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Today’s Lecture
• Introduction about image quality assessment (IQA)

• Full-reference IQA models

• No-reference IQA models

• The Perception-Distortion Tradeoff

• What makes a great picture?

Disclaimer: The material and slides for this lecture were borrowed from 
—Alexei Efros’s CS194-26/294-26 “Intro to Computer Vision and Computational Photography” class

—Kede Ma and Yuming Fang’s “Image Quality Assessment in the Modern Age” tutorial at ACM MM 2021
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Introduction about image quality assessment
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What is Image Quality Assessment?:KDW�LV�,PDJH�4XDOLW\�$VVHVVPHQWϋ
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Image Restoration (IR) and Image Quality Assessment 
(IQA)
• Image Restoration (IR) aims at recovering a high-quality image from 

its degraded observation.

• Image Quality Assessment (IQA) methods were developed to 
measure the distortion/perceptual-quality of images.

• IQA methods are widely used to evaluate IR algorithms, e.g., PSNR, 
SSIM and Perceptual Index (PI).
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Synthetic and Authentic Distortions

3ULVWLQH�LPDJH %/85��OHYHO�� -3(*��OHYHO�� -3�.��OHYHO��

6PDUWSKRQH�3KRWRJUDSK\ 8QGHU�H[SRVXUH 0RWLRQ�EOXUULQJ 0L[WXUH�GLVWRUWLRQV

5HDOLVWLF�'LVWRUWLRQ��&DSWXUHG�IURP�0RELOHV�'HYLFHV

6\QWKHWLF�'LVWRUWLRQV��6LPXODWHG�E\�3ULVWLQH�,PDJH

6\QWKHWLF�DQG�$XWKHQWLF�'LVWRUWLRQV
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Synthetic Distortions: Simulated by Pristine Image

Realistic Distortions: Captured from Mobile Devices

Pristine image                         BLUR: level 4               JPEG: level 4               JP2K: level 4

Smartphone Photography                 Under-expoure            Motion blurring         Mixture distortions



Visual Quality Assessment
• Subjective quality assessment

• Reliable and accurate quality prediction of visual content
• Time-consuming, laborious and expensive
• Not applicable in practical applications

• Objective quality assessment
• Predict perceived visual quality automatically
• Applicable in practical applications
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Subjective Image Quality Assessment
• Absolute category rating (ACR)

• Single stimulus method
• Test images are presented one at a time without reference 

information
• Voting time: less or equal to 10 seconds depending on the voting 

method
• Presentation time: 10 seconds depending on the test image 

content
• Five-level or nine-level scale overall rating

• Absolute category rating with hidden reference (ACR-HR)
• The only difference from the ACR method: a reference version of 

each test image must be included as the test stimulus, which is 
termed as a hidden reference condition
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6XEMHFWLYH�,PDJH�4XDOLW\�$VVHVVPHQW
� $EVROXWH�FDWHJRU\�UDWLQJ��$&5�

± 6LQJOH�VWLPXOXV�PHWKRG
± 7HVW�LPDJHV�DUH�SUHVHQWHG�RQH�DW�D�WLPH�ZLWKRXW�UHIHUHQFH�LQIRUPDWLRQ
± 9RWLQJ�WLPH��OHVV�RU�HTXDO�WR����VHFRQGV�GHSHQGLQJ�RQ�WKH�YRWLQJ�PHWKRG
± 3UHVHQWDWLRQ�WLPH�����VHFRQGV�GHSHQGLQJ�RQ�WKH�WHVW�LPDJH�FRQWHQW
± )LYH�OHYHO�RU�QLQH�OHYHO�VFDOH�RYHUDOO�UDWLQJ

� $EVROXWH�FDWHJRU\�UDWLQJ�ZLWK�KLGGHQ�UHIHUHQFH��$&5�+5�
± 7KH�RQO\�GLIIHUHQFH�IURP�WKH�$&5�PHWKRG��D�UHIHUHQFH�YHUVLRQ�RI�HDFK�WHVW�
LPDJH�PXVW�EH�LQFOXGHG�DV�WKH�WHVW�VWLPXOXV��ZKLFK�LV�WHUPHG�DV�D�KLGGHQ�
UHIHUHQFH�FRQGLWLRQ

�

�

�

�

�

([FHOOHQW

*RRG

)DLU

3RRU

%DG

6XEMHFWLYH�,PDJH�4XDOLW\�$VVHVVPHQW
� $EVROXWH�FDWHJRU\�UDWLQJ��$&5�

± 6LQJOH�VWLPXOXV�PHWKRG
± 7HVW�LPDJHV�DUH�SUHVHQWHG�RQH�DW�D�WLPH�ZLWKRXW�UHIHUHQFH�LQIRUPDWLRQ
± 9RWLQJ�WLPH��OHVV�RU�HTXDO�WR����VHFRQGV�GHSHQGLQJ�RQ�WKH�YRWLQJ�PHWKRG
± 3UHVHQWDWLRQ�WLPH�����VHFRQGV�GHSHQGLQJ�RQ�WKH�WHVW�LPDJH�FRQWHQW
± )LYH�OHYHO�RU�QLQH�OHYHO�VFDOH�RYHUDOO�UDWLQJ

� $EVROXWH�FDWHJRU\�UDWLQJ�ZLWK�KLGGHQ�UHIHUHQFH��$&5�+5�
± 7KH�RQO\�GLIIHUHQFH�IURP�WKH�$&5�PHWKRG��D�UHIHUHQFH�YHUVLRQ�RI�HDFK�WHVW�
LPDJH�PXVW�EH�LQFOXGHG�DV�WKH�WHVW�VWLPXOXV��ZKLFK�LV�WHUPHG�DV�D�KLGGHQ�
UHIHUHQFH�FRQGLWLRQ

