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Today’s Lecture

• unreasonable effectiveness of data

• deep learning

• computation in a neural net

• optimization

• backpropagation

• convolutional neural networks

• applications in computational photography

Disclaimer: The material and slides for this lecture were borrowed from 
—Costis Daskalakis and Aleksander Mądry’s MIT 6.883 class
—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class
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Neural Networks in Computational Photography

• Now: learned pipelines for computational imaging

3

�

Learning CFAs

Learning ISPs

Learning coded apertures



• Now: learned pipelines for computational imaging
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Learning denoising Learning deblurring HDR Imaging

�

Neural Networks in Computational Photography



Unreasonable 
Effectiveness of Data
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Slide credit: Alexei Efros 6



[Hays and Efros. Scene Completion Using Millions of 
Photographs. SIGGRAPH 2007 and CACM October 2008.]
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2 Million Flickr Images
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… 200 total
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… 200 scene matches
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Why does it work?

25Slide credit: Alexei Efros
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Nearest neighbors from a
collection of 20 thousand images
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Nearest neighbors from a
collection of 2 million images
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“Unreasonable Effectiveness of Data”
• Parts of our world can be explained by elegant mathematics

physics, chemistry, astronomy, etc.

• But much cannot

psychology, economics, genetics, etc.

• Enter The Data!

Great advances in several fields:

e.g., speech recognition, 
machine translation

Case study: Google
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[Halevy, Norvig, Pereira 2009] 

“For many tasks, once we have a 
billion or so examples, we essentially 
have a closed set that represents (or at 
least approximates) what we need…”

Slide credit: Alexei Efros
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A Brief History of 
Deep Learning
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Humble beginnings
• Perceptron [Rosenblatt ‘58]

• Criticism of Perceptrons (XOR affair) [Minsky Papert ‘69]

→ Effectively causes a “deep learning winter”
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(Early) Spring
• Back-propagation [Rumelhart et al. ’86, LeCun ‘85, Parker ‘85] 

• Convolutional layers [LeCun et al. ‘90] 

• Recurrent Neural Networks/Long Short-Term 
Memory (LSTM) [Hochreiter Schmidhuber ‘97] 
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Summer
• 2006: First big success: speech recognition 

• 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. ‘12] 

• 2015: Deep learning-based vision 
models outperform humans 
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[“Mask RCNN”, He et al. 2017]
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[“Neural module networks”, Andreas et al. 2017]
36



Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid [“pix2pix”, Isola et al. 2017] 37



What enabled this success?
• Better architectures (e.g., ReLUs) and regularization 

techniques (e.g. Dropout)

• Sufficiently large datasets

• Enough computational power
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Deep learning
• Modeling the visual world is incredibly complicated. We need high 

capacity models.

• In the past, we didn’t have enough data to fit these models. But now 
we do!

• We want a class of high capacity models that are easy to optimize.
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Deep neural networks!



Serre, 2014

CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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X

Y

Z

Edge normals

Edge strength

3D orientation

Depth discontinuities

Contact edges

Input image

1. From pixels to edges

2. From edges to geometric
primitives

Image transformations
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“clown fish”

Edges

Feature extractors

Texture

Colors

Segments

Parts

Classifier

Object recognition
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“clown fish”

Edges

Feature extractors

Texture

Colors

Segments

Parts

Classifier

Learned

Object recognition
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Learned

Object recognition

“clown fish”
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“clown fish”

Learned

Neural net

Object recognition
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“clown fish”

Learned

Deep neural net

Object recognition
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“clown fish”

Loss

LearnedDeep learning
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Gradient descent
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x

Gradient descent
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learning rate

One iteration of gradient descent:

Gradient descent
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Computation in 
Neural Nets
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Input 
representation

Output 
representation

Computation in a neural net
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Input 
representation

Output 
representation

Linear layer

Computation in a neural net
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Input 
representation

Output 
representation

Linear layer

weights

bias

Computation in a neural net
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Input 
representation

Output 
representation

Linear layer

weights

bias

parameters of the model

Computation in a neural net
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Input 
representation

Output 
representation

Linear layer

Example: linear regression with a neural net
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Input 
representation

Output 
representation

Pointwise
Non-linearity

“Perceptron”

Computation in a neural net
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One layer neural net 
(perceptron) can 
perform linear 
classification!

Example: linear classification with a perceptron
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Training data

Example: linear classification with a perceptron
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Input 
representation

Output 
representation

Computation in a neural net
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Input 
representation

Output 
representation

Sigmoid

Computation in a neural net – nonlinearity
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Sigmoid• Interpretation as firing rate of neuron

• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

• Outputs centered at 0.5 
(poor conditioning)

• Not used in practice

Computation in a neural net – nonlinearity
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Tanh
• Bounded between [-1,+1]

• Saturation for large +/- inputs

• Gradients go to zero

• Outputs centered at 0

• Preferable to sigmoid

tanh(x) = 2 sigmoid(2x) −1

Computation in a neural net – nonlinearity
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Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence 
(see 6x speedup vs tanh in [Krizhevsky et al.])

• Drawback: if strongly in negative region, 
unit is dead forever (no gradient).

• Default choice: widely used in current models.

Computation in a neural net – nonlinearity
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Leaky ReLU
• where α is small (e.g. 0.02)

• Efficient to implement:

•Also known as probabilistic ReLU (PReLU)

• Has non-zero gradients everywhere 
(unlike ReLU)

•α can also be learned 
(see Kaiming He et al. 2015).

Computation in a neural net – nonlinearity
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Output 
representation

Input 
representation

Intermediate 
representation

= “hidden units”

Stacking layers
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Output 
representation

= “hidden units”

Input 
representation

Intermediate 
representation

Stacking layers
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Input 
representation

Intermediate 
representation

Output 
representation

Stacking layers
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Input 
representation

Intermediate 
representation

Output 
representation

positive

negative

Stacking layers
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Input 
representation

Intermediate 
representation

Output 
representation

positive

negative

Stacking layers
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Input 
representation

Intermediate 
representation

Output 
representation

positive

negative

Stacking layers
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Input 
representation

Intermediate 
representation

Output 
representation

positive

negative

Stacking layers
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Input 
representation

Output 
representation

Fully connected layer Locally connected layer
(Sparse W)

Input 
representation

Output 
representation

Connectivity Patterns
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[http://playground.tensorflow.org]
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http://playground.tensorflow.org/


“clown fish”
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Deep nets
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One layer neural net 
(perceptron) can 
perform linear 
classification! 

Example: linear classification with a perceptron
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Example: nonlinear classification with a deep net
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Representational power
• 1 layer? Linear decision surface.
• 2+ layers? In theory, can represent any function. 

Assuming non-trivial non-linearity.
• Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

• Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org/contents/mlp.html

• Simple proof by M. Neilsen
http://neuralnetworksanddeeplearning.com/chap4.html

• D. Mackay book 
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

• But issue is efficiency: very wide two layers vs narrow deep 
model? In practice, more layers helps.
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http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
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Deep nets
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Last layer

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

“clown fish”argmax

Classifier layer
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“clown fish”

Loss error

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function
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“clown fish”

Loss small

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function
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“grizzly bear”

Loss large

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function
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Network output



Prediction

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

0 1

Ground truth label

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

0 1

…
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Loss function



Network output

…

dolphin

cat

grizzly bear

angel fish

chameleon

clown fish

Ground truth label

…

iguana

elephant

Probability of the observed 
data under the model
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Loss function



“clown fish”

Loss

LearnedDeep learning
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“grizzly bear”

LearnedDeep learning

Loss
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“chameleon”

LearnedDeep learning

Loss
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Loss

Loss

Loss

…

Batch (parallel) processing
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Features

Im
ag
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…

Fu
rry

?
Is 

a f
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?
Size # S

trip
es

…

Each layer is a representation of the data 

Tensors (multi-dimensional arrays)
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Tensor processing with batch size = 3:

Everything is a tensor
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"Tensor flow"
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Deep nets have millions of parameters!

