results signi�cantly improve the quality obtained from gradient-
domain path tracing, allowing it to overtake state-of-the-art comparison
techniques that denoise traditional Monte Carlo samplings. In particular,
we observe that the correlated gradient samples — that o�er information
about the smoothness of the integrand unavailable in standard Monte Carlo
sampling — notably improve image quality compared to an equally powerful
neural model that does not make use of gradient samples.

Authors’ addresses: Markus Kettunen, Aalto University, markus.kettunen@aalto.�; Erik
Härkönen, Aalto University, erik.harkonen@aalto.�; Jaakko Lehtinen, Aalto University
and Nvidia, jaakko.lehtinen@aalto.�.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/7-ART126 $15.00
https://doi.org/10.1145/3306346.3323038

CCS Concepts: • Computing methodologies → Neural networks; Ray
tracing.

Additional Key Words and Phrases: gradient-domain rendering, gradient-
domain reconstruction, screened poisson, ray tracing

ACM Reference Format:
Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. 2019. Deep Con-
volutional Reconstruction For Gradient-Domain Rendering. ACM Trans.
Graph. 38, 4, Article 126 (July 2019), 12 pages. https://doi.org/10.1145/3306346.
3323038

1 INTRODUCTION
Realistic image synthesis seeks to produce realistic virtual pho-
tographs by computationally solving the Rendering Equation [Ka-
jiya 1986], often by randomly sampling paths that carry light from
the light sources to the sensor. Rendering with too few samples
leaves the image with visually distracting noise. Unsurprisingly,
practical applications constantly struggle with striking a balance be-
tween the complexity of content (slower, more noise) and available
computational resources.

Since many Monte Carlo samples are required for a high qual-
ity image, this leaves four main approaches for making rendering
faster: (1) making samples faster to evaluate (e.g. GPU rendering,
ray tracing hardware, optimized low-level algorithms), (2) sharing
contributions between nearby paths (e.g. photon mapping), (3) being
clever in choosing the light paths to sample (e.g. Bidirectional Path
Tracing, adaptive importance samplers), and, �nally, (4) denoising
or reconstruction, attempting to produce a better picture out of the
samples by relying on various smoothness assumptions or analytic
models of the transport phenomena being modeled.

Despite a long history, and continuous research progress in all of
these areas, signi�cant problems remain. Only naturally, the quality
obtained by “more pure” techniques that rely on few assumptions or
heuristics tends to lag behind those that assume more. For instance,

ACM Trans. Graph., Vol. 38, No. 4, Article 126. Publication date: July 2019.

https://github.com/mkettune/ngpt
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Modern Gradient-Domain Rendering

https://github.com/iRedBean/Deep-Poisson-Reconstruction

GradNet: Unsupervised Deep Screened Poisson Reconstruction for
Gradient-Domain Rendering

JIE GUO∗, State Key Lab for Novel So"ware Technology, Nanjing University
MENGTIAN LI∗, State Key Lab for Novel So"ware Technology, Nanjing University
QUEWEI LI, State Key Lab for Novel So"ware Technology, Nanjing University
YUTING QIANG, State Key Lab for Novel So"ware Technology, Nanjing University
BINGYANG HU, State Key Lab for Novel So"ware Technology, Nanjing University
YANWEN GUO†, State Key Lab for Novel So"ware Technology, Nanjing University
LING-QI YAN†, University of California, Santa Barbara
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Fig. 1. We propose an unsupervised deep neural network (GradNet) for reconstructing high-quality images from noisy base images and the corresponding
image gradients generated by gradient-domain renderers. Even with unlabeled training data, our network can still reproduce noise-free images closely
matching the references.

Monte Carlo (MC)methods for light transport simulation are !exible and gen-
eral but typically su"er from high variance and slow convergence. Gradient-
domain rendering alleviates this problem by additionally generating image
gradients and reformulating rendering as a screened Poisson image recon-
struction problem. To improve the quality and performance of the recon-
struction, we propose a novel and practical deep learning based approach in
this paper. The core of our approach is a multi-branch auto-encoder, termed
∗Both authors contributed equally to the paper
†Corresponding authors