�

�

�

�

�

([FHOOHQW

*RRG

)DLU

3RRU

%DG



Subjective Image Quality Assessment
• Degradation category rating (DCR)

• Double stimulus method
• Test images are presented in pairs: one is reference image, while the other is 

distorted image
• Voting time: less or equal 10 seconds depending on voting method
• Presentation time: 10 seconds depending on the image content
• Five-level scale overall rating
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Subjective Image Quality Assessment
• Pair comparison (PC)

• Double stimulus method
• Two test images from two different systems are presented in pair from the 

same reference image
• Participants are asked to provide the judgment on which one is preferred in 

the test pair
• All possible pairs are compared (N stimuli → N(n-1)/2 pairs)
• (optional) Convert 

paired comparison
data to scale values 
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LIVE Dataset
• Reference images: 29. Distorted images: 779.

• Distortion types: 5 (fast fading, Gaussian blur, JP2K, JPEG, white noise)
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H. R. Sheikh, M. F. Sabir and A. C. Bovik, A statistical evaluation of recent full reference image quality assessment algorithms, IEEE T-IP, 2006



CSIQ Dataset
• Reference images: 30. Distorted images: 866.

• Distortion types: 6 (JPEG, JP2K, Gaussian blur, white noise, contrast 
change, pink noise)

12E. C. Larson and D, M. Chandler, Most apparent distortion: Full-reference image quality assessment and the role of strategy, J Electronic Imaging, 2010
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TID2013 Dataset
• Reference images: 25. Distorted images: 3000.

• Distortion types: 24 (fast fading, Gaussian blur, JP2K, JPEG, white noise, etc.)
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N. Ponomarenko, O. Ieremeiev, et al., Color image database TID2013: Peculiarities and preliminary results, in European Workshop on Visual Information 
Processing, 2013
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KADID-10K Dataset
• Reference images: 81. Distorted images: 10125.

• Distortion types: 25 (Gaussian blur, JP2K, JPEG, white noise, motion blur, 
etc.)
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H. Lin, V. Hosu and D. Saupe, KADID-10K: A large-scale artificially distorted IQA database, in 2019 Eleventh International Conference on Quality of 
Multimedia Experience, 2019
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Waterloo Exploration Dataset
• Reference images: 4744. Distorted images: 94880.

• Distortion types: 4 (Gaussian blur, JP2K, JPEG, White noise.)

15Kede Ma, et al., Waterloo exploration database: New challenges for image quality assessment models, IEEE T-IP, 2017
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LIVE Challenge Dataset – Authentic Distortion
• Distorted images: 1162.

• Distortion types: Complex.

16D. Ghadiyaram and A. C. Bovik, Massive online crowdsourced study of subjective and objective picture quality, IEEE T-IP, 2015
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KonIQ-10K Dataset – Authentic Distortion
• Distorted images: 10073.

• Distortion types: Complex.

17

V. Hosu, H. Lin, T. Sziranyi and D. Saupe, KonIQ-10K: An ecologically valid database for deep learning of blind image quality assessment, 
IEEE T-IP, 2020
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SPAQ Dataset – Authentic Distortion
• Distorted images: 11125 (taken by 66 smartphones with 11 manufacturers).

• Distortion types: Complex.

18Y. Fang, H. Zhu, Y. Zeng, K. Ma, Z. Wang, Perceptual Quality Assessment of Smartphone Photography, CVPR 2020

6PDUWSKRQH�3KRWRJUDSK\�$WWULEXWH�DQG�
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6HQVRU�QRLVH 2XW�RI�IRFXV &DPHUD�PRWLRQ�EOXUULQJ 0L[WXUH�GLVWRUWLRQV

:H�LQWURGXFH�D�QHZ�LPDJH�GDWDEDVH��FRQVLVWLQJ�RI��������SLFWXUHV�WDNHQ�E\����
VPDUWSKRQHV�ZLWK����PDQXIDFWXUHUV�

6DPSOH�,PDJHV�LQ�63$4

Sensor noise                    Out-of-focus              Camera motion blurring        Mixture distortions

Under-exposure.                Over-exposure                Contrast reduction         Moving object blurring



PIPAL Dataset

19J. Gu, H. Cai, H. Chen, X. Ye, J. Ren, C. Dong, PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual image Restoration, ECCV 2020

• Reference images: 250. Distorted images: 29000.

• Distortion types: 40 (GAN-based image restoration methods).



Objective Image Quality Assessment
• Goal: Build computational models that accurately predict human 

perception of image quality

• Two categories:

1. Full-reference IQA

2. No-reference IQA

20



Full-Reference IQA
Full-Reference IQA

Reference image Test image

IQA

Quality 
score

Distortion
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Reference image Test image

Quality
score

Distortion

IQA



No-Reference IQA (Blind IQA - BIQA)
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Full-Reference IQA

Reference image Test image

IQA

Quality 
score

Distortion

Reference image Test image

Quality
score

Distortion

IQA



Full-reference IQA: 
From Mean Squared Error 

to Structural Similarity (and More)
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What is Wrong with MSE?

24

What is Wrong with MSE?

Image Credit: Berardino



What is Wrong with MSE?What is Wrong with MSE?
MSE(x, y) = 1

N

N

∑
i=1

(xi − yi)2

MSE = 1600,  SSIM = 0.637 MSE = 1600,  SSIM = 0.042

Image Credit: Wang

Don’t care about pixel ordering
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Don’t care about pixel ordering

reordering

MSE= 1600, SSIM=0.637 MSE= 1600, SSIM=0.042
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What is Wrong with MSE?What is Wrong with MSE?
MSE(x, y) = 1

N

N

∑
i=1

(xi − yi)2

Image Credit: Wang

Care about pixel difference, not the underlying signals

26Image credit: Wang

Care about pixel difference, not the underlying signals
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What is Wrong with MSE?What is Wrong with MSE?
MSE(x, y) = 1

N

N

∑
i=1

(xi − yi)2

Image Credit: Wang

Don’t care about the sign of pixel difference

+30

+(rand sign) * 30

MSE = 900


SSIM = 0.933

MSE = 900


SSIM = 0.247

27Image credit: Wang

Don’t care about the sign of pixel difference

MSE= 900, 

SSIM=0.933

MSE= 900, 

SSIM=0.247
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What is Wrong with MSE?
• MSE (or the more general Minkowski metric) implicitly assumes that 

errors are statistically independent
• True, if spatial dependencies are eliminated prior to computation
• No easy task as natural images are highly structured (i.e., spatially correlated) 

• Possible solution?
• Learn a “perceptual” transform f :

• Question: What are the desirable properties of f ?
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What is Wrong with MSE?

• MSE (or the more general Minkowski metric) implicitly assumes that errors are 
statistically independent


• True, if spatial dependencies are eliminated prior to computation


• No easy task as natural images are highly structured (i.e., spatially correlated)


• Possible solution?


• Learn a “perceptual” transform  :


• Question: What are the desirable properties of  ?

f

f

D(x, y) = 1
N

N

∑
i=1

( f(x)i − f(y)i)2



Structural Similarity (SSIM)
• Assumption: The human visual system is highly adapted to extract 

structural information from the viewing field

• Methodology: A measure of structural information change provides a 
good approximation to perceived image distortion

• Questions:
• How to define structural (and nonstructural) distortions?
• How to separate structural and nonstructural distortions?

29



The SSIM Index
[Wang et al., 2004]The SSIM Index
[Wang et al., 2004]

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2x + μ2y + C1)(σ2x + σ2y + C2)

Image Credit: Wang

Original image

Distorted image

Similarity measure 

within sliding window

Pooling

Quality score
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Distorted image
Pooling

Quality score

Similarity measure
within sliding window



Quality MapQuality Map

Gaussian noise 

corrupted image

SSIM map

Original image

Absolute error map

Image Credit: Wang
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Original imageGaussian noise
corrupted image



SSIM vs MSESSIM vs MSE

MSE = 0, SSIM = 1

MSE = 309, SSIM = 0.58

MSE = 309, SSIM = 0.93 MSE = 309, SSIM = 0.99

MSE = 308, SSIM = 0.64 MSE = 309, SSIM = 0.73
Image Credit: Wang 32Im
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MSE=309, SSIM=0.58         MSE=308, SSIM=0.64        MSE=309, SSIM=0.73



What is Wrong with SSIM?
What is Wrong with SSIM?
SSIM(x, y) =

(2μxμy + C1)(2σxy + C2)
(μ2x + μ2y + C1)(σ2x + σ2y + C2)

Image Credit: Nilsson and Akenine-Möller 

Original image Distorted image SSIM map

Normalization is sensitive to low intensities
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Normalization is sensitive to low intensities

Original image                               Distorted image                                       SSIM map

Houston, we have a problem!



What is Wrong with SSIM?
What is Wrong with SSIM?
SSIM(c2g(x), c2g(y)) =

(2μxμy + C1)(2σxy + C2)
(μ2x + μ2y + C1)(σ2x + σ2y + C2)

Image Credit: Nilsson and Akenine-Möller 

Original image Distorted image SSIM map

Don’t consider chrominance
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Don’t consider chrominance

Original image                                 Distorted image                                       SSIM map



What is Wrong with SSIM?
What is Wrong with SSIM?
SSIM(x, y) =

(2μxμy + C1)(2σxy + C2)
(μ2x + μ2y + C1)(σ2x + σ2y + C2)

Original image Distorted image SSIM map

Rely on point-by-point comparison

35

Rely on point-by-point comparison

Original image                                 Distorted image                                       SSIM map



More Generally
• Not accurate enough

• MS-SSIM, IW-SSIM, VIF, MAD, FSIM, VSI, NLPD, LPIPS, DISTS, ...

• Not computationally efficient enough
• PAMSE, GMSD, ...

• Not misalignment-aware
• Adaptive linear system, CW-SSIM, GTI-IQA

• Not color-aware
• Adaptive linear system, FSIM_c, LPIPS, PieAPP, DISTS, ...

• Not texture-aware
• STSIM, NPTSM, VGG Gram, LPIPS, DISTS, A-DISTS, ...
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Visual Information Fidelity (VIF) 
[Sheikh and Bovik, 2006]
• An information-theoretical approach

• Quantifies the amount of information preserved in the distorted image

• Works when the “distorted” image is visually superior to the reference
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Visual Information Fidelity (VIF)
[Sheikh and Bovik, 2006]

• An information-theoretical approach


• Quantifies the amount of information preserved in the distorted image


• Works when the “distorted” image is visually superior to the reference

VIF = MI(C; F)
MI(C; E)

Image Credit: Sheikh and Bovik

Visual Information Fidelity (VIF)
[Sheikh and Bovik, 2006]

• An information-theoretical approach


• Quantifies the amount of information preserved in the distorted image


• Works when the “distorted” image is visually superior to the reference

VIF = MI(C; F)
MI(C; E)

Image Credit: Sheikh and Bovik
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Most Apparent Distortion (MAD) 
[Larson and Chandler, 2010]
• A multi-strategy approach 

• A detection based strategy for near-threshold distortions
• Look past the image and look for the distortions

• An appearance based strategy for clearly visible distortions
• Look past the distortions and look for the image content

38



Normalized Laplacian Pyramid Distance (NLPD)
[Laparra et al., 2016]
• An error visibility method that models the early visual system 

• Local luminance subtraction and local gain control

• The SOTA method for high-dynamic-range image tone mapping
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Normalized Laplacian Pyramid Distance (NLPD)
[Laparra et al., 2016]

• An error visibility method that models the early visual system


• Local luminance subtraction and local gain control 


• The SOTA method for high-dynamic-range image tone mapping

NLPD(x, x̃) = 1
N

N

∑
k=1

1
N(k)

∥y(k) − ỹ(k)∥2

Image Credit: Laparra
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Learned Perceptual Image Patch Similarity (LPIPS)
[Zhang et al., 2018]
• Investigate a wide range of network architectures and vision tasks

• Demonstrate the effectiveness of deep features in designing IQA 
models
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Learned Perceptual Image Patch Similarity (LPIPS)
[Zhang et al., 2018]

• Demonstrate the effectiveness of deep features in designing IQA models


• Investigate a wide range of network architectures and vision tasks 
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Deep Image Structure and Texture Similarity (DISTS)
[Ding et al., 2020]
• Based on an injective mapping function built from a variant of VGG 

• SSIM-like global structure and texture similarity measurements 

• Robust to texture resampling and mild geometric transformations
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Deep Image Structure and Texture Similarity (DISTS)
[Ding et al., 2020]

• Based on an injective mapping function built from a variant of VGG


• SSIM-like global structure and texture similarity measurements


• Robust to texture resampling and mild geometric transformations

DISTS(x, y) = 1 −
m

∑
i=0

ni

∑
j=1

(αijl(x̃(i)
j , ỹ(i)

j ) + βijs(x̃(i)
j , ỹ(i)

j ))



Locally Adaptive DISTS 
[Ding et al., 2021]
• Rely on the dispersion index to localize texture regions at different 

scales
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Locally Adaptive DISTS
[Ding et al., 2021]

• Rely on the dispersion index to localize texture regions at different scales

A-DISTS(X, Y) = 1 − 1
N

M

∑
i=0

Ni

∑
j=1

S (X̃(i)
j , Ỹ(i)

j )

S(X̃(i)
j , Ỹ(i)

j ) = 1
Ki

Ki

∑
k=1

(p̃(i)
k l (x̃(i)

j,k, ỹ(i)
j,k) + q̃(i)

k s (x̃(i)
j,k, ỹ(i)

j,k))



Full-Reference IQA: An Embarrassing Fact
Reference Image Recovery

y⋆ = arg min
y

D(x, y)

Full-Reference IQA: An Embarrassing Fact 
Reference Image Recovery
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No-Reference IQA: 
From Natural Scene Statistics to Learning based 

Approaches

44



Question: Do we really wish to leverage knowledge about image distortions?
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Knowledge Map

Image Credit: Wang

Question: Do we really wish to leverage knowledge about image distortions?
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Natural Scene Statistics (NSS) based 
Approaches
• Assumption: Natural images exhibit strong statistical regularities, and 

reside in a tiny portion of the whole image space

• Methodology: A measure of violation from such statistical regularities 
provides an approximation to the unnaturalness (i.e., quality) of the 
image

1. Handcraft statistical features from the image
2. Summarize the extracted features using probability distributions (e.g. 

generalized Gaussian)
3. Input the fitted parameters to a regression method (e.g, SVM) or compare 

the fitted distribution to a “reference” distribution

46



NSS based Approaches
• Edge intensity/spread, sample entropy, BRISQUE, NIQE, IL-NIQE, ...

• Spatial domain

• Frequency domain
• DFT (blur kernel, phase congruency), DCT (BLIINDS-II), ...

• Wavelet domain
• Local phase coherence, DIIVINE, LBIQ, ...

47



Natural Image Quality Evaluator (NIQE)
[Mittal et al., 2013]

• Without reliance on human ratings


• Without exposure to distorted images


• Widely used in real-world image processing

NIQE = (μ1 − μ2)T( Σ1 + Σ2
2 )

−1
(μ1 − μ2)

Image Credit: Mittal

Natural Image Quality Evaluator (NIQE) 
[Mittal et al., 2013]
• Without reliance on human ratings

• Without exposure to distorted images 

• Widely used in real-world image processing
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Natural Image Quality Evaluator (NIQE)
[Mittal et al., 2013]

• Without reliance on human ratings


• Without exposure to distorted images


• Widely used in real-world image processing

NIQE = (μ1 − μ2)T( Σ1 + Σ2
2 )

−1
(μ1 − μ2)

Image Credit: Mittal



(Deep) Learning based Approaches
• Methodology: Joint optimization of feature extraction and quality 

prediction

• Challenge: the large number of parameters to be optimized and the 
small number of human ratings as supervisory signals
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(Deep) Learning based Approaches
• Attempt 1: Fine-tune models from other vision tasks (e.g., object 

recognition)
• [Bianco, 2018], DB-CNN, UNIQUE, HyperIQA, MetaIQA, ...

• Limitation:
• Lose the opportunity to search for the optimal and (possibly simpler) network 

architecture
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(Deep) Learning based Approaches
• Attempt 2: Train no-reference models using image patches

• CORNIA, [Kang et al., 2014], HOSA, DeepIQA, ...

• Limitation:
• Local quality generally depends on global context
• How to obtain a single global score for an image

51



(Deep) Learning based Approaches
• Attempt 3: Quality-aware pretraining followed by fine-tuning

• Leverage distortion information
• MEON, RankIQA, DB-CNN, ...

• Leverage full-reference models 
• dipIQ, [Kim et al., 2018], [Ma et al., 2019]

• Limitation: Difficult to extend to authentic image distortions
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Evaluation of IQA Models
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Standard Approach
Main Steps

1. Select a set of images from the image domain of interest

2. Collect the MOS for each image via psychophysical experiments (i.e., 
subjective user studies)

3. Compare the goodness of fit among the competing IQA models (i.e., sort by 
average performance)
• Spearman rank correlation coefficient 

- prediction monotonicity 
• Pearson linear correlation coefficient 

- prediction linearity
• Mean squared error 

- prediction accuracy
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Standard Approach
Main Steps
1. Select a set of images from the image domain of interest 

2. Collect the MOS for each image via psychophysical experiments (i.e., subjective user studies)


3. Compare the goodness of fit among the competing IQA models (i.e., sort by average 
performance)


• Spearman rank correlation coefficient - prediction monotonicity


• Pearson linear correlation coefficient - prediction linearity


• Mean squared error - prediction accuracy

SRCC = 1 −
6∑i di

2

M(M2 − 1)

PLCC(x, y) =
∑i (xi − μx)(yi − μy)

∑i (xi − μx)2 ∑i (yi − μy)2

MSE(x, y) = 1
M ∑

i
(xi − yi)2



Caveats
• Sampling bias due to the extremely sparse distribution of the 

selected samples in the image space
• i.e., the curse of dimensionality

• Algorithmic bias due to potentially overfitting the selected samples
• The dataset creation precedes the algorithm development 

• Subjective bias due to potentially cherry-picking test results

55



The Perception-Distortion Tradeoff
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Perceptual Image Restoration 
• The invention of Generative Adversarial Networks (GANs) greatly 

improves the perceptual performance

57

Ground Truth

Perceptual Image Restoration

Less distortion
PSNR-oriented

Photo-realistic
GAN-based

The invention of Generative Adversarial Networks (GANs) greatly 
improves the perceptual performance

Ground Truth Less distortion
PSNR-oriented

Photo-realistic
GAN-based
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Gap Between IQA Metric and Human Judgment

• Increasing inconsistency between high numerical performances 
(PSNR, SSIM, PI, etc.) and perceptual performance.

58

Ground Truth
PSNR / SSIM

Gap Between IQA Metric and Human Judgment

PSNR-oriented GAN-based

Increasing inconsistency between high numerical performances 
(PSNR, SSIM, PI, etc.) and perceptual performance.

Ground Truth
PSNR / SSIM

PSNR-oriented GAN-based

S
lid

e 
cr

ed
it:

 G
u 

et
 a

l.



Gap Between IQA Metric and Human Judgment

• Before 2018, Evaluation Using PSNR/SSIM
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Gap Between IQA Metric and Human Judgment
Before 2018, Evaluation Using PSNR/SSIM

Ground Truth
PSNR / SSIM Preferred by Human

23.52 / 0.7056 19.86 / 0.5530
Good in PSNR, SSIM

Ground Truth
PSNR / SSIM

23.52 / 0.7056
Good in PSNR, SSIM

19.86 / 0.5530
Preferred by Human
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Gap Between IQA Metric and Human Judgment

• After 2018, Evaluation Using PI/NIQE
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Ground Truth
PI / NIQE Preferred by Human

3.80 / 6.47 4.30 / 6.90
Good in PI, NIQE

Gap Between IQA Metric and Human Judgment
After 2018, Evaluation Using PI/NIQE

PI and NIQE are suggested in Blau, Y., & Michaeli, T. The perception-distortion tradeoff. CVPR 2018
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The Perception-Distortion Tradeoff 
• How to evaluate image 

restoration methods?

• Distortion and perceptual quality 
are at odds with each other.

• The lower the distortion of an 
algorithm, the more its 
distribution must deviate from 
the statistics of natural scenes. 
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The Perception-Distortion Tradeoff

Yochai Blau and Tomer Michaeli

Abstract—
Image restoration algorithms are typically evaluated by some distortion measure (e.g. PSNR, SSIM, IFC, VIF) or by human opinion

scores that quantify perceived perceptual quality. In this paper, we prove mathematically that distortion and perceptual quality are at

odds with each other. Specifically, we study the optimal probability for correctly discriminating the outputs of an image restoration

algorithm from real images. We show that as the mean distortion decreases, this probability must increase (indicating worse perceptual

quality). As opposed to the common belief, this result holds true for any distortion measure, and is not only a problem of the PSNR or

SSIM criteria. We also show that generative-adversarial-nets (GANs) provide a principled way to approach the perception-distortion

bound. This constitutes theoretical support to their observed success in low-level vision tasks. Based on our analysis, we propose a

new methodology for evaluating image restoration methods, and use it to perform an extensive comparison between recent

super-resolution algorithms.

F

1 INTRODUCTION

THE last decades have seen continuous progress in image
restoration algorithms (e.g. for denoising, deblurring,

super-resolution) both in visual quality and in distortion
measures like peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) [2]. However, in recent years,
it seems that the improvement in reconstruction accuracy
is not always accompanied by an improvement in visual
quality. In fact, and perhaps counter-intuitively, algorithms
that are superior in terms of perceptual quality, are often
inferior in terms of e.g. PSNR and SSIM [3], [4], [5], [6],
[7], [8], [9]. This phenomenon is commonly interpreted as a
shortcoming of the existing distortion measures [10], which
fuels a constant search for alternative “more perceptual”
criteria.

In this paper, we offer a complementary explanation
for the apparent tradeoff between perceptual quality and
distortion measures. Specifically, we prove that there exists
a region in the perception-distortion plane, which cannot be
attained regardless of the algorithmic scheme (see Fig. 1).
Furthermore, the boundary of this region is monotone.
Therefore, in its proximity, it is only possible to improve
either perceptual quality or distortion, one at the expense of
the other. The perception-distortion tradeoff exists for all
distortion measures, and is not only a problem of the mean-
square error (MSE) or SSIM criteria.

Let us clarify the difference between distortion and per-
ceptual quality. The goal in image restoration is to estimate
an image x from its degraded version y (e.g. noisy, blurry,
etc.). Distortion refers to the dissimilarity between the re-
constructed image x̂ and the original image x. Perceptual

Y. Blau and T. Michaeli are with the Technion – Israel Institute of Technology,
Haifa, Israel. E-mail: {yochai@campus, tomer.m@ee}.technion.ac.il

This is an extended version of a paper published in the Proceedings of the
2018 IEEE Conference on Computer Vision and Pattern Recognition [1].
https:// ieeexplore.ieee.org/abstract/document/8578750

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
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Fig. 1. The perception-distortion tradeoff. Image restoration algo-

rithms can be characterized by their average distortion and by the

perceptual quality of the images they produce. We show that there exists

a region in the perception-distortion plane which cannot be attained,

regardless of the algorithmic scheme. When in proximity of this unattain-

able region, an algorithm can be potentially improved only in terms of its

distortion or in terms of its perceptual quality, one at the expense of the

other.

quality, on the other hand, refers only to the visual quality
of x̂, regardless of its similarity to x. Namely, it is the
extent to which x̂ looks like a valid natural image. An
increasingly popular way of measuring perceptual quality
is by using real-vs.-fake user studies, which examine the
ability of human observers to tell whether x̂ is real or the
output of an algorithm [5], [11], [12], [13], [14], [15], [16],
[17] (similarly to the idea underlying generative adversarial
nets [18]). Therefore, perceptual quality can be defined as
the best possible probability of success in such discrimina-
tion experiments, which as we show, is proportional to the
distance between the distribution of reconstructed images
and that of natural images.

Based on these definitions of perception and distortion,
we follow the logic of rate-distortion theory [19]. That is,
we seek to characterize the behavior of the best attainable
perceptual quality (minimal deviation from natural image
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What Makes a Great Picture?
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Image Quality vs. Image Aesthetics
• Quality assessment deals with measuring low-level degradations 

such as noise, blur, compression artifacts, etc.

• Aesthetic prediction quantifies semantic level characteristics 
associated with emotions and beauty in images.
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Photography 101: the where and when
•Composition
• Framing
• Rule of Thirds
• Leading Lines
• Textures and Patterns
• Simplicity

•Lighting
• Light Direction
• Color coordination / balance
• Sunny vs. cloudy
• “Golden Hour”
• B&W to focus attention
• (sur) realism

64



Framing
“Photography is all about framing. We see a subject -- and we put a frame
around it. Essentially, that is photography when all is said and done.”

-- from photo.blorge.com
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Frame serves several purposes:
• 1. It gives the image depth

• 2. If used correctly, framing can draw the eye of the viewer of an
interest to a particular part of the scene. 

• 3. Framing can bring a sense of organization or containment to an
image. 

• 4. Framing can add context to a shot. 

http://digital-photography-school.com/blog/frame-your-images/ 66

http://digital-photography-school.com/blog/frame-your-images/


http://flickr.com/photos/paulosacramento/226545698/
http://flickr.com/photos/chrisbeach/13868545/
http://flickr.com/photos/74531485@N00/929270814/
http://flickr.com/photos/freakdog/223117229/
http://flickr.com/photos/cdm/253805482/ 67

Examples of nice framing

http://flickr.com/photos/74531485@N00/929270814/
http://flickr.com/photos/chrisbeach/13868545/
http://flickr.com/photos/74531485@N00/929270814/
http://flickr.com/photos/freakdog/223117229/
http://flickr.com/photos/cdm/253805482/


http://www.photo96.com/blog/?p=371 68

Rules of Thirds

http://www.photo96.com/blog/?p=371
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Other examples
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Don’t center, especially for motion
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... or do center
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Leading Lines
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Leading Lines
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More examples
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Textures and Patterns



Prof - Obvious what one should be looking at, i.e. 
easy to separate subject from the background. 
Snap – unstructured, busy, filled with clutter.
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Simplicity

”Look Into” by Josh Brown @ Flickr
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Simplicity

”alien flower” by Josef F. Stuefer @ Flickr
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Simplicity

“Waiting in line!” by Imapix @ Flickr



B&W for Simplicity

80Photo by A. A. Efros



B&W for Simplicity

Photo by A. A. Efros 81
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B&W for Simplicity

Photo by A. A. Efros
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B&W for Simplicity

Photo by A. A. Efros



…but not always
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…but not always
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Crop for Simplicity
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Crop for Simplicity
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If your pictures 
aren't good enough, 
you're not close 
enough" 
— Robert Capa
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Clean Backgrounds
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Simplicity for Portraits
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https://vimeo.com/29722267

https://vimeo.com/29722267


And now, all together…

Photo by A. A. Efros 90
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And now, all together…
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Try to be at eye level

Bad Better 92S
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Get low
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https://www.youtube.com/watch?v=8EmRZO9fwvk&feature=youtu.be 94S
lid

e 
cr

ed
it:

 F
re

do
D

ur
an

d

Bad angles

https://www.youtube.com/watch?v=8EmRZO9fwvk&feature=youtu.be
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As usual, follow a rule 
or really break it.

96S
lid

e 
cr

ed
it:

 F
re

do
D

ur
an

d

Or really get high
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Front Lighting
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Side Lighting
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Back Lighting



Complementary colors (of opposite hue on color wheel)
100

Color Coordination



Light is more diffuse

Bad

Better
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Just don’t put the sky in the frame

The weather conditions

The pictures Other overcast-day pictures

102S
lid

e 
cr

ed
it:

 F
re

do
D

ur
an

d

Overcast days are the best



Don't get married 
on a sunny day!
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+/- 1 hour “Golden hours”
Night photography: always near sunset/sunrise
• because of nice diffuse light

Mid day: 
often not great

During sunset or
sunrise

After sunset
less than 1 hour
after sunrise/ 
before sunset
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Best time of day: sunset & sunrise



“Golden Hour”
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During sunset/sunrise After sunset
less than 1 hour
after sunrise
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After sunset: blue hour
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Blue Hour (Russian River)

Photo by A. A. Efros 109



Image Aesthetics Prediction
• Goal: Build computational models that accurately predict human 

perception of image aesthetics

• No-reference models in nature.
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Image Aesthetics Prediction
Full-Reference IQA

Reference image Test image

IQA

Quality 
score

Distortion

111

Test image

score
IAP

Aesthetics



AVA Dataset
• Images: 255000 (rated based on aesthetic qualities by amateur 

photographer).

• Each photo is scored by an average of 200 people in response to 
photography contests.

112N. Murray, L. Marchesotti, and F. Perronnin, AVA: A large-scale database for aesthetic visual analysis, CVPR 2012

3

Fig. 1: Histograms of ratings from AVA dataset [1]. Left: Histogram of mean scores. Middle: Histogram of standard deviations.
Right: Joint histogram of the mean and standard deviation.

(a) 6.36 (±1.04) (b) 7.84 (±2.08) (c) 2.62 (±2.15) (d) 3.12 (±1.28)

Fig. 2: Some example images from AVA dataset [1] with quality score µ(±�), where µ and � represent mean and standard
deviation of score, respectively. (a) high aesthetics and low unconventionality (challenge name: “Best of 2007”, µ = 6.36,
� = 1.04), (b) high aesthetics and high unconventionality (challenge name: “Extreme super moon”, µ = 7.84, � = 2.08),
(c) low aesthetics and high unconventionality (challenge name: “Travel”, µ = 2.62, � = 2.15), (d) low aesthetics and low
unconventionality (challenge name: “Pieces of the human form”, µ = 3.12, � = 1.28).

Fig. 3: Histograms of ratings from TID2013 dataset [2]. Left: Histogram of mean scores. Middle: Histogram of standard
deviations. Right: Joint histogram of the mean and standard deviation.

The rest of the paper is organized as follows. In Section II,
a detailed explanation of the proposed method is described.
Next, in SectionIII, applications of our algorithm in ranking
photos and image enhancement are exemplified. We also
provide details of our implementation. Finally, this paper is
concluded in SectionIV.

II. PROPOSED METHOD

Our proposed quality and aesthetic predictor stands on
image classifier architectures. More explicitly, we explore a
few different classifier architectures such as VGG16 [18],
Inception-v2 [28], and MobileNet [29] for image quality
assessment task. VGG16 consists of 13 convolutional and 3
fully-connected layers. Small convolution filters of size 3⇥ 3
are used in the deep VGG16 architecture [18]. Inception-
v2 [28] is based on the Inception module [30] which allows

for parallel use of convolution and pooling operations. Also,
in the Inception architecture, traditional fully-connected layers
are replaced by average pooling, which leads to a signifi-
cant reduction in number of parameters. MobileNet [29] is
an efficient deep CNN, mainly designed for mobile vision
applications. In this architecture, dense convolutional filters
are replaced by separable filters. This simplification results in
smaller and faster CNN models.

We replaced the last layer of the baseline CNN with a
fully-connected layer with 10 neurons followed by soft-max
activations (shown in Fig. 8). Baseline CNN weights are
initialized by training on the ImageNet dataset [15], and then
an end-to-end training on quality assessment is performed. In
this paper, we discuss performance of the proposed model with
various baseline CNNs.



NIMA: Neural Image Assessment
[Talebi and Milanfar, 2018]
• Instead of predicting the mean opinion score, 

it predicts the distribution of human opinion scores using a CNN

113

5

Fig. 6: Histograms of ratings from LIVE dataset [26]. Left: Histogram of mean scores. Middle: Histogram of standard deviations.
Right: Joint histogram of the mean and standard deviation. Note that LIVE scores are scaled to [1,10].

(a) 9.99 (±1.22) (b) 9.35 (±1.49) (c) 8.29 (±1.99)

(d) 3.50 (±1.69) (e) 2.33 (±1.51) (f) 1.95 (±1.39)

Fig. 7: Some example images from LIVE dataset [26] with quality score µ(±�), where µ and � represent mean and standard
deviation of score, respectively. Note that LIVE scores are scaled to [1,10].

Fig. 8: Modified baseline image classifier network used in our framework. Last layer of classifier network is replaced by a
fully-connected layer to output 10 classes of quality scores. Baseline network weights are initialized by training on ImageNet
dataset [15], and the added fully-connected weights are initialized randomly.

In training, input images are rescaled to 256 ⇥ 256, and
then a crop of size 224 ⇥ 224 is randomly extracted. This
lessens potential over-fitting issues, especially when training
on relatively small datasets (e.g. TID2013). It is worth noting
that we also tried training with random crops without rescal-

ing. However, results were not compelling. This is due to the
inevitable change in image composition. Another random data
augmentation in our training process is horizontal flipping of
the image crops.

Our goal is to predict the distribution of ratings for a

8

(a) 6.38 (7.16) (b) 6.24 (6.79) (c) 6.22 (6.64) (d) 6.16 (6.93) (e) 5.92 (6.23)

(f) 5.71 (5.78) (g) 5.61 (5.54) (h) 5.28 (5.32) (i) 5.11 (5.23) (j) 5.03 (5.35)

(k) 4.90 (4.91) (l) 4.83 (4.89) (m) 4.77 (4.55) (n) 4.48 (3.95) (o) 3.55 (3.53)

Fig. 10: Ranking some examples labelled with “landscape” tag from AVA dataset [1] using our proposed aesthetic assessment
model NIMA(VGG16). Predicted (and ground truth) scores are shown below each image.

TABLE II: Performance of the proposed method with vari-
ous architectures in predicting TID2013 quality ratings [2]
compared to the state-of-the-art. LCC (linear correlation co-
efficient) and SRCC (Spearman’s rank correlation coefficient)
are computed between predicted and ground truth mean scores
(column 2 and 3) and standard deviation of scores (column 4
and 5). EMD measures closeness of the predicted and ground
truth rating distributions with r = 1 in Eq. 1. The LCC,
and SROC values are in ±0.005, and ±0.004 within 95%
confidence, respectively.

Model LCC SRCC LCC SRCC EMD

(mean) (mean) (std.dev) (std.dev)

Kim et al. [16] 0.80 0.80 – – –
Moorthy et al. [39] 0.89 0.88 – – –
Mittal et al. [40] 0.92 0.89 – – –
Saad et al. [41] 0.91 0.88 – – –
Kottayil et al. [42] 0.89 0.88 – – –
Xu et al. [35] 0.96 0.95 – – –
Bianco et al. [7] 0.96 0.96 – – –
NIMA(MobileNet) 0.782 0.698 0.209 0.181 0.105
NIMA(VGG16) 0.941 0.944 0.538 0.557 0.054
NIMA(Inception-v2) 0.827 0.750 0.470 0.468 0.064

used to tune a tone enhancement method [43], and an image
denoiser [44]. A more detailed treatment is presented in [23].

The multi-layer Laplacian technique [43] enhances local
and global contrast of images. Parameters of this method
control the amount of detail, shadow, and brightness of an
image. Fig. 13 shows a few examples of the multi-layer
Laplacian with different sets of parameters. We observed that
the predicted aesthetic ratings from training on the AVA dataset
can be improved by contrast adjustments. Consequently, our

model is able to guide the multi-layer Laplacian filter to find
aesthetically near-optimal settings of its parameters. Examples
of this type of image editing are represented in Fig. 14, where
a combination of detail, shadow and brightness change is
applied on each image. In each example, 6 levels of detail
boost, 11 levels of shadow change, and 11 levels of brightness
change account for a total of 726 variations. The aesthetic
assessment model tends to prefer high contrast images with
boosted details. This is consistent with the ground truth results
from AVA illustrated in Fig. 10.

Turbo denoising [44] is a technique which uses the domain
transform [45] as its core filter. Performance of Turbo denois-
ing depends on spatial and range smoothing parameters, and
consequently, proper tuning of these parameters can effectively
boost performance of the denoiser. We observed that varying
the spatial smoothing parameter makes the most significant
perceptual difference, and as a result, we use our quality
assessment model trained on TID2013 dataset to tune this
denoiser. Application of our no-reference quality metric as a
prior in image denoising is similar to the work of Zhu et al.
[46], [47]. Our results are shown in Fig. 15. Additive white
Gaussian noise with standard deviation 30 is added to the clean
image, and Turbo denoising with various spatial parameters is
used to denoise the noisy image. To reduce the score deviation,
50 random crops are extracted from denoised image. These
scores are averaged to obtain the plots illustrated in Fig. 15.
As can be seen, although the same amount of noise is added to
each image, maximum quality scores correspond to different
denoising parameters in each example. For relatively smooth
images such as (a) and (g), optimal spatial parameter of Turbo
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tuning to enhance the quality of the outputs

114

5

Fig. 6: Histograms of ratings from LIVE dataset [26]. Left: Histogram of mean scores. Middle: Histogram of standard deviations.
Right: Joint histogram of the mean and standard deviation. Note that LIVE scores are scaled to [1,10].

(a) 9.99 (±1.22) (b) 9.35 (±1.49) (c) 8.29 (±1.99)

(d) 3.50 (±1.69) (e) 2.33 (±1.51) (f) 1.95 (±1.39)

Fig. 7: Some example images from LIVE dataset [26] with quality score µ(±�), where µ and � represent mean and standard
deviation of score, respectively. Note that LIVE scores are scaled to [1,10].

Fig. 8: Modified baseline image classifier network used in our framework. Last layer of classifier network is replaced by a
fully-connected layer to output 10 classes of quality scores. Baseline network weights are initialized by training on ImageNet
dataset [15], and the added fully-connected weights are initialized randomly.

In training, input images are rescaled to 256 ⇥ 256, and
then a crop of size 224 ⇥ 224 is randomly extracted. This
lessens potential over-fitting issues, especially when training
on relatively small datasets (e.g. TID2013). It is worth noting
that we also tried training with random crops without rescal-

ing. However, results were not compelling. This is due to the
inevitable change in image composition. Another random data
augmentation in our training process is horizontal flipping of
the image crops.

Our goal is to predict the distribution of ratings for a
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