
BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

BBM 444 – Programming Assignment 2: HDR Imaging and Tonemapping
Due date: Monday, 10-4-2023, 11:59 PM.

Overview

The goal of this assignment is to explore high dynamic range (HDR) imaging, color calibration, and
tonemapping1. As we discussed in class, HDR imaging can be used to create floating-point precision
images that linearly map to scene radiance values. Color calibration ensures that the colors you
see in the image match some groundtruth RGB values. Tonemapping algorithms compress the
dynamic range of HDR images to an 8-bit range, so that they can be shown on a display. To get
full credits, you will need to apply all these steps to an exposure stack.

Throughout the assignment, we refer to a number of key papers that were also discussed in
class. While the assignment and class slides describe most of the steps you need to perform, we
highly recommend that you read the associated papers.

As always, there is a “Hints and Information” section at the end of this document that is likely
to help. It is highly recommended that you read that section in full before starting to work on the
assignment. The Python packages required for this assignment are numpy, skimage, matplotlib,
and cv2 (OpenCV, to read and write HDR files), and you can use the functions provided in the
./src/cp assng2.py file of the assignment ZIP archive.

1. HDR imaging (60 points)

For this and the following two parts (color correction and tonemapping), you will use an exposure
stack of an office using a Nikon D3300 camera. The image files are in the ./data/door stack
directory of the assignment ZIP archive. Figure 1 shows two exposures, as well as a (tonemapped)
HDR composite.

While not particularly beautiful, the scene has a number of features that make it a good example
for HDR: First, there are two areas with very different illumination and dynamic range that no
single exposure can simultaneously capture correctly. Second, both areas include colorful items
(Toy Story poster in the background of the bright area, Plus-Plus pieces, SIGGRAPH mugs, and
book covers in the dark area) that you can use to evaluate the color rendition of your results.
Third, the in-focus area has high-detail features (lettering on the book covers and lens/camera
markings) that you can use to evaluate the resolution of your results. Finally, the scene includes a
color checker that you can use for color calibration in the bonus question.

Figure 1: From left to right: Two LDR exposures, and an HDR composite tonemapped using the
photo- graphic tonemapping.

You will notice that in, the data folder, there are two sets of images, RAW (.NEF) and rendered
(.JPG). As discussed in class, the procedure for merging many low dynamic range (LDR) exposures

1Adapted from the programming assignment developed by Ioannis Gkioulekas for his computational photography
class.

Page 1

BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

into an HDR image is different for RAW and rendered images. To appreciate the difference, in this
assignment you will create HDR images from both sets of images. For reference, we captured both
exposure stacks with fixed aperture and ISO, and with shutter speeds equal to 1

2048 · 2k−1, where
k ∈ {1, . . . , 16} is the index in an image’s file name.

Develop RAW images (5 points). Use dcraw to convert the RAW .NEF images into linear
16-bit .TIFF images. For this, you should direct dcraw to do white balancing using the camera’s
profile for white balancing, do demosaicing using high-quality interpolation, and use sRGB as the
output color space. Read through dcraw’s documentation, and figure out what the correct set of
flags for this conversion are. Make sure to report the flags you use in the report you submit with
your solution.

Linearize rendered images (25 points). Unlike the RAW images, which are linear, the rendered
images are non-linear. As we saw in class, before you can merge them into an HDR image, you first
need to perform radiometric calibration in order to undo this non-linearity. You will do this using
the method by Debevec and Malik [1]. We describe how this works below, but you are strongly
encouraged to read at least Section 2.1 of this paper, which explains the method.

An intensity Ik
ij ∈ {0, . . . , 255} at pixel {i, j} of image k relates to some unknown scene flux

value Lij as

Ik
ij = f(tkLij) , (1)

where tk is the (known) exposure of image k and f is the unknown non-linearity applied by the
camera. If we knew f−1, we could convert Ik

ij back to linear measurements.
Instead of f−1, you will recover the function g := log(f−1) that maps the pixel values Ik

ij to
g(Ik

ij) = log(Lij) + log(tk). This is motivated by the fact that the human visual systems responds
to logarithmic, instead of linear, intensity. As the domain of g are the discrete intensity values
{0, . . . , 255}, g is essentially just a 256-dimensional vector.

Solving for these 256 values may seem impossible, because we know neither g nor Lij . However,
if the imaged scene remains static while capturing the exposure stack, we can take advantage of
the fact that the value Lij is constant across all LDR images. Then, we can recover g by solving
the following least-squares optimization problem,

min
g,Lij

∑
i,j

∑
k

{w(Ik
ij/255) [g(Ik

ij) − log(Lij) − log(tk)]}2 + λ
255∑
z=0

{w(z/255)∇2g(z)}2 . (2)

The first term in Equation (2) is the data term, and encourages values g and Lij to be such that
intensities in linear images would scale linearly with exposure time. As we discussed in class,
the weights w have to do with the fact that the linear estimates should rely more on well-exposed
pixels than on under-exposed or over-exposed pixels. See later in Problem 1 (“Weighting schemes”)
about what weights exactly you should use. Note that the input to w is divided by 255, because
the definitions of the weights assume that the input intensities are in the range [0, 1], whereas the
ones you use are in the range {0, . . . , 255}.

The second term in Equation (2) is a regularization term, and encourages g to be smooth by
penalizing solutions g which have large second-order derivative magnitudes. Given that g is discrete,
the second order derivative can be approximated using a Laplacian filter, which can be defined as
∇2g(z) = g(z + 1) − 2g(z) + g(z − 1). The parameter λ controls how strongly this regularization
affects the final result; it is a hyper-parameter that you will need to experiment with. Note that,
when using the photon-optimal weights wphoton that require knowing exposure time, you can set
the weights of the regularization term only to a constant (e.g., w(z) = 1).

Page 2

BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

Solve the least-squares optimization problem of Equation (2) by expressing it in matrix form:

||Av − b||2 , (3)

where A is a matrix, v = [g; log(Lij)] are the unknowns, and b is a known vector. Then, use one
of NumPy’s solvers to recover the unknowns. (See numpy function numpy.linalg.lstsq.)

While Debevec and Malik [1] recover a different g for each color channel, for this homework we
recommend that you process pixels from all three channels simultaneously to recover a single g for
all channels. This helps reduce color artifacts in the final HDR composite.

Plot the function g you recovered, then use it to convert the non-linear images Ik
ij into linear

ones,

Ik
ij,lin = exp

(
g(Ik

ij)
)

(4)

Note that you will not use the values Lij you recover from solving Equation (2).

Merge exposure stack into HDR image (30 points). Now that we have two sets of (approx-
imately) linear images, coming from the RAW and rendered files, it is time to merge each one of
them into an HDR image. This part will be common for both sets of linear images. Make sure
that each HDR image you create only uses images from one or the other set.

Given a set of k LDR linear images corresponding to different exposures tk, we can merge them
into an HDR image either in the linear or in the logarithmic domain. The motivation for linear
merging is physical accuracy, whereas the motivation for logarithmic merging is, as mentioned
above, human visual perception.

We first introduce some notation. We use Ik
ij,LDR to refer to the intensity value of pixel {i, j}

of the k-th original LDR input image, read directly from either a .JPG or a .TIFF file. We use
Ik

ij,lin to refer to the intensity of pixel {i, j} of the k-th linear LDR input image; this is either the
intensity from Equation (4) when using .JPG files, or the same as Ik

ij,LDR when using .TIFF files.
Additionally, from this point on we assume that Ik

ij,LDR ∈ [0, 1]. Therefore, you need to normalize
the original LDR input images to the [0,1] range, which you can do by dividing with 255 when
using .JPG files, and by 216 − 1 when using .TIFF files.

With this notation at hand, when using linear merging, we form the HDR image as:

Iij,HDR =
∑

k w(Ik
ij,LDR)Ik

ij,lin/tk∑
k w(Ik

ij,LDR)
(5)

When using logarithmic merging, we form the HDR image as:

Iij,HDR = exp

∑
k w(Ik

ij,LDR)
(
log

(
Ik

ij,lin + ϵ
)

− log(tk)
)

∑
k w(Ik

ij,LDR)

 (6)

where ϵ is a small constant to avoid the singularity of the logarithm function at 0. As before, the
weights w in Equations (5) and (6) can be used to place more emphasis on well-exposed pixels,
and less emphasis on under-exposed or over-exposed ones. See below about what weights to use.

Implement both linear and logarithmic merging for each of the two exposure stacks. Then, store
the resulting HDR images as .HDR files, which is an open source high dynamic range file format.
(See the provided function writeHDR in ./src/cp assgn2.py)

Page 3

BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

Weighting schemes. There are many possible weighting scheme choices [2]. You will implement
four:

wuniform =
{

1, if Zmin ≤ z ≤ Zmax,
0, otherwise , (7)

wtent =
{

min(z, 1 − z), if Zmin ≤ z ≤ Zmax,
0, otherwise ,

wGaussian =
{

exp
(
−4 (z−0.5)2

0.52

)
, if Zmin ≤ z ≤ Zmax,

0, otherwise
,

wphoton =
{

tk, if Zmin ≤ z ≤ Zmax,
0, otherwise ,

All the above weighting schemes assume that the intensity values are in the range z ∈ [0, 1]. You
can experiment with different clipping values Zmin and Zmax, but we recommend Zmin = 0.05,
Zmax = 0.95. Unlike the other schemes, the weights wphoton also depend on the exposure under
which a pixel was captured.

Note that, when creating an HDR image from the .JPG stack, you need to use the same weighting
scheme in both Equations (2) (linearization) and (5)-(6) (merging).

Implement all the above weighting schemes, and use them to create HDR images. In total, you
will create 16 HDR images: 2 sets of images (RAW and rendered) × 2 merging schemes (linear
and logarithmic) × 4 weighting schemes (uniform, tent, Gaussian, and photon-noise optimal).

Make your pick. Select one out of the sixteen HDR images you created. You can select, for
example, the one that you find the most aesthetically pleasing. Make sure to comment on why you
selected the image you did. Note that, as you have not yet tonemapped your HDR images, if you
display them directly they will not look very nice; see “Hints and Information”.

2. Color correction and white balancing (20 points)

For this part, you will use the HDR image you selected at the end of Part 1. As shown to the left of
Figure 2, your tonemapped images will tend to have an orange cast in the dark parts of the room.
This is because the very low light inside the room and the large contrast with the light outside
the room are throwing the camera’s automatic white balancing off. Additionally, even if the white
balancing worked perfectly, we have not been very careful about the color space the various image
composites reside in.

Figure 2: Tonemapped HDR image without (left) and with (right) color correction.

You could apply any of the automatic white balancing algorithms we discussed in Programming
Assignment 1 to ameliorate the issue. But, given that the images include a color checker (Figure 3),
it is possible to do better than that and perform accurate color correction.

Page 4

BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

Figure 3: Color checker and patch numbering.

In particular, the color checker is created in such a way that its patches have a specific set
of RGB coordi- nates in the (linear) sRGB color space, when the color checker is viewed under
a standard illuminant (so called “D65” illumination, roughly corresponding to daylight at noon).
The function read colorchecker gm, provided in the ./src/cp assgn2.py file of the homework
ZIP archive, returns these ground-truth RGB coordinate values, with the patches numbered as
shown in Figure 3.

Then, in order to have your HDR image show color correctly, you can apply a linear transform
on its three channels, so that the color checker’s RGB coordinates in the image match the ground-
truth coordinates as closely as possible. You can do this as follows.

1. For each color checker patch, crop a square that is fully contained within the patch. (See mat-
plotlib function matplotlib.pyplot.ginput for interactively recording image coordinates.)
Make sure to store the coordinates of these cropped squares, so that you can re-use them.
Use the resulting 24 crops to compute average RGB coordinates for each of the color checker’s
24 patches.

2. Convert these computed RGB coordinates into homogeneous 4 × 1 coordinates, by appending
a 1 as their fourth coordinate.

3. Solve a least-squares problem to compute an affine transformation, mapping the measured
to the ground-truth homogeneous coordinates.

4. Apply the computed affine transform to your original RGB HDR image. Note that the
transformed image may have some negative values, which you should clip to 0.

5. Finally, apply an additional white balancing transform (i.e., multiply each channel with a
scalar), so that the RGB coordinates of patch 4 are equal to each other. This is analogous
to the manual white balancing in Programming Assignment 1, where now we use patch 4 as
the white object in the scene.

Store the color corrected and white balanced HDR image in an .HDR file. You should now have
two HDR images total: The one from Part 1 that has not been color-corrected, and the one you
just created. Compare the color-corrected image with the original, and discuss which one you like
the best.

3. Photographic tonemapping (20 points)

Now that you have a couple of HDR images, you need to tonemap them so that you can display
them. For this part, you can use whichever of the two HDR images at the end of Part 2 you
liked the best. You will implement the tonemapping operator proposed by Reinhard et al. [3],

Page 5

BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

which is a good baseline to start from when displaying HDR images. We describe how to do
this below, but you are strongly encouraged to read at least Sections 2 and 3 of this paper, which
explain the rationale behind the specific form of this tonemapping operator, the effect of the various
parameters, and its relationship to the zone system used when developing film.

Given pixel values Iij,HDR of a linear HDR image, photographic tonemapping is performed as
where2

Ĩwhite = B · max
i,j

(
Ĩij,HDR

)
, (8)

Ĩij,HDR = K

Im,HDR
Iij,HDR , (9)

Im,HDR = exp

 1
N

∑
i,j

log(Iij,HDR + ϵ)

 , (10)

The parameter K is the key, and determines how bright or dark the resulting tonemapped rendition
is. The parameter B is the burn, and can be used to suppress the contrast of the result. Finally, N
is the number of pixels, and ϵ is a small constant to avoid the singularity of the logarithm function
at 0.

Implement the photographic operator and apply it to your RGB HDR images in two ways: First,
apply it by tonemapping all color channels simultaneously in the same way. Second, apply it only to
the luminance channel Y. For the latter, you can use the provided function lRGB2XYZ to convert the
HDR image from RGB to XYZ, and then convert it to xyY using the definition discussed in class.
While in xyY, tonemap the luminance Y while leaving the chromaticity channels x, y untouched.
Then, invert the color transform to go back to RGB using the provided function XYZ2lRGB.

Experiment with different key and burn values. Some reasonable starting values for the param-
eters are K = 0.15 and B = 0.95, but to get good tonemaps you will need to explore different
values. Plot representative tonemaps for both the RGB and luminance methods, and discuss your
results. Make sure to mention which tonemap you like the most.

4. (Bonus) Create and tonemap your own HDR photos (50 points)

It is now time to apply what you implemented above to your own pictures. To create results which
are clearly better than any single exposure, you should use the pictures of a scene that actually
has a high dynamic range! Good examples include: scenes that have both indoor and outdoor
elements (a room with windows), indoor scenes with two different illuminations (like the data you
used in parts 1-3), scenes with very strong backlighting, or outdoors scenes during a sunny day
with strong shadows. Please make sure to read the suggestions in Hints and Information on what
camera settings to use.

Once you select the scene, capture exposure stacks in RAW and JPEG formats. We suggest
using exposures that are equally spaced in the logarithmic domain. For example, start with some
very low base exposure, and then use exposures that are 2× the base, 4×, 8×, and so on. You can
either exhaust the exposure range (i.e., start from the lowest shutter speed possible, and go all the
way to the maximum shutter speed in 2x steps), or select an exposure range that works for your
scene.

Use the exposure stacks you captured to create two HDR images, one from the RAW and one
from the JPEG images. You can use whichever of the HDR variants you implemented in Part 1
you prefer—or you can try out all of them and decide which one looks the best. Store these two
images in .HDR format. Since you do not have a color checker, you can skip the color calibration
step.

2Equation (10) is different from the corresponding Equation (1) in Reinhard et al. [3]. The version given here is
correct, and the version in the paper is incorrect.

Page 6

BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

Then, process these images using the tonemapping algorithms you implemented in Part 3 (pho-
tographic, in RGB or luminance-only). Experiment with different parameters, show a few rep-
resentative tonemaps, discuss your results, and determine which result you like the most. The
total number of points you will get for this part will depend on how visually compelling the final
tonemapped image you create is.

What to Hand In

Your submitted solution should include the following:

• The filled-in Jupyter Notebook as both your source code and report. The notebook should
include (1) markdown cells reporting your written answers alongside any relevant figures and
images and (2) well-commented code cells with reproducible results.

• Any figure you want to appear in any markdown cell in the notebook.

• You need to submit the HDR images that you create in parts 1 (only the one you pick at the
end), and 2. If you do the bonus part 4, you also need to submit the HDR images that you
create as well as at least one RAW and corresponding .JPG LDR image you capture. You can
also include additional image files, LDR or HDR, for various experiments (e.g., tonemapping
with different values) other than your final ones, if you think they show something important.

You should prepare a ZIP file named name-surname(s)-assgn2.zip containing the files stated
above and submit it to submit.cs.hacettepe.edu.tr, where you will be assigned a submission.
The file hierarchy is up to you as long as your Jupyter notebook works fine.

Late policy

You may use up to five extension days (in total) over the course of the semester for the programming
assignments. Late submission will not be allowed.

Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are encouraged
to discuss with your other classmates about the given assignments, but these discussions should
be carried out in an abstract way. That is, discussions related to a particular solution to a specific
problem (either in actual code or in the pseudocode) will not be tolerated. In short, turning in
someone else’s work, in whole or in part, as your own will be considered as a violation of academic
integrity. Please note that the former condition also holds for the material found on the web as
everything on the web has been written by someone else.

Hints and Information

• Make sure to download and install the latest version of dcraw. In particular, the default
version that comes in older Windows versions does not support the cameras used in this
class, and will produce results with a strong purple hue.

• When working with the provided and captured exposure stacks, you will notice that your
algorithms will be using a lot of memory. This is a common issue when processing photographs
captured with modern cameras, due to the very large number of pixels these cameras have. At

Page 7

BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

24 Megapixels, the Nikon D3300 used for this assignment is at the mid-range of megapixels.
Still, at this resolution, a 3-channel HDR image takes up more than 0.5 GB of memory.
This has two implications. First, you should be careful about how many of these images you
create in your Python code, as otherwise you run the risk of filling up your memory and
crippling your computer. Second, when processing an image, you need to make sure you use
vectorized code that processes all of its pixels in parallel, as trying to process all 25 million
pixels one-by-one with a double for loop will take ages.
In particular, when performing HDR merging, note that Equations (5)-(6) can be applied to
each of the k exposure images independently. Therefore, instead of loading the entire exposure
stack at once, you can load its images and process them one by one. Additionally, within
each image, Equations (5)-(6) apply to each pixel in a completely parallel way. Therefore,
you can process each image with a single vectorized call, instead of a double for loop.
One place where, no matter how careful you are, you will run out of memory is when solving
the linear system (3) to recover the non-linear map g. As suggested by Debevec and Malik
[1], you should greatly downsample the input images before forming the linear system. Note
that you should not resize the image with skimage.transform.resize, or try to blur it
before downsampling. For the purposes of inferring g, all you have to do is downsample an
input image I with I[::N, ::N], for some N . We recommend using N = 200.
More generally, when you are still debugging your code, we strongly recommend that you
work on downsampled images to accelerate the development process. Once you know your
code is correct, you can run it one more time on the full-resolution image, to produce your
final results.

• When merging many LDR images to HDR ones, you may end up with pixels for which there
are not any well-exposed values (i.e., the sum of weights in the denominators of Equations
(5)-(6) is exactly 0). You can set those pixels to equal the maximum or minimum valid pixel
value of your HDR image, respectively for problematic pixels that are always over-exposed
or always under-exposed.

• Even with tonemapping, your images may appear too dark. In practice, after tonemapping,
you still need to apply gamma encoding for images to be displayed correctly. As a reminder
from Programming Assignment 1, gamma encoding is the following non-linear operator:

Cnon-linear =
{

12.92 · Clinear, Clinear ≤ 0.0031308,

(1 + 0.055) · C
1

2.4
linear − 0.055, Clinear > 0.0031308,

(11)

You should implement this in a script, and use it to always apply gamma encoding to
tonemapped or HDR images before displaying them. Applying gamma encoding will also
be helpful for displaying intermediate results (see below).

• As in Programming Assignment 1, you will likely find it helpful to display intermediate
results. If you directly display the HDR images you create, they may appear very bright
(potentially fully-white) or very dark (potentially fully-black). This is not a problem: as
we discussed in class, HDR images are linear with respect to incident flux, but are scaled
by a (somewhat) arbitrary scaling factor. All you have to do is multiply your image with
an appropriate scaling factor of your own (smaller than 1 if the image is very bright, larger
than 1 otherwise), apply gamma encoding, and then use the clip and imshow functions as in
Programming Assignment 1. You will likely need to experiment with a few different values
for the scaling factor you apply, until you find the one that correctly exposes your image.

Page 8

BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

• If you want to view the .HDR files you create, note that you cannot do so using a standard
image viewer. Instead, you should use a dedicated viewer for .HDR files, such as OpenHDR3.
This viewer provides interactive sliders for controlling exposure (the scaling factor you apply
to the image) and gamma encoding, making it easier to find good settings for examining your
HDR image. Alternatively, you can use the function readHDR in the code we provide to open
and load the .HDR in Python, then display it as we describe in the previous step.

• When applying photographic tonemapping to each RGB channel separately, you may get
better results by using the same scalars Im,HDR and Ĩwhite for all three channels. You can do
this by using pixels from all three channels in Equations (8) and (10).
Additionally, evaluating Equation (10) as written (i.e., by first computing the average of
logarithms, and then exponentiating) may result in zero, NaN, or Inf values due to finite
numerical precision. You may get more stable results by recognizing that Equation (10)
is equivalent to computing the geometric mean of all pixels Ii,j,HDR, and changing your
implementation accordingly. For more information about this type of numerical issues, look
up “log-average form of geometric mean”.

• When using your camera to capture your own exposure stack, you should make sure to set
its white balancing option to a fixed preset, as appropriate for the lighting in the scene you
selected, and its output color space to sRGB. Additionally, if your camera supports this, set
it to store both RAW and .JPG files for each image you capture (the Nikon D3300 has this
option). That way, you will have perfectly paired RAW and .JPG exposure stacks, and you
can use them to compare doing HDR with one or the other.

• While capturing your exposure stack, it is critical that no camera parameters other than
shutter speed change. Therefore, you should set the camera to manual mode, and disable
auto-focus for the duration of the capture. If you do not take these steps, then the camera
may automatically change parameters such as aperture, ISO, and focus, making your data
unusable.
Regarding aperture, you should use an aperture setting that gives you good depth of field for
the scene you selected for your exposure stack.
Regarding focusing, you can use autofocus while framing the scene you will use for your
exposure stack, to make sure that your captured images will be sharp. Once the lens has
been focused, you can then disable autofocus, switch to manual, and start capturing your
exposure stack.

• As discussed both in class and above in the assignment, it is very important that both your
camera and your scene remain static while capturing your exposure stack. Given this, we
strongly recommend that you mount your camera on a tripod, or at the very least on a very
stable surface (e.g., a table) when taking images.
While capturing your exposure stack, you will need to adjust the camera’s shutter speed
several times. Doing this manually requires touching the camera to rotate the shutter speed
dial. You will also need to activate the shutter release, which means further touching the
camera and pressing buttons. All of these manual actions can result in considerable camera
movement, and therefore in your captured LDR images being misaligned. Using a tripod
does not protect you from this type of camera motion.
Therefore, we strongly recommend that you tether, i.e., connect, the camera to your laptop,
so that you can control its settings and shutter release electronically, without touching the
camera. Each of the class cameras comes with a USB cable you can use for this purpose.

3You can download it via https://viewer.openhdr.org/.

Page 9

https://viewer.openhdr.org/

BBM 444, Spring 2022 - Programming Assignment 2
Hacettepe University, Department of Computer Engineering

To control the camera, you can try using the software provided by each manufacturer on
their website.
As an alternative, we recommend that you try gphoto24. This is a very powerful command-
line tool that can be used to script your camera and implement very complicated capture
procedures. For example, the following lines auto-detect a connected camera, capture an
image at shutter speed 1/2048, and then download the images from the camera to your
computer and store them with filename exposure1. If your camera is set to capture both
RAW and .JPG, this excerpt will download both images and store them as exposure1.nef
and exposure.jpg, respectively.

gphoto2 --auto-detect
gphoto2 --set-config-value /main/capturesettings/shutterspeed=1/2048
gphoto2 --capture-image-and-download --filename exposure1.%C

References

[1] P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps from photographs.
In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’97, pages 369–378, New York, NY, USA, 1997. ACM Press/Addison-Wesley Pub-
lishing Co.

[2] K. Kirk and H. J. Andersen. Noise characterization of weighting schemes for combination of
multiple exposures. In BMVC, volume 3, pages 1129–1138, 2006.

[3] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic tone reproduction for digital
images. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, pages 267–276, New York, NY, USA, 2002. ACM.

4You can download it via http://gphoto.org/proj/gphoto2/.

Page 10

http://gphoto.org/proj/gphoto2/