Authors’ addresses: Jie Guo, State Key Lab for Novel Software Technology, Nanjing Uni-
versity, guojie@nju.edu.cn; Mengtian Li, State Key Lab for Novel Software Technology,
Nanjing University, lemonsky@smail.nju.edu.cn; Quewei Li, State Key Lab for Novel
Software Technology, Nanjing University, liquewei@163.com; Yuting Qiang, State Key
Lab for Novel Software Technology, Nanjing University, qiangyuting.new@gmail.com;
Bingyang Hu, State Key Lab for Novel Software Technology, Nanjing University,
fhymyang@gmail.com; Yanwen Guo, State Key Lab for Novel Software Technology,
Nanjing University, ywguo@nju.edu.cn; Ling-Qi Yan, University of California, Santa
Barbara, lingqi@cs.ucsb.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro$t or commercial advantage and that copies bear this notice and the full citation
on the $rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci$c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART223 $15.00
https://doi.org/10.1145/3355089.3356538

GradNet, which end-to-end learns a mapping from a noisy input image and
its corresponding image gradients to a high-quality image with low variance.
Once trained, our network is fast to evaluate and does not require manual
parameter tweaking. Due to the di%culty in preparing ground-truth images
for training, we design and train our network in a completely unsupervised
manner by learning directly from the input data. This is the $rst solution in-
corporating unsupervised deep learning into the gradient-domain rendering
framework. The loss function is de$ned as an energy function including a
data $delity term and a gradient $delity term. To further reduce the noise of
the reconstructed image, the loss function is reinforced by adding a regular-
izer constructed from selected rendering-speci$c features. We demonstrate
that our method improves the reconstruction quality for a diverse set of
scenes, and reconstructing a high-resolution image takes far less than one
second on a recent GPU.

CCS Concepts: • Computing methodologies→ Ray tracing; Neural net-
works.

Additional Key Words and Phrases: Gradient-domain rendering, Deep learn-
ing, Unsupervised learning, Image reconstruction

ACM Reference Format:
Jie Guo, Mengtian Li, Quewei Li, Yuting Qiang, Bingyang Hu, Yanwen Guo,
and Ling-Qi Yan. 2019. GradNet: Unsupervised Deep Screened Poisson Re-
construction for Gradient-Domain Rendering. ACM Trans. Graph. 38, 6, Arti-
cle 223 (November 2019), 13 pages. https://doi.org/10.1145/3355089.3356538

ACM Trans. Graph., Vol. 38, No. 6, Article 223. Publication date: November 2019.
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Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

158

Gradient camera



Primal domain Gradient domain

gradients of 
natural images 

are sparse 
(close to zero 

in most places)

159

What implication would this have on a camera?



Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

160

Gradient camera



Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

161

Gradient camera



Can you think how?

162

Change the sensor



photodiodephotodiode

microlensmicrolens

potential 
well

potential 
well

analog 
voltage

analog 
voltage

discrete 
signal

discrete 
signal

typical analog front-end

+

-

operational amplifier 
(amplify difference 

of inputs)

firing 
mechanism ← what is this for? 163

Change the sensor



photodiodephotodiode

microlensmicrolens

potential 
well

potential 
well

analog 
voltage

analog 
voltage

discrete 
signal

discrete 
signal

typical analog front-end

+

-

operational amplifier 
(amplify difference 

of inputs)

firing 
mechanism

Any disadvantages of this sensor?

Why is this better than computing 
gradients in post-processing?

What about Poisson noise?
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Change the sensor



photodiodephotodiode

microlensmicrolens

potential 
well

potential 
well

analog 
voltage

analog 
voltage

discrete 
signal

discrete 
signal

typical analog front-end

+

-

operational amplifier 
(amplify difference 

of inputs)

firing 
mechanism

Any disadvantages of this sensor?
• Spatial resolution is reduced by 2x.
• Photosensitive area is reduced.
Why is this better than computing 
gradients in post-processing?
• Additive noise is reduced.
• Acquisition is faster thanks to the firing 

mechanism and sparsity of edges.
What about Poisson noise?
• Poisson noise is the same in both 

cases.
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Change the sensor



+

-

𝐿!

𝐿"

(we will 
ignore 
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*( ∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = ?

𝜎 𝐼 < = ?

Digital subtraction 
in post-processing

Analog subtraction 
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'() 166

Noise considerations



+

-

𝐿!

𝐿"

(we will 
ignore 
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*( ∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = 𝜎 𝐿; − 𝐿< < + 2 ) 𝜎=>?@
< ⋅ 𝑔< + 2 ) 𝜎ABC<

𝜎 𝐼 < = 𝜎 𝐿; − 𝐿< < + 𝜎DE?FE< ⋅ 𝑔< + 𝜎=>?@< ⋅ 𝑔< + 𝜎ABC<

Digital subtraction 
in post-processing

Analog subtraction 
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()

which variance is better?
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Noise considerations



+

-

𝐿!

𝐿"

(we will 
ignore 
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*( ∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = 𝜎 𝐿; − 𝐿< < + 2 ) 𝜎=>?@
< ⋅ 𝑔< + 2 ) 𝜎ABC<

𝜎 𝐼 < = 𝜎 𝐿; − 𝐿< < + 𝜎DE?FE< ⋅ 𝑔< + 𝜎=>?@< ⋅ 𝑔< + 𝜎ABC<

Digital subtraction 
in post-processing

Analog subtraction 
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()

terms related to Poisson 
noise are the same

additive noise is reduced 
if opamp is well-designed
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Noise considerations



+

-

𝐿!

𝐿"

(we will 
ignore 
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*( ∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = 𝜎 𝐿; − 𝐿< < + 2 ) 𝜎=>?@
< ⋅ 𝑔< + 2 ) 𝜎ABC<

𝜎 𝐼 < = 𝜎 𝐿; − 𝐿< < + 𝜎DE?FE< ⋅ 𝑔< + 𝜎=>?@< ⋅ 𝑔< + 𝜎ABC<

Digital subtraction 
in post-processing

Analog subtraction 
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()

what is the distribution of 
the difference 𝐿; − 𝐿<?
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Noise considerations



+

-

𝐿!

𝐿"

(we will 
ignore 
this)

𝐿% ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ% + 𝐷))
𝐿& ∼ Poisson(𝑡 ⋅ (𝑎 ⋅ Φ& + 𝐷))
𝑛'()*( ∼ Normal 0, 𝜎'()*(
𝑛+,)- ∼ Normal 0, 𝜎+,)-
𝑛./0 ∼ Normal(0, 𝜎./0)

𝐼" = 𝐿" $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿" 𝐼! = 𝐿! $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()𝐿!

𝜎 𝐼; − 𝐼< < = 𝜎 𝐿; − 𝐿< < + 2 ) 𝜎=>?@
< ⋅ 𝑔< + 2 ) 𝜎ABC<

𝜎 𝐼 < = 𝜎 𝐿; − 𝐿< < + 𝜎DE?FE< ⋅ 𝑔< + 𝜎=>?@< ⋅ 𝑔< + 𝜎ABC<

Digital subtraction 
in post-processing

Analog subtraction 
on sensor

𝐷 = 𝐿" − 𝐿! + 𝑛*+%,+ 𝐼 = 𝐿" − 𝐿! $ 𝑔 + 𝑛*+%,+ $ 𝑔 + 𝑛#$%& $ 𝑔 + 𝑛'()

𝐿; − 𝐿< ∼ Skellam 𝑡 ⋅ 𝑎 ⋅ Φ; −Φ< , 𝑡 ⋅ 𝑎 ⋅ Φ; +Φ< + 2 ⋅ 𝐷
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Noise considerations



Can you think how?
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Change the optics



photodetectors

lenslet

refractive 
slab

template 
(edge filter)

resulting image

Physical Layout Impulse Response 
(2D)

Optical filtering Angle-sensitive pixels
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Change the optics



photodetectors

lenslet

refractive 
slab

template 
(edge filter)

resulting image

Physical Layout Impulse Response 
(2D)

Optical filtering Angle-sensitive pixels
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Change the optics

Any disadvantages?



photodetectors

lenslet

refractive 
slab

template 
(edge filter)

resulting image

Physical Layout Impulse Response 
(2D)

Optical filtering Angle-sensitive pixels
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Change the optics

Any disadvantages?
• Reduced light efficiency (we block light).
• We can’t do subtraction very easily in optics.



Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is 

significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
• Change the sensor.
• Change the optics.
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Gradient camera



event-based cameras (a.k.a. 
dynamic vision sensors, or DVS)

Concept figure for event-based camera:

https://www.youtube.com/watch?v=kPCZESVfHoQ

High-speed output on a quadcopter:

https://www.youtube.com/watch?v=LauQ6LWTkxM

Simulator:

http://rpg.ifi.uzh.ch/esim 176

We can also compute temporal gradients

https://www.youtube.com/watch?v=kPCZESVfHoQ
https://www.youtube.com/watch?v=LauQ6LWTkxM
http://rpg.ifi.uzh.ch/esim
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Slowly becoming popular in robotics and vision



Next Lecture: 
Focal stacks and depth from 

(de)focus, Lightfields
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