CHAPTER 9

An Introduction to Linear Algebra in
Parallel Distributed Processing

M. I. JORDAN

Many of the properties of the models described in this book are cap-
tured by the mathematics of linear algebra. This chapter serves as a
introduction to linear algebra and is a good starting place for the reader
who wishes to delve further into the models presented in other parts of
the book. I will focus on the aspects of linear algebra most essential for
the analysis of parallel distributed processing models, particularly the
notions of a vector space, the inner product, and linearity. I will also
discuss some simple PDP models, and show how their workings
correspond to operations on vectors.

VECTORS

A vector is a useful way to describe a pattern of numbers. Cossider
for example the pattern of numbers that describe the age, height, and
weight of an average person. Suppose that Joe is 37 years old, 72
inches tall, and weighs 175 pounds. This information can be summar-
ized in a vector or ordered list of numbers. For each person, there is a
corresponding vector, as in Figure 1A. Each vector has three com-
ponents: age, height, and weight. There is no reason to limit ourselves
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A 37 10
Joe | 72 Mary |30
175 |61
25 66
Carol 65 Brad 67
121 155
B 37
72
Joe 175
8
1946

FIGURE 1.

to only three components, however. If, for example, we also wanted to
keep track of Joe’s shoe size and year of birth, then we would simply
make a vector with five components, as in Figure 1B.

One important reason for the great utility of linear algebra lies in the
simplicity of its notation. We will use bold, lower-case letters such asv
to stand for vectors. With this notation, an arbitrarily long list of infor-
mation can be designated by a single symbol.

When a vector has no more than three components, it can be
represented graphically by a point or an arrow in three-dimensional
space. An example with three components is given in Figure 2 for the
vector corresponding to Mary. Each axis in the figure corresponds to
one of the three components of the vector.

It will prove helpful to try and visualize vectors as points or arrows in
two- and three-dimensional space in proceeding through this chapter in
order to develop geometric intuition for the operations on vectors.
Notice, however, that there is no fundamental distinction between such
vectors and vectors with more than three components. All of the
operations upon vectors described in later sections apply equally well to
vectors with any finite number of components.

In a parallel distributed processing model, many quantities are best
represented by vectors. The pattern of numbers representing the
activations of many processing units is one example. Other examples
are the set of weights on the input lines to a particular processing unit,
or the set of inputs to a system.
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FIGURE 2.
BASIC OPERATIONS
Multiplication by Scalars

In linear algebra, a single real number is referred to as a scalar. A
vector can be multiplied by a scalar by multiplying every component of
the vector by the scalar.

Examples:

B

Geometrically, scalar multiplication corresponds to lengthening or
shortening the vector, while leaving it pointing in the same or opposite
direction. As can be seen in Figure 3, multiplying a vector by 2 leaves
it pointing in the same direction but twice as long. In general, multi-
plying a vector by a positive scalar produces a new vector that is longer
or shorter by an amount corresponding to the magnitude of the scalar.
Multiplication by a negative scalar produces a vector pointing in the
opposite direction. It, too, is longer or shorter depending on the mag-
nitude of the scalar. Two vectors that are scalar multiples of one
another are said to be collinear.
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FIGURE 3.

Addition of Vectors

Two or more vectors can be added by adding their components. The
vectors must have the same number of components to be added; other-
wise the operation is undefined.

Examples:
o2l |3 2l o 3 5
1 3 4

Vector addition is associative (the vectors can be grouped in any
manner) and commutative (the order of addition is unimportant) just
like addition in ordinary algebra. This is true because if we consider
one component at a time, vector addition is just addition in ordinary
algebra.

How can vector addition be represented graphically? Consider Figure

1 3
4, where the vectors v, = lzl andv, = l 1] are being added. It can be

4
seen that the sum v, + v, is a vector 3 which lies between v, and v,.

Forming the parallelogram with sides v, and v,, we see that the sum of



9. INTRODUCTION TO LINEAR ALGEBRA 369

FIGURE 4.

the two vectors is the diagonal of this parallelogram. In two and three
dimensions this is easy to visualize, but not when the vectors have
more than three components. Nevertheless, it will be useful to imagine
vector addition as forming the diagonal of a parallelogram. One impli-
cation of this view, which we will find useful, is that the sum of two
vectors is a vector that lies in the same plane as the vectors being
added.

Example: Calculating averages. We can demonstrate the use of the
two operations thus far defined in calculating the average vector. Sup-
pose we want to find the average age, height, and weight of the four
individuals in Figure 1A. Clearly this involves summing the com-
ponents separately and then dividing each sum by 4. Using vectors,
this corresponds to adding the four vectors and then multiplying the
resulting sum by the scalar 1/4. Usingu to denote the average vector,

: 34.5
= 72 + 30 + 65 + 58.5
175 121 155 128

Using vector notation, if we denote the four vectors by vy, v,, v3, and
v4, then we can write the averaging operation as

u-%(v1+v2+v3+v4).
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The vector u, then, is a vector whose components are the averages of
the components of the four individual vectors. Notice that the same
result is obtained if each vector is first multiplied by 1/4, and the
resulting vectors are added. This shows that multiplication by scalars
and vector addition obey a distributive law, as in ordinary algebra.

LINEAR COMBINATIONS AND LINEAR
INDEPENDENCE

Linear Combinations of Vectors

The average vector calculated in the last section is an example of a
linear combination of vectors. In this section, we pursue this idea
further.

1 3 9
Consider the vectors v, = 2l V2= 2| and u = [10]. Can u be

written as the sum of scalar multiples of v, and v,? That is, can scalars
¢, and c, be found such that u can be written in the form

u=cv;+ CaV) ?

If so, then u is said to be a linear combination of the vectors v| and v,.
The reader can verify that ¢, = 3 and c, = 2 will work, and thusu is a
linear combination of v, and v,.

This can also be seen directly in Figure 5, where these vectors are
plotted. Remembering that multiplication by a scalar shortens or

FIGURE §.
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lengthens a vector and that vector addition corresponds to forming the
diagonal of a parallelogram, it seems clear that we can find scalars to
adjust v; and v, to form a parallelogram that yields u. This is indicated
in the figure. It also seems clear that, using positive scalars, any vector
in the shaded area of the figure can be generated this way. By using
both negative and positive scalars, any vector in the plane can be writ-
ten as a linear combination of v, and v,. This is true because multipli-
cation by a negative scalar reverses the direction of a vector as well as
shortening or lengthening it. The vectors v; and v, are said to span the
plane, because any vector in the plane can be generated from these two
vectors.

In general, given a setv,,v,, ..., v, of vectors, a vector v is said to
be a linear combination of the v, if scalars cy,c,, . . ., ¢, can be found
such that

V=CVi+ Vet oo +cpv,. (1

The set of all linear combinations of the v; is called the set spanned by
thev,.

1 0 0
Example. The three vectors OI, [1] and | 0| span all of three-
0 0 1

a
dimensional space since any vector v = [b] can be written as a linear
c

1 0 0
combination v= g |0|+ b | 1|+ c| 0| The vectors are referred to
0 0 1

as the standard basis for three-dimensional space (more on the idea of a
basis in the next section).

Linear Independence

To say that a set of vectors span a space is to say that all vectors in
the space can be generated from the original set by linear combination.
We have shown examples in which two vectors span two-dimensional
space and three vectors span three-dimensional space. We might be led
to expect that, in general, n vectors suffice to span n-dimensional
space. In fact, we have been using the term "dimension" without defin-
ing what it means; it would seem that a good definition of n-
dimensional space is the set of vectors spanned by » vectors.
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To make this definition work, we would require that the same size
space be generated by any set of n vectors. However, this is not the
case, as can be easily shown. Consider any pair of collinear vectors, for
example. Such vectors lie along a single line, thus any linear combina-
tion of the vectors will lie along the same line. The space spanned by
these two vectors is therefore only a one-dimensional set. The col-

1
linear vectors 1 and 9| are a good example. Any linear combina-

tion of these vectors will have equal components, thus they do not span
the plane.

Another example is a set of three vectors that lie on a plane in
three-dimensional space. Any parallelograms that we form will be in
the same plane, thus all linear combinations will remain in the plane
and we can’t span all of three-dimensional space.

The general rule arising from these examples is that of a set of n
vectors, if at least one can be written as a linear combination of the
others, then the vectors span something less than a full n-dimensional
space. We call such a set of vectors linearly dependent. If, on the other
hand, none of the vectors can be written as a linear combination of the
others, then the set is called linearly independent. We now revise the
definition of dimensionality as follows: n-dimensional space is the set
of vectors spanned by a set of n linearly independent vectors. The n
vectors are referred to as a basis for the space.

Examples:

1 2
1. “ and 2| are linearly dependent. They span only a one-

dimensional space.

1
2. J and 1| are linearly independent. Thus they span the

plane, a two-dimensional space.

11 |2 -1
3. b 11l and 3| are linearly dependent since 7 times the

first vector minus 4 times the second vector is equal to the third

1] |3 9
4. 12}, [2 , and | 10| are linearly dependent. Clearly they cannot
0] 0 0

span all of three-dimensional space, because no vector with a
nonzero third component can be generated from this set.
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Notice the relationship between examples (2) and (3). The vectors in
example (2) are linearly independent, therefore they span the plane.
Thus any other vector with two components is a linear combination of
these two vectors. In example (3), then, we know that the set will be
linearly dependent before being told what the third vector is. This sug-
gests the following rule: There can be no more than n linearly indepen-
dent vectors in n-dimensional space.

A linearly independent set of vectors has the important property that
a vector can be written as a linear combination of the set in only one
way. In other words, the coefficients ¢; in Equation 1 are unique if the
vectors v; are linearly independent. This fact can be easily seen, for
example, in the case of the standard basis, for there is only one vector
in the basis which has a nonzero entry for any given component.

For linearly dependent vectors, however, the situation is different. If
a vector can be written as a linear combination of a linearly dependent
set of vectors, then there are an infinite number of sets of coefficients
that will work. Let us attempt to demonstrate this fact with the aid of
geometric intuition. Suppose that we wish to write vector v as a linear
combination of three vectors v, v,, and v; in the plane. Let us choose
any arbitrary coefficient ¢, for the vector v,. As shown in Figure 6,
there must be a vector w such that v = ¢,v, + w. Thus, if we can write
w as a linear combination of v, and v3, i.e., w = cv, + c3v3, then we
have succeeded in writing v as a linear combination of v, v,, and v;.
But clearly we can do this, because w is a vector in the plane, and v,
and v together span the plane.

FIGURE 6.
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VECTOR SPACES

Let us pause to reflect for a moment upon what a vector is. I have
implied that a vector is a list of numbers, and I have also used the term
to refer to a point or an arrow in space. Are both of these objects vec-
tors, or is one just a heuristic representation for the other? Are there
other objects that should be called vectors? Just what is a vector?

As is often the case in mathematics, these kinds of questions are
solved by being avoided. Consider the following definition of an
abstract vector space, and try to decide what a vector is.

A vector space is a set V of elements, called vectors, with the follow-
ing properties:

® To every pair, u and v, of vectors in V, there corresponds a
vector u + v also in V, called the sum of u and v, in such a way
that addition is commutative and associative.

e For any scalar ¢ and any vector v in V, there is a vector cv in
V, called the product of ¢ and v, in such a way that multiplica-
tion by scalars is associative and distributive with respect to
vector addition.!

The answer to the question is that a vector is an undefined object in
linear algebra, much like a line in geometry. The definition of a vector
space simply lists the properties that vectors must have, without speci-
fying what a vector must be. Thus, any set of objects that obey these
properties can be called a vector space. Lists of numbers are vectors
when addition is defined as adding components separately and scalar
multiplication is defined as multiplying all the components by the
scalar, because these operations fill all the requirements of a vector
space. Arrows or points in space are also vectors when addition is
defined geometrically as taking the diagonal of a parallelogram and
scalar multiplication is defined as lengthening or shortening the arrow,
because again, these operations fill the requirements of a vector space.
A seemingly unrelated example of a vector space is the set of polyno-
mials of order n, with addition and scalar multiplication defined in the
obvious way.

This sort of abstraction is common in mathematics. It is useful
because any theorem that is true about a general vector space must be

1 | have left out certain technicalities usually included as axioms for a vector space.
These include the axiom that there must be a zero vector, and for every vector, there is
an additive inverse.
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true about any instantiation of a vector space. We can therefore discuss
general properties of vector spaces without being committed to choos-
ing a particular representation such as a list of numbers. Much of the
discussion about linear combinations and linear independence was of
this nature.

When we do choose numbers to represent vectors, we use the fol-
lowing scheme. First we choose a basis for the space. Since every vec-
tor in the space can be written as a linear combination of the basis vec-
tors, each vector has a set of coefficients c,c,, . . ., ¢, which are the
coefficients in the linear combination. These coefficients are the
numbers used as the components of the vector. As was shown in the
previous section, the coefficients of a given vector are unique because
basis vectors are linearly independent.

There is a certain arbitrariness in assigning the numbers, since there
are infinitely many sets of basis vectors, and each vector in the space
has a different description depending on which basis is used. That is,
the coefficients, which are referred to as coordinates, are different for
different choices of basis. The implications of this fact are discussed
further in a later section where I also discuss how to relate the coordi-
nates of a vector in one basis to the coordinates of the vector in
another basis. Chapter 22 contains a lengthy discussion of several
issues relating to the choice of basis.

INNER PRODUCTS

As of yet, we have no way to speak of the length of a vector or of
the similarity between two vectors. This will be rectified with the
notion of an inner product.

The inner product of two vectors is the sum of the products of the
vector components. The notation for the inner product of vectors
vandw isv - w. As with vector addition, the inner product is defined
only if the vectors have the same number of components.

Example:

3 1
v=|—-1 w=| 2
2 1

vw=0@B-D+1-D+Q-1)=3.
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The inner product is a kind of multiplication between vectors,
although somewhat of a strange sort of multiplication, since it produces
a single number from a pair of vectors. What does this single number
"measure" ?

Length

As a special case, consider taking the inner product of a vector with

3
itself. An example is the vector v = 4 in Figure 7. The inner pro-
duct of v with itself is
v-v=32+442= 25

Consider the right triangle in Figure 7 with sides corresponding to the
components of v, and hypotenuse v itself. The Pythagorean theorem
tells us that the square of the length of v is equal to the sum of the
squares of the sides. Since this is exactly what is calculated by the
inner product v - v, it appears that a reasonable definition of the length
of a vector is the square root of the inner product of the vector with
itself. Thus we define the length of a vector v, denoted by |v|| , as

vl = & - )%

Although the definition was motivated by an example in two dimen-
sions, it can be applied to any vector. Notice that many of the

FIGURE 7.
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properties we intuitively associate with length are included in this defin-
ition. For example, if a vector has larger components than another
vector, it will be longer, because the squared components will contri-
bute to a larger inner product. Multiplying a vector by a scalar pro-
duces a new vector whose length is the absolute value of the scalar
times the length of the old vector:

levll = leflvll.

This is a property that can be easily proved. Somewhat harder to prove
is the so-called triangle inequality, which states that the length of the
sum of two vectors is less than or equal to the sum of the lengths of
the two vectors:

vy +vall < Jvall + |Ivall.

Geometrically, the triangle inequality corresponds to the statement that
one side of a triangle is no longer than the sum of the lengths of the
other two sides.

Thus, in the special case where the operands are the same vector, the
inner product is closely related to the idea of length. What if the
operands are different vectors?

Angle

The angle between two vectors v and w is defined in terms of the
inner product by the following definition:

(2

vl lwl
where 0 is the angle between v and w. Note that all of the quantities on
the right hand side of the equation are easily calculated for n-
dimensional vectors. At the end of this section, I will show geometri-

cally why this formula is correct in two-dimensional space, using the
ordinary geometrical definition of angle.

0
Example. Find the angle § between the vectors v, = [1] and

1
vy,= [ II First, we calculate the necessary inner product and lengths:

Vitvy=1 vl = 1 Ivall = V2,
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and then substitute these values in Equation 2:

1
cos -3 0.707.

Thus,
6 = cos™! (0.707) = 45°.

This result could also have been found using basic trigonometry, but
clearly the inner product method is superior in general (consider find-
ing the angle between vectors with forty components!).

The inner product is often said to measure the "match” or "similarity”"
between two vectors. In a vague sense, this seems to be the case from
the definition of the inner product as the sum of products. Equation 2,
however, shows this in a clearer way: Writing out the equation in
terms of the components of the vectors gives

i"i Wi

i=1

(Fr2yhEwd)h

jm=] i=1

cos 9 =

This is the formula for the correlation between two sets of numbers
with zero means.

We can use our geometrical intuitions about angles and our under-
standing of correlation to turn Equation 2 around and gain a better
understanding of the inner product. This understanding is important
for the analysis of PDP models, because as will be seen, PDP models
often compute inner products. Let us imagine moving two vectors
around in space like the hands on a clock. If we hold the lengths of the
vectors constant, then Equation 2 says that the inner product is propor-
tional to the cosine of the angle: v-w = |v|| |w| cos 8. For example, if
the angle between the vectors is zero, where the cosine is at a max-
imum, the inner product must therefore be at a maximum. As the two
vectors move farther apart, the cosine decreases, thus the inner product
decreases. It reaches zero when the angle is 90° , and its most negative
value when the angle between the vectors is 180°, that is, when the
vectors point in opposite directions. Thus, the closer the two vectors
are, the larger the inner product. The more the vectors point in oppo-
site directions, the more negative the inner product.

We must be careful, however, in claiming that two vectors are closer
together than two others because they have a larger inner product. We
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