On many datasets, it is easy to overfit — we may have more free 
parameters than data points to constrain them.

How can we regularize to prevent the network from overfitting?
1. Fewer neurons, fewer layers
2. Weight decay
3. Dropout
4. Normalization layers
5. …

Regularizing deep nets
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Recall: regularized least squares

Only use polynomial terms if you really 
need them! Most terms should be zero

ridge regression, a.k.a., Tikhonov regularization

Probabilistic interpretation: R is a Gaussian prior over values of the parameters.
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weight decay

“We prefer to keep weights small.”

Recall: regularized least squares
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Input 
representation

Intermediate 
representation

Output 
representation

Dropout
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Input 
representation

Intermediate 
representation

Output 
representation

Dropout
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Input 
representation

Intermediate 
representation

Output 
representation

Dropout
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Input 
representation

Intermediate 
representation

Output 
representation

Dropout
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Randomly zero out hidden units.

Prevents network from relying too much on spurious correlations 
between different hidden units.

Can be understood as averaging over an exponential ensemble of 
subnetworks. This averaging smooths the function, thereby reducing 
the effective capacity of the network.

Dropout
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Normalization layers

101

ReLUNorm



ReLUNorm

Normalization layers
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ReLUNorm

Normalization layers
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ReLUNorm

Normalization layers
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Keep track of mean and variance of a unit (or a population of units) over time.

Standardize unit activations by subtracting mean and dividing by 
variance.

Squashes units into a standard range, avoiding overflow.

Also achieves invariance to mean and variance of the training signal.

Both these properties reduce the effective capacity of the model, i.e. 
regularize the model.

Normalization layers
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[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. a single hidden unit’s pattern of activation over training 
examples (a batch of examples).

Normalization layers
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[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units 
(neurons) on this layer (c).

ReLUNorm

Normalization layers
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[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units 
(neurons) on this layer (c) that process this particular location (h,w) in the image.

Normalization layers
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[Figure from Wu & He, arXiv 2018]

Might as well…

Normalization layers
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z

z

Layer L

Input

• Deep nets transform datapoints, layer by layer

• Each layer is a different representation of the data

• We call these representations embeddings

Deep nets are data transformers
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Two different ways to represent a function
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Two different ways to represent a function
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Data transformations for a variety of neural net layers
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Mapping 2DWiring graph Equation Mapping 1D

Activations Parameters
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Wiring graph Equation Mapping Matrix

N+1

M

Activations Parameters
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z

Training iteration

logits class probabilites

relu softmax
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logits class probabilites

relu softmax

z
Training data

Training iteration 117



z

Training iteration

logits class probabilites

relu softmax
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z

Training iteration 119



z
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Training iteration
125
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Layer 1 representation

[DeCAF, Donahue, Jia, et al. 2013]

[Visualization technique : t-sne, van der Maaten & Hinton, 2008]

Layer 6 representation
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Optimization
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x

Gradient descent
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learning rate

One iteration of gradient descent:

Gradient descent
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Optimization

• What’s the knowledge we have about J?

• We can evaluate

• We can evaluate          and     

• We can evaluate         ,              , and     

Black box optimization

First order optimization

Gradient

Second order optimization

Hessian

Params
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Loss

Loss

Loss

…

Batch (parallel) processing
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Stochastic gradient descent (SGD)
• Want to minimize overall loss function J, which is sum of individual losses over each 

example.

• In Stochastic gradient descent, compute gradient on sub-set (batch) of data.

If batchsize=1 then θ is updated after each example.

If batchsize=N (full set) then this is standard gradient descent.

• Gradient direction is noisy, relative to average over all examples (standard gradient 
descent).

• Advantages

• Faster: approximate total gradient with small sample

• Implicit regularizer

• Disadvantages

• High variance, unstable updates
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Momentum
• Basic idea: like a ball rolling down a hill, we should build up 

speed so as to make faster progress when “on a roll”

• Can dampen oscillations in SGD updates

• Common in popular variants of SGD

• Nesterov’s method

• RMSProp

• Adam
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[https://distill.pub/2017/momentum/]
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[http://ruder.io/optimizing-gradient-descent/]

Comparison of gradient descent variants

136

http://ruder.io/optimizing-gradient-descent/


Backpropagation
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…
…

(output)

(input)

Forward pass
• Consider model with     layers. Layer    has 

vector of weights

• Forward pass: takes input           and 
passes it through each layer      :

• Output of layer    is      . 

• Network output (top layer) is       .
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• Loss function compares         to    .
• Overall energy is the sum of the cost over all 

training examples:

…
…

(output)

(input)

• Consider model with     layers. Layer    has 
vector of weights

• Forward pass: takes input           and 
passes it through each layer      :

• Output of layer    is      . 

• Network output (top layer) is       .

Forward pass
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Gradient descent
• We need to compute gradients of the cost with respect to model 

parameters        .

• By design, each layer is differentiable with respect to its parameters 
and input.

140



Computing gradients
To compute the gradients, we could start by writing the 

full energy J as a function of the network parameters.

And then compute the partial derivatives… instead, we 
can use the chain rule to derive a compact algorithm:  
backpropagation

…
…
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Computing gradients
The energy J is the sum of the losses 

associated to each training example

Its gradient with respect to each of the network’s 
parameters w is:

is how much J varies when the parameter w is varied.
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We could write the loss function to get the gradients as:

If we compute the gradient with respect to the parameters of the last layer 
(output layer) W(L), using the chain rule:

(How much the cost changes when we change W(L) is the product between how much 
the loss changes when we change the output of the last layer and how much the 
output changes when we change the layer parameters.)

Computing gradients

143



If we compute the gradient with respect to the parameters of 
the last layer (output layer) W(L), using the chain rule:

Will depend on the 
layer structure and
non-linearity.

For example, for an Euclidean loss:

The gradient is:

Computing gradients: loss layer
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We could write the full loss function to get the gradients:

If we compute the gradient with respect to wi, using the chain rule:

And this can be
computed iteratively!

This is easy.

Computing gradients: layer
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Gradient 
layer l

Gradient 
layer l-1

If we have the value of           we can compute the gradient at the 
layer below as: 

Backpropagation
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Hidden layer   

Forward
pass

• To compute the output, we need:

Backward
pass

• Layer    has two inputs (during training)

• We compute the outputs

• To compute the weight update, we need:

147

Backpropagation — Goal: to update parameters of layer 



• We compute the outputs

— Goal: to update parameters of layer 

• Layer    has two inputs (during training)

• The weight update equation is:

Hidden layer   

Forward
pass

Backward
pass

(sum over all training 
examples to get J)

148

Backpropagation



…
…

(output)

(input)

Backpropagation Summary
• Forward pass: for each training example, 

compute the outputs for all layers:

• Backwards pass: compute loss derivatives 
iteratively from top to bottom:

• Compute gradients w.r.t. weights, and 
update weights: 

…
…
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Differentiable programming

An emerging term for general models with 
these properties is differentiable 
programming.

Deep nets are popular for a few reasons:
1. High capacity
2. Easy to optimize (differentiable)
3. Compositional “block based 

programming”
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Deep learning Differentiable programming

Differentiable programming
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[Figure from “Neural Module Networks”,  Andreas et al. 2017]

Differentiable programming

152
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Convolutional
Neural Networks



Convolutional Neural Networks
LeCun et al. 1989

Neural network with specialized connectivity

Tailored to processing natural signals with a grid topology (e.g., images).
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“Fish”Classifier

Image classification

image x label y
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Photo credit: Fredo Durand
156



157



“Bird”Classifier
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“Bird”Classifier Bird
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“Sky”Classifier Sky

Bird
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Sky

Bird

Sky

Sky

SkySky

Sky

Sky

Sky

SkySky

Sky

Sky

Sky

SkySky

Bird

Sky

Sky

Sky

Bird

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

BirdBirdBird

SkySkySky
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“Sky”

“Sky”

“Bird”

“Bird”

What's the object class of the center pixel?
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“Sky”

“Sky”

“Bird”

“Bird”

What's the object class of the center pixel?

Training data

…

“Bird”

“Bird”

“Sky”
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This problem is called semantic segmentation

(Colors represent one-hot codes)
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“Sky”

“Sky”

“Bird”

“Bird”

What’s the object class of the center pixel?

Translation invariance: process 
each patch in the same way.

An equivariant mapping:
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W computes a weighted sum of all pixels in the patch

W is a convolutional kernel applied to the full image!

168



filter

Convolution
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Fully-connected (fc) layer

Fully-connected network
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Often, we assume output is a 
local function of input.

If we use the same weights 
(weight sharing) to compute 
each local function, we get a 
convolutional neural network.

Locally connected network
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Conv layer

Often, we assume output is a 
local function of input.

If we use the same weights 
(weight sharing) to compute 
each local function, we get a 
convolutional neural network.

Convolutional neural network
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Often, we assume output is a 
local function of input.

If we use the same weights 
(weight sharing) to compute 
each local function, we get a 
convolutional neural network.

Conv layer

Weight sharing
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A linear function f can be written 
as a matrix multiplication:

y x 𝑦 𝑛 = ∑
!"#

$%&
ℎ 𝑛, 𝑘 𝑥 𝑘

𝐲 = 𝑓(𝐱)

…
…

It can also be represented as a fully 
connected linear neural network

ℎ 𝑛, 𝑘 ℎ 𝑛, 𝑘

ℎ 𝑛, 𝑘

Linear system:

Is the strength of the connection
between x[k] and y[n]

n indexes rows,
k indexes columns



A linear shift invariant (LSI) 
function f can be written 
as a matrix multiplication:

y x

It can also be represented as a 
convolutional layer of neural net:

ℎ 𝑛 − 𝑘 Is the strength of the connection
between x[k] and y[n]

ℎ −1

ℎ 0

ℎ 1

ℎ −1

ℎ 0

ℎ 1

ℎ −1
ℎ 0

ℎ 1

ℎ 𝑛 − 𝑘

𝑦 𝑛 = ∑
!"#$

$
ℎ 𝑘 𝑥 𝑛 − 𝑘

Convolution

n indexes rows,
k indexes columns



Toeplitz matrix

e.g., pixel image

• Constrained linear layer (infinitely strong regularization)

• Fewer parameters —> easier to learn, less overfitting
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Conv layers can be applied to arbitrarily-sized inputs
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Five views on convolutional layers
1. Equivariant with translation (stationarity)

2. Patch processing (Markov assumption)

3. Image filter

4. Parameter sharing 

5. A way to process variable-sized tensors

180



What if we have color?
(aka multiple input channels?)



Conv layer

Multiple channels

182



Conv layer

Multiple channels
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Conv layer

Multiple channels

184

… ……



[Figure modified from Andrea Vedaldi]

Input features A bank of 2 filters
2-dimensional output 

feature maps
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Image source: https://stackoverflow.com/questions/45678473/convolution-neural-networks-all-feature-maps-are-blackpixel-value-is-0

• Each layer can be thought of as a set of C feature maps aka channels
• Each feature map is an NxM image 

Feature maps



…

…

Filter Bank with 
3x3 filters

128

128

3 96

128

128

How many parameters does each filter have?

(a) 9       (b) 27     (c) 96     (d) 864

Multiple channels: Example



…

…

Filter Bank with 
3x3 filters

128

128

3 96

128

128

How many filters are in the bank?

(a) 3       (b) 27     (c) 96     (d) can’t say

Multiple channels: Example



When mapping from

using an filter of spatial extent 

Number of parameters per filter:

Number of filters:

Filter sizes



We need translation and 
scale invariance

Pooling and downsampling



Image pyramids



1/2

1/2

1/2

1/2

Gaussian Pyramid



Gaussian Pyr Laplacian Pyr

How can we use multi-scale modeling in Convnets?

Multiscale representations are great!



𝑥=
Steerable Pyramid



Filter Pool

Max pooling

Pooling

195



Filter Pool

Max pooling

Mean pooling

Pooling
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Pooling – Why?
Pooling across spatial locations achieves 
stability w.r.t. small translations:

197



large response 
regardless of exact 
position of edge

Pooling – Why?
Pooling across spatial locations achieves 
stability w.r.t. small translations:

198



Pooling across spatial locations achieves 
stability w.r.t. small translations:

Pooling – Why?

199



[“Unreasonable effectiveness of Deep Features as a Perceptual Metric”, Zhang et al. 2018]

CNNs are stable w.r.t. diffeomorphisms

200



Pooling across feature channels (filter outputs) 
can achieve other kinds of invariances:

large 
response for 

any edge, 
regardless of 
its orientation

[Derived from slide by Andrea Vedaldi]

Pooling – Why?

201



“clown fish”

Fil
te

r
ReL

U
Poo

l

…

Clas
sif

y

Computation in a neural net
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Filter Pool and downsample

Downsampling

203



Filter Downsample

Downsampling

204



Conv layer

Stride 2 Strided convolutions combine 
convolution and downsampling
into a single operation.

Strided convolution
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“clown fish”

Fil
te

r
ReL

U

Dow
ns

am
ple

…

Clas
sif

y

Computation in a neural net
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Receptive fields

207



3x1 Filter
Pool and 

downsample by 2

RF = RF + floor(3/2)*2

kernel size

RF = RF*2

scale factor

Pool and 
downsample by 2

RF = RF*2

Bird

Sky

Sky

Sky

Receptive fields

208



[http://fomoro.com/tools/receptive-fields/index.html]
209

http://fomoro.com/tools/receptive-fields/index.html


[http://6.869.csail.mit.edu/fa18/notes/simoncelli2005.pdf]

CNNs – Why?

210

http://6.869.csail.mit.edu/fa18/notes/simoncelli2005.pdf


Statistical dependences between pixels decay as a power law of distance 
between the pixels.

It is therefore often sufficient to model local dependences only. —> Convolution

More generally, we should allocate parameters that model dependences in 
proportion to the strength of those dependences. —> Multiscale, hierarchical 
representations

[For more discussion, see “Why does Deep and Cheap Learning Work So Well?”, Lin et al. 2017]

CNNs – Why?

212



Capturing long-range dependences:

CNNs – Why?

213



Alexnet — [Krizhevsky et al. NIPS 2012]

[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX 
POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 
384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at 
stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) 214



What filters are learned?

215



A B

C D

What filters are learned?

216



Get to know your units

fx

fy

11x11 convolution kernel
(3 color channels)
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Get to know your units

fx

fy
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Get to know your units

fx

fy
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Get to know your units

fx

fy
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Get to know your units

fx

fy
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Get to know your units

fx

fy
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Get to know your units

fx

fy
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Get to know your units

96 Units in conv1
224



Gabor wavelets

u0=0 U0=0.1 U0=0.2
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Comparing Human and Machine Perception

227
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, 1
98
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Deep Neural Networks for Visual 
Recognition

2012: AlexNet
5 conv. layers

Error: 15.3%

2014: VGG
16 conv. layers

Error: 8.5%

2015: GoogLeNet
22 conv. layers

Error: 7.8%

2016: ResNet
>100 conv. layers

Error: 4.4%

229



2012: AlexNet
5 conv. layers

Error: 15.3%

230



2014: VGG
16 conv. layers

Small convolutional kernels: 3x3
ReLu non-linearities
>100 million parameters.

https://arxiv.org/pdf/1409.1556.pdf

Softmax

Error: 8.5% 231



Chaining convolutions
3x3

25 coefficients, but only
18 degrees of freedom

3x3

=

5x5

=

9 coefficients, but only
6 degrees of freedom.
Only separable filters… would this be enough? 232



a 0 b 0 c

0 0 0 0 0

d 0 e 0 f

0 0 0 0 0

g 0 h 0 i

=

3x3
5x5 7x7

49 coefficients
18 degrees of freedom

What is lost?

25 coefficients
9 degrees of freedom

[https://arxiv.org/pdf/1511.07122.pdf]

Dilated convolutions

233

https://arxiv.org/pdf/1511.07122.pdf


[https://arxiv.org/pdf/1511.07122.pdf]
234

https://arxiv.org/pdf/1511.07122.pdf


2016: ResNet
>100 conv. layers

Error: 4.4%

https://arxiv.org/pdf/1512.03385.pdf
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W x

If output has a different size:If output has same size as input:

236



[Derived from slide by Marc’Aurelio Ranzato]

• Check gradients numerically by finite differences 
• Visualize hidden activations — should be uncorrelated and high variance

Good training: hidden units are sparse across samples and across features.

Other good things to know
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[Derived from slide by Marc’Aurelio Ranzato]

• Check gradients numerically by finite differences 
• Visualize hidden activations — should be uncorrelated and high variance

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

Other good things to know

238



[Derived from slide by Marc’Aurelio Ranzato]

• Check gradients numerically by finite differences 
• Visualize hidden activations — should be uncorrelated and high variance
• Visualize filters

Good training: learned filters exhibit structure and are uncorrelated.

Other good things to know

239



ReLUNorm

Normalization layers

240



Loss

Loss

Loss

…

Batch processing

241



"Tensor flow"

242



[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. a single hidden unit’s pattern of activation over training 
examples (a batch of examples).

ReLUNorm

Normalization layers

243



[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units 
(neurons) on this layer (c).

Normalization layers

244



[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units 
(neurons) on this layer (c) that process this particular location (h,w) in the image.

Normalization layers

245



[Figure from Wu & He, arXiv 2018]

Might as well…

Normalization layers

246
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Applications in 
Computational Photography



Image Denoising

248

Key idea: Residual learning

(Zhang et al., IEEE TIP 2017)



Image Denoising

249

Clean image = noisy image – estimated noise

(Zhang et al., IEEE TIP 2017)



Image Denoising

250(Zhang et al., IEEE TIP 2017)



Image Denoising

251

No fully connected layers - can be applied to any input size

(Zhang et al., IEEE TIP 2017)



Image Denoising

252(Zhang et al., IEEE TIP 2017)



Image Denoising

253(Zhang et al., IEEE TIP 2017)



Image Denoising

254

Key ideas: 
• Perform denoising in RAW domain considering a burst of images
• Generates a stack of per-pixel filter kernels that jointly aligns, averages, and 

denoises a burst of images. (Mildenhall et al., CVPR 2018

Ŷ

convolution layer average pooling layer

bilinear upsampling layerskip connection

64
128

256
512 512 512

256
K2N

∗

∗

∗

∗

X1...N
Per-pixel
Kernels

X1...N , σ̂p

Input burst
and noise estimate

+

Figure 3: Our KPN architecture for burst denoising is based on the encoder-decoder structure in [19], which outputs per-pixel
feature vectors. These vectors are then reshaped into a set of spatially-varying kernels that are applied to the input burst.

single output channel, the KPN has K2N output channels,
which is reshaped into a stack of N K×K linear filters at
each pixel. The value at each pixel p in our output Ŷ is

Ŷ p =
1

N

N
∑

i=1

〈

fp
i , V

p(Xi)
〉

, (2)

where V p(Xi) is the K×K neighborhood of pixel p in im-
age Xi and fp

i is its corresponding kernel. Ŷ is the result
of applying a spatially varying kernel to each image (a dot
product) then computing the mean over time. We will also
use the shorthand Ŷ = 1

N

∑N
i=1

fi(Xi) to denote comput-
ing the two dimensional output image as a whole. In our
experiments, K = 5 and N = 8.

In addition to the raw burst, the network takes a per-pixel
estimate of the standard deviation of the signal as input,
similar to Gharbi et al. [7]. We estimate the noise at each
pixel p to be

σ̂p =
√

σ2
r + σs max(xp, 0) (3)

where xp is the intensity of pixel p in the first image of the
burst. This noise estimate is necessarily approximate be-
cause we are substituting the observed intensity xp for the
true intensity yp. We assume σr and σs are known. The
benefits and tradeoffs of providing the noise level to the net-
work are discussed in Section 5.3.

Unlike Bako et al. [2] we do not normalize the predicted
filters with a softmax, thereby allowing predicted kernels to
have negative values. We also found softmax normalization
to lead to unstable gradients during training.

4.1. Basic loss function

Our basic loss is a weighted average of L2 distance on
pixel intensities and L1 distance on pixel gradients as com-
pared to the ground truth image. We apply the loss after

restoring the white level to 1 and applying the sRGB trans-
fer function for gamma correction, which produces a more
perceptually relevant estimate. Computing the loss without
gamma correction overemphasizes errors in the highlights
and produces overly blurry or patchy shadows.

Our basic loss on an output image patch Ŷ and its ground
truth image patch Y ∗ is

"(Ŷ , Y ∗) = λ2

∥

∥

∥
Γ(Ŷ )− Γ(Y ∗)

∥

∥

∥

2

2

+ λ1

∥

∥

∥
∇Γ(Ŷ )−∇Γ(Y ∗)

∥

∥

∥

1

.

(4)
Here ∇ is the finite difference operator that convolves its
input with [−1, 1] and [−1, 1]T, and λ2 and λ1 are fixed
constants (both set to 1 in our experiments). Γ is the sRGB
transfer function [23]:

Γ(X) =

{

12.92X, X ≤ 0.0031308

(1 + a)X1/2.4 − a, X > 0.0031308

a = 0.055 (5)

This choice of transfer function was necessary for success-
ful gradient-based optimization. We could not simply apply
the straightforward gamma correction function Xγ because
its gradient approaches infinity as X approaches 0 (which
can cause exploding gradients during optimization) and is
undefined for negative values of X (which we encounter
throughout training due to the negative values in the input
after black level subtraction, and because the sign of model
output is unconstrained).

4.2. Annealed loss term

Minimizing our loss "(Ŷ , Y ∗) with respect to the KPN
model weights is straightforward, as our loss and all model
components are differentiable. However, when training
with just "(Ŷ , Y ∗) as the loss function, we find that our
network rapidly converges to a local minimum where only
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Image Denoising

255(Mildenhall et al., CVPR 2018

(a) σ′
= σ̂p/4 (b) σ′

= σ̂p/2 (c) σ′
= σ̂p (d) σ′

= 2σ̂p (e) σ′
= 4σ̂p

Figure 7: Because our model takes the expected noise level of the image being denoised as input, it is straightforward to
analyze its behavior by varying the input noise with a fixed input burst. In Figs. 7a through 7e we pass our KPN model the
same input burst images but with differing scalar multiples of the actual estimated noise level σ̂p (see Eq. 3). We visualize
the resulting output images (top) and the mean over the two image dimensions of the predicted filter kernels (bottom) for
each of the 8 frames in the burst. When the noise level is understated (a-b), the denoising is conservative and the predicted
filter stack becomes a delta function on the reference frame, producing an output image identical to the base framet. When
the noise level is overstated (d-e), the spatial support of the filters widens, the filters for alternate frames strengthen, and the
output image becomes smoother.

(a) Reference frame (b) Burst average (c) HDR+ [8]

(d) Non-local means [3] (e) VBM4D [17] (f) Our KPN model

Figure 8: Results on a real handheld image burst. While most methods achieve reasonable denoising performance in brighter
regions (top inset), both NLM and VBM4D fail on deep shadows (bottom inset). The foreground pianist moves significantly
over the course of the burst and simple averaging blurs away details. Conventional techniques that robustly average frames
bias the output towards the reference frame but still retain some noise. Our technique (f) recovers the hand (middle inset)
while removing more noise than the baseline techniques, without adding artifacts.
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Image Denoising

256(Mildenhall et al., CVPR 2018

(a) Reference (b) Average (c) HDR+ (d) NLM (e) VBM4D (f) Ours (KPN)Reference frame

Figure 1: A qualitative evaluation of our model on real image bursts from a handheld camera in a low-light environment.
The reference frame from the input burst (a) is sharp, but noisy. Noise can be reduced by simply averaging a burst of similar
images (b), but this can fail in the presence of motion (see Figure 8). Our approach (f) learns to use the information present
in the entire burst to denoise a single frame, producing lower noise and avoiding artifacts compared to baseline techniques (c
– e). See the supplement for full resolution images and more examples.

have been retargeted towards the task of denoising a burst
of noisy images captured from commodity mobile phones,
with an emphasis on energy efficiency and speed [8, 16].
These approaches first align image patches to within a few
pixels and then perform joint denoising by robust averag-
ing (such as Wiener filtering). Another line of work has
focused on achieving high quality by combining multiple
image formation steps with a single linear operator and us-
ing modern optimization techniques to solve the associated
inverse problem [11, 10]. These approaches generalize to
multiple image denoising but require calculating alignment
as part of the forward model.

The success of deep learning has yielded a number of
neural network approaches to multi-image denoising [29,
27], in addition to a wide range of similar tasks such as joint
denoising and demosaicking [7], deblurring [24], and su-
perresolution [25]. Similar in spirit to our method, Kernel-
Predicting Networks [2] denoise Monte Carlo renderings
with a network that generates a filter for every pixel in
the desired output, which constrains the output space and
thereby prevents artifacts. Similar ideas have been applied
successfully to both video interpolation [18, 19] and video
prediction [6, 15, 28, 5], where applying predicted optical
flow vectors or filters to the input image data helps prevent
the blurry outputs often produced by direct pixel synthesis
networks.

3. Problem specification

Our goal is to produce a single clean image from a noisy
burst of N images captured by a handheld camera. Fol-
lowing the design of recent work [8], we select one image
X1 in the burst as the “reference” and denoise it with the
help of “alternate” frames X2, . . . , XN . It is not necessary
for X1 to be the first image acquired. All input images
are in the raw linear domain to avoid losing signal due to
the post-processing performed between capture and display
(e.g., demosaicking, sharpening, tone mapping, and com-
pression). Creating training examples for this task requires
careful consideration of the characteristics of raw sensor
data.

3.1. Characteristics of raw sensor data

Camera sensors output raw data in a linear color space,
where pixel measurements are proportional to the number
of photoelectrons collected. The primary sources of noise
are shot noise, a Poisson process with variance equal to the
signal level, and read noise, an approximately Gaussian pro-
cess caused by a variety of sensor readout effects. These ef-
fects are well-modeled by a signal-dependent Gaussian dis-
tribution [9]:

xp ∼ N
(

yp,σ
2

r + σsyp
)

(1)

where xp is a noisy measurement of the true intensity yp
at pixel p. The noise parameters σr and σs are fixed for
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Image Deblurring

257

Key idea: Multi-scale processing, i.e., use image pyramid to process and deblur

(Nah et al., CVPR 2017)



Image Deblurring

258(Nah et al., CVPR 2017)

�D� �E� �F�

Figure 1. (a) Input blurry image. (b) Result of Sun et al. [26]. (c) Our deblurring result. Our results show clear object boundaries without

artifacts.

Therefore, all the existing methods still have many prob-
lems before they could be generalized and used in practice.
These are mainly due to the use of simple and unrealis-
tic blur kernel models. Thus, to solve those problems, in
this work, we propose a novel end-to-end deep learning ap-
proach for dynamic scene deblurring.

First, we propose a multi-scale CNN that directly re-
stores latent images without assuming any restricted blur
kernel model. Especially, the multi-scale architecture is
designed to mimic conventional coarse-to-fine optimization
methods. Unlike other approaches, our method does not es-
timate explicit blur kernels. Accordingly, our method is free
from artifacts that arise from kernel estimation errors. Sec-
ond, we train the proposed model with a multi-scale loss
that is appropriate for coarse-to-fine architecture that en-
hances convergence greatly. In addition, we further improve
the results by employing adversarial loss [9]. Third, we pro-
pose a new realistic blurry image dataset with ground truth
sharp images. To obtain kernel model-free dataset for train-
ing, we employ the dataset acquisition method introduced
in [17]. As the blurring process can be modeled by the in-
tegration of sharp images during shutter time [17, 21, 16],
we captured a sequence of sharp frames of a dynamic scene
with a high-speed camera and averaged them to generate a
blurry image by considering gamma correction.

By training with the proposed dataset and adding proper
augmentation, our model can handle general local blur ker-
nel implicitly. As the loss term optimizes the result to
resemble the ground truth, it even restores occluded re-
gions where blur kernel is extremely complex as shown in
Fig. 1. We trained our model with millions of pairs of image
patches and achieved significant improvements in dynamic
scene deblurring. Extensive experimental results demon-
strate that the performance of the proposed method is far

superior to those of the state-of-the-art dynamic scene de-
blurring methods in both qualitative and quantitative evalu-
ations.

1.1. Related Works

There are several approaches that employed CNNs for
deblurring [29, 26, 25, 1].

Xu et al. [29] proposed an image deconvolution CNN to
deblur a blurry image in a non-blind setting. They built a
network based on the separable kernel property that the (in-
verse) blur kernel can be decomposed into a small number
of significant filters. Additionally, they incorporated the de-
noising network [7] to reduce visual artifacts such as noise
and color saturation by concatenating the module at the end
of their proposed network.

On the other hand, Schuler et al. [25] proposed a blind
deblurring method with CNN. Their proposed network
mimics conventional optimization-based deblurring meth-
ods and iterates the feature extraction, kernel estimation,
and the latent image estimation steps in a coarse-to-fine
manner. To obtain pairs of sharp and blurry images for net-
work training, they generated uniform blur kernels using a
Gaussian process and synthesized lots of blurry images by
convolving them to the sharp images collected from the Im-
ageNet dataset [3]. However, they reported performance
limits for large blurs due to their suboptimal architecture.

Similarly to the work of Couzinie-Devy et al. [2], Sun
et al. [26] proposed a sequential deblurring approach. First,
they generated pairs of blurry and sharp patches with 73
candidate blur kernels. Next, they trained classification
CNN to measure the likelihood of a specific blur kernel of
a local patch. And then smoothly varying blur kernel is ob-
tained by optimizing an energy model that is composed of
the CNN likelihoods and smoothness priors. Final latent
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Learned ISP

260

Key idea: Learn a convnet to enhance extremely low-light images
(Chen et al., CVPR 2018)

UNet



Learned ISP

261

Trained on short-exposure (noisy) / long-exposure image pairs
(Chen et al., CVPR 2018)



Learned ISP
• Key ideas:

1. A frame-level 
enhancement network 
that works in a coarse-
to-fine manner

2. Extension of this model 
to a burst of dark 
images

26
2

Coarse Network

Burst Network

Fine Network

(Karadeniz et al., IEEE TIP 2021)



Learned ISP

Noisy input

26
3



Karadeniz et al. (single) Chen et al., 2018
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Learned ISP



26
5

Traditional pipeline

Learned ISP
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Traditional pipeline + Scaling

Learned ISP



Chen et al., 2018 (Ensemble)
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Learned ISP



Karadeniz et al. (Burst)
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Learned ISP



Ground truth
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Learned ISP



Learned ISP

270

Key idea: deep neural networks as a controllable camera simulator to synthesize raw image data 
under different camera settings, including exposure time, ISO, and aperture.

(Ouyang et al., CVPR 2021)
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Figure 2. Our simulator synthesizes images under different camera settings based on three modules: exposure module, noise module, and
aperture module. The exposure module applies a linear transformation on the input and output camera settings, and thus bringing the
brightness of input and output raw to the same level. Noise module takes noise level map of input raw as additional input channels and
aims to remove the noise. The aperture module utilizes the input and output aperture parameters to simulate the side effect caused by the
aperture. Finally, we adopt the NLF [16] model to model the noise distribution under the output camera setting.

empirically find that using residual I2 � Iexp is more ef-
fective in learning the high-frequency information. L1 loss
||Irs � (I2 � Iexp)||1 is adopted for this module. We add
back Iexp to the learned residual Irs for retrieving the final
output Ins in this stage. When training this stage, we adopt
a special pair selection strategy to ensure that the output raw
data contains little noise.

3.3. Aperture module
Increasing aperture size not only brightens the images

but also enlarges the defocus blur because it shallows the
depth-of-field. Recovering details from defocus blur highly
depend on scene content. However, its inverse direction,
which is also known as defocus magnification, is learnable
by enhancing only the blurry regions. Our aperture model
is designed to simulate the blur circle according to the new
aperture settings. We adopt an adaptive attention module, as
shown in Fig. 3, which calibrates the features by consider-
ing spatial attention and channel attention at the same time.
Uniquely, this module takes the input and output aperture
f-number n1 and n2 to adjust the parameters of the normal-

ization layer. The adaptive aperture layer is formulated as:

A(x) =(w�[n1, n2] + b�)

✓
x� µ(x)

�(x)

◆
+ (wµ[n1, n2] + bµ),

(7)

where w� , wµ, b� and bµ are parameters to be learnt for
linear transformations. µ and � are mean and variance re-
spectively. ”[ ]” denotes the concatenation of f-numbers. x
is the instance in the feature maps.

Since we built adaptive attention module on a U-net ar-
chitecture, the inputs of the adaptive attention module are
original feature maps Fl 2 RHl⇥Wl⇥Cl and gating signal
Fr 2 RHr⇥Wr⇥Cr . Utilizing the above adaptive aperture
layer, we can design the spatial and channel-wise attention
in our case.

Spatial attention module explores the inter-pixels rela-
tionships in feature maps Fl and Fr, and computes an atten-
tion map �s to rescale feature maps Fl. We first transform
Fl and Fr independently with a 1 ⇥ 1 convolutional layer
and an aperture layer. After a ReLU activation on the addi-
tion of the transformed feature maps, another 1 ⇥ 1 convo-
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Input PC DL Ours Ground Truth

Figure 5. Comparison with different methods. Simple parameter concatenation [8] fails to generate natural images. Decouple learning [11]
can generate correct illuminance level but with incorrect color. Our method achieves the most similar result to the ground truth image.
Zoom-in to view details.
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Figure 6. Cross-dataset validation on the Canon 70D dataset with
model trained on the Nikon Z6 dataset. Zoom-in to view details.

then PSNR and SSIM in step NS can be worse than those
of step EXP due to the denoising function of the noise mod-
ule. More analysis on specific simulation direction (e.g.,
from low to high ISO) can be found in the supplement.

4.5. Cross-dataset validation
We conduct a cross-dataset evaluation to validate the

generalization ability of the proposed model. We simu-
late Canon 70D raw data using the model trained on the
Nikon Z6 dataset. Fig. 6 shows that our model generates
stable simulation results. Table 1 shows the quantitative re-
sults, which implies that baseline methods suffer from se-
vere degradation when testing on different sensors.

5. Applications

Large-aperture enhancement. The most straightforward
application of our proposed structure is to magnify the de-
focus blur. As shown in Fig. 7, our model can correctly
enhance the blurry region given a new aperture setting. Ex-
posure is adjusted to keep the brightness unchanged. Com-
pared with results from [33], our model generates blurry
content that is more consistent with the input image.
HDR images. As our simulator can generate images with
other exposure settings, a very natural application is to gen-
erate HDR images. Our HDR pipeline is straightforward:
we first simulate multiple output raw images from the in-
put raw using a group of camera exposure settings. We set
ISO to be as small as possible for reducing the image noise
and calculate the exposure time by shifting original expo-
sure in every 0.5Ev stop in the range [�4Ev, 4Ev]. The
output aperture keeps unchanged. We then convert raw data
to sRGB-space images and fuse them using the approach
proposed by [24] to generate HDR output. In this pipeline,
we can fully exploit the information at each exposure level
and reduce the noise introduced when brightening dark re-
gions. As Fig. 8 shows, our fused output brings back the
missing details and appears more attractive than those gen-
erated by recent works [21, 18].
Auto-exposure mode. Traditional auto-exposure algo-
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Input Exposure Module Noise Module Full Model Ground Truth

Figure 4. Images generated by each module of our simulator. Zoom-in to view details.

PC [8] DL [11] Ours (EXP) Ours (NS) Ours (Full model)

PSNR (Nikon Z6) 18.78 34.34 35.31 35.36 36.10
SSIM (Nikon Z6) 0.542 0.879 0.903 0.911 0.923
PSNR (Canon 70D) 18.96 24.86 33.53 33.49 34.28
SSIM (Canon 70D) 0.413 0.429 0.831 0.837 0.846

Table 1. PSNR and SSIM of different methods and different stages of our model: PC [8], DL [11], EXP (Ours after exposure module), NS
(Ours after noise module), and Full (Our full model).

tasks [8, 19]. In our case, we can easily modify these
approaches to adapt to a raw-to-raw translation task. We
change the input and output of the model proposed in [8] to
unpacked raw images. Other settings, including loss types
and network structures, remain the same. The model takes
the camera input parameters and output parameters settings
as additional input channels. The baselines with and with-
out noise level maps generate similar results.

Decouple learning (DL). Another structure applicable to
our case is DecoupleNet [11]. The model learns parame-
terized image operators by directly associating the operator
parameters with the weights of convolutional layers. Sim-
ilarly, we need to modify the input and output to raw data.
Operator parameters are replaced by input and output cam-
era parameters in our case.

4.4. Image quality evaluation

Fig. 4 visualizes the output of each module of our
method, and Fig. 5 provides a qualitative comparison of the
visual quality of raw data simulated by different methods.
Our simulated raw has higher visual fidelity and fewer ar-
tifacts than the baselines. Without prior knowledge of lens
design, baseline models struggle to figure out the relation-
ship between camera settings and output raw images. As a
result, they generate images with incorrect illuminance and
biased color.

Table 1 shows the quantitative analysis of our model and
baselines trained on the Nikon Dataset. We also evaluate
the average PSNR and SSIM of the generated raw data after
each module. Note that the PSNR and SSIM in step NS do
not show significant improvement to step EXP because they
highly depend on the target settings of the simulator. For in-
stance, if the input raw is noisy and the target is to add noise,
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Figure 3. Our Invertible ISP (InvISP) framework. InvISP is composed of both forward and inverse passes. In the forward pass, the Bayer

RAW is first bilinearly demosaiced and then transformed to an RGB image by a stack of bijective functions {fi}
k
i=0. Our model integrates

a differentiable JPEG simulator to account for compression information lost. During the training time, to invert the ISP, the backward pass

takes a compressed RGB image as input and reverses all the bijective functions and the bilinear demosaicing to obtain the original RAW

image. Note that the backward pass takes real JPEG images as input at test time. We illustrate the details of the invertible block on the

right. r, s, and t are transformations defined in the bijective functions {fi}
k
i=0.

To achieve this, we design a differentiable JPEG simula-
tor by carefully simulating the JPEG compression proce-
dure and replacing the quantization step with differentiable
Fourier transformations.

4. Method

4.1. Invertible Image Signal Processing (InvISP)

We denote the RAW data space as X and sRGB data
space as Y . Our goal is to find the invertible and bijec-
tive function which can map the data point from RAW data
space to sRGB data space, denoted as f : X → Y . To
achieve this, classical neural networks need two separate
networks to approximate X → Y and Y → X mappings re-
spectively, which leads to inaccurate bijective mapping and
may accumulate the error of one mapping into the other. We
take an alternative method and use the affine coupling layers
in [12, 25] to enable invertibility of one single network. We
design our invertible ISP with the compostition of a stack
of invertible and tractable bijective functions {fi}ki=0, i.e.
f = f0 ◦f1 ◦f2 ◦ · · ·◦fk. For a given observed data sample
x, we can derive the transformation to target data sample y

through

y = f0 ◦ f1 ◦ f2 ◦ · · · ◦ fk(x), (1)

x = f−1
k

◦ f−1
k−1

◦ · · · ◦ f−1
0 (y). (2)

The bijective model fi is implemented through affine
coupling layers. In each affine coupling layer, given a D
dimensional input m and d < D, the output n is calculated

as

n1:d = m1:d, (3)

nd+1:D = md+1:D # exp (s (m1:d)) + t (m1:d) , (4)

where s and t represent scale and translation functions from
Rd $→ RD−d, and # is the Hadamard product. Note that the
scale and translation functions are not necessarily invertible,
and thus we realize them by neural networks.

As stated in [12], the coupling layer leaves some input
channels unchanged, which greatly restricts the representa-
tion learning power of this architecture. To alleviate this
problem, we firstly enhance [42] the coupling layer (3) by

n1:d = m1:d + r(md+1:D), (5)

where r can be arbitrary function from RD−d $→ Rd. The
inverse step is easily obtained by

md+1:D = (nd+1:D − t (n1:d))# exp (−s (n1:d)) , (6)

m1:d = n1:d − r(md+1:D). (7)

Next, we utilize the invertible 1 × 1 convolution pro-
posed in [25] as the learnable permutation function to re-
verse the order of channels for the next affine coupling layer.

We remove the spatial checkerboard mask as it brings no
evident performance improvement [25]. We follow the im-
plementation of [10] and disable batch normalization [23]
and weight normalization used in [12]. For our image-to-
image translation task, we directly learn the RAW-to-RGB
mapping without explicitly modeling the latent distribution
to stabilize the training process.
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Figure 4. The curve of our approximation rounding function for

quantization in our differentiable JPEG simulator.

Note that the input size of invertible neural networks
must be identical to the output size. Thus, we take the bilin-
ear demosaiced RAW data as input, which will not destroy
the RAW data quality, and reversing the bilinear demosaic-
ing is trivial [7]. For the affine coupling layer, we split the
input into two parts. We note that although three-channel
input cannot be split evenly, the invertible 1 × 1 convolu-
tion ensures that unchanged components are updated in the
next invertible block. Thus R, G, and B channels are still
treated equally. We also do an online gamma correction
(i.e. without storing on disk) to RAW data to compress the
dynamic range for faster convergence speed.

The forward pass of our InvISP produces the sRGB im-
ages, and the reverse pass aims at recovering realistic RAW
data. We conduct bi-directional training with L1 loss to op-
timize our framework.

L = ||f(x)− y||1 + λ||f−1(y)− x||1, (8)

where λ is the hyper-parameter used to balance the accuracy
between RGB and RAW reconstruction. We set λ to 1 in our
main experiments.

4.2. Differentiable JPEG Simulator

Our goal is to train a robust invertible ISP that can tol-
erate the distortion by JPEG compression to recover accu-
rate RAW. However, the JPEG compression algorithm is not
differentiable, which can not be directly integrated into our
end-to-end framework. Thus, we propose a differentiable
JPEG simulator to enable our network robust to the JPEG
compression through the optimization process. Since en-
tropy encoding is lossless and goes after quantization, we
skip this step and only simulate color space transformation,
DCT, and quantization steps.

To simulate the DCT process, we compute the DCT co-
efficients and split the input into 8 × 8 blocks. Then each
block is multiplied by DCT coefficients to get the DCT map.
In JPEG compression, the DCT map is divided by quanti-
zation tables and rounding to the integer type. Since the

rounding function is not differentiable, we design a differ-
entiable rounding function base on the Fourier series, which
can be defined as:

Q(I) = I −
1

π

K∑

k=1

(−1)k+1

k
sin(2πkI), (9)

where I is the input map after divided by quantization tables
in JPEG compression, and K is used for the tradeoff be-
tween approximation accuracy and computation efficiency.
As K increases, the simulation function is closer to the real
round function, but the running time will also increase. We
empirically set K to 10. The rounding process is illustrated
in Figure 4.

In the decoding phase of JPEG compression, I is mul-
tiplied by the quantization table. The inverse DCT and
color space transformation are then applied to reconstruct
the simulated JPEG images.

Discussion. Differentiable rounding function is widely
used in network quantization research. To fairly prove the
effectiveness of our proposed rounding function, we also
compare with the rounding function in [17], as shown in
Table 1. Our method can achieve a better balance between
RGB rendering and RAW reconstruction.

5. Experiments

5.1. Experimental setup

Datasets. We collect the Canon EOS 5D subset (777 im-
age pairs) and the Nikon D700 subset (590 image paris)
from the MIT-Adobe FiveK dataset [8] as the training and
test data. We train our model for each camera separately.
We randomly split each of the two sets (Canon, Nikon)
into training and test sets with a ratio of 85:15. We use
the LibRaw library to process the RAW images to render
ground-truth sRGB images. In general, LibRaw conducts
most representative ISP steps in modern digital cameras to
render sRGB images, including color space conversion, de-
mosaicing, denoising, white balancing, exposure compen-
sation, gamma compression, and global tone mapping.

Implementation details. We utilize random crop, random
rotation, and random flip as data augmentation to train our
model. We preprocess the raw data using the white bal-
ance parameters provided by camera metadata since esti-
mating white balance directly from raw images is a research
topic in itself [3]. To test the effectiveness of our JPEG
simulator, we store the ground truth RGB into JPEG for-
mat, whose quality is set to 90 (Q=90, most representative
JPEG quality in modern digital cameras). We also conduct
experiments without preprocessing white balance and with
another JPEG quality, whose quantitative results are acces-
sible in the supplement. At test time, we first conduct the
forward pass of our network to render RGB images and save
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Key idea: Use invertible neural networks to design the invertible structure and 
integrate a differentiable JPEG simulator to enhance the network stability to JPEG 
compression. 
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Figure 1. Our ISP model can not only render visually pleasing RGB images but also recover RAW images that are nearly the same as the

original RAW data. The recovered RAW data are valuable for photographers and benefit a number of computer vision tasks such as HDR

reconstruction [32], image retouching [22], and RAW compression. Here, the RAW images are visualized with bilinear demosaicing.

Specifically, we design our model with the composition of
a stack of affine coupling layers and utilize the invertible 1
× 1 convolution as the learnable permutation function be-
tween the coupling layers. Besides, to empower our model
to recover realistic RAW data from JPEG images, we in-
tegrate a differentiable JPEG simulator into our invertible
neural network. We leverage the idea from Fourier transfor-
mation to replace the non-differentiable quantization step
in JPEG compression. Thus, our end-to-end InvISP frame-
work bypasses traditional ISP modules and minimizes the
information loss for the RAW data and RGB image conver-
sion. We bidirectionally train our network to optimize the
RGB and RAW reconstruction process jointly. We experi-
mentally prove that our framework can recover much better
RAW data than state-of-the-art baselines without sacrificing
the RGB reconstruction performance.

To the best of our knowledge, our framework is the
first attempt for RAW data reconstruction from the perspec-
tive of redesigning the camera ISP as an invertible one.
Our method can address the information loss issue in ISP
modules and is robust to the JPEG compression step. We
demonstrate the effectiveness of our method on two DSLR
cameras and show that our method outperforms state-of-
the-art baselines to a large extent. Moreover, we also exhibit
potential applications through RAW data compression, im-
age retouching, and HDR reconstruction.

2. Related Work

RAW Image Reconstruction. Recovering RAW from
sRGB images has been well-studied [36, 31, 2, 7, 44, 30,
29]. Nguyen et al. [31] encode the parameters in ISP into
JPEG metadata with 64KB overhead and use them to re-
construct RAW from JPEG images. Brooks et al. [7] pro-
pose to inverse the ISP pipeline step by step with camera
priors. CIE-XYZ Net [2] proposes to recover RAW from
sRGB images to the camera independent CIE-XYZ space.
CycleISP [44] proposes to model the RGB-RAW-RGB data
conversion cycle for synthesizing RAW from sRGB images.
Unlike previous methods, we aim to fundamentally solve
the RAW reconstruction problem by re-designing the cam-
era ISP into an invertible one.

Image Signal Processing (ISP). Image signal processing
pipeline (ISP) aims at converting raw sensor data to human-
readable RGB images [20, 10, 9, 39, 45, 43, 28, 26, 16].
Heide et al. [20] merge the steps in the traditional ISP
pipeline to avoid the accumulative error. Gharbi et al. [16]
propose a method with end-to-end networks to learn RAW
demosaicing and denoising jointly. Hasinoff et al. [19] pro-
pose a low-light imaging system for mobile devices. Other
works [10, 39] focus on learning low-light enhancement ISP
pipelines with CNNs. Zhang et al. [45] process RAW
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Figure 2. A visualization of our data pipeline and network training procedure. sRGB images from the MIR Flickr dataset [26] are unpro-
cessed, and realistic shot and read noise is added to synthesize noisy raw input images. Noisy images are fed through our denoising neural
network, and the outputs of that network and the noise-free raw images then undergo raw processing before L1 loss is computed. See
Sections 3 and 4 for details.

tations or the labor requirements of these large datasets of
real photographs.

Though it is generally understood that correctly mod-
eling noise during image formation is critical for learning
an effective denoising algorithm [20, 25, 27, 31], a less
well-explored issue is the effect of the image processing
pipeline used to turn raw sensor readings into a finished im-
age. Modern image processing pipelines (well described
in [21]) consist of several steps which transform image in-
tensities, therefore effecting both how input noise is scaled
or modified and how the final rendered image appears as
a function of the raw sensor measurements. In this work
we model and invert these same steps when synthesizing
training data for our model, and demonstrate that doing so
significantly improves denoising performance.

3. Raw Image Pipeline
Modern digital cameras attempt to render a pleasant and

accurate image of the world, similar to that perceived by the
human eye. However, the raw sensor data from a camera
does not yet resemble a photograph, and many processing
stages are required to transform its noisy linear intensities
into their final form. In this section, we describe a conven-
tional image processing pipeline, proceeding from sensor
measurement to a final image. To enable the generation of
realistic synthetic raw data, we also describe how each step
in our pipeline can be inverted. Through this procedure we
are able to turn generic Internet images into training pairs

that well-approximate the Darmstadt Noise Dataset [30],
and generalize well to other raw images. See Figure 2 for
an overview of our unprocessing steps.

3.1. Shot and Read Noise
Though the noise in a processed image may have very

complex characteristics due to nonlinearities and correla-
tion across pixel values, the noise in raw sensor data is
well understood. Sensor noise primarily comes from two
sources: photon arrival statistics (“shot” noise) and impreci-
sion in the readout circuitry (“read” noise) [19]. Shot noise
is a Poisson random variable whose mean is the true light
intensity (measured in photoelectrons). Read noise is an ap-
proximately Gaussian random variable with zero mean and
fixed variance. We can approximate these together as a sin-
gle heteroscedastic Gaussian and treat each observed inten-
sity y as a random variable whose variance is a function of
the true signal x:

y ⇠ N (µ = x, �2 = �read + �shotx). (1)

Parameters �read and �shot are determined by sensor’s ana-
log and digital gains. For some digital gain gd, analog gain
ga, and fixed sensor readout variance �2

r , we have

�read = g2d�2
r , �shot = gdga. (2)

These two gain levels are set by the camera as a direct func-
tion of the ISO light sensitivity level chosen by the user or
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Figure 6. The network structure of our model. Input to the network
is a 4-channel noisy mosaic image concatenated with a 4-channel
noise level map, and output is a 4-channel denoised mosaic image.

noise-free ground truth during training, and shot and read
noise (Section 3.1) is added to create the noisy network in-
put. Our synthetic raw images more closely resemble real
raw intensities, as demonstrated in Figure 5.

4.2. Processing Raw Images

Since raw images ultimately go through an image pro-
cessing pipeline before being viewed, the output images
from our model should also be subject to such a pipeline
before any loss is evaluated. We therefore apply raw pro-
cessing to the output of our model, which in order consists
of applying white balance gains (Section 3.4), naı̈ve bilin-
ear demosaicing (Section 3.2), applying a color correction
matrix to convert from camera RGB to sRGB (Section 3.5),
and gamma compression (Section 3.6). This simplified im-
age processing pipeline matches that used in the Darmstadt
Noise Dataset benchmark [30] and is a good approximation
for general image pipelines. We apply this processing to
the network’s output and to the ground truth noise-free im-
age before computing our loss. Incorporating this pipeline
into training allows the network to reason about how down-
stream processing will impact the desired denoising behav-
ior.

4.3. Architecture

Our denoising network takes as input a noisy raw image
in the Bayer domain and outputs a reduced noise image in
the same domain. As an additional input, we pass the net-
work a per-pixel estimate of the standard deviation of noise
in the input image, based on its shot and read noise param-
eters. This information is concatenated to the input as 4
additional channels—one for each of the R-G-G-B Bayer
planes. We use a U-Net architecture [32] with skip con-
nections between encoder and decoder blocks at the same
scale (see Figure 6 for details), with box downsampling
when encoding, bilinear upsampling when decoding, and
the PReLU [22] activation function. As in [41], instead of
directly predicting a denoised image, our model predicts a
residual that is added back to the input image.

4.4. Training

To create our synthetic training data, we start with the
1 million images of the MIR Flickr extended dataset [26],
setting aside 5% of the dataset for validation and 5% for
testing. We downsample all images by 2⇥ using a Gaussian
kernel (� = 1) to reduce the effect of noise, quantization,
JPEG compression, demosaicing, and other artifacts. We
then take random 128 ⇥ 128 crops of each image, with ran-
dom horizontal and vertical flips for data augmentation. We
synthesize noisy and clean raw training pairs by applying
the unprocessing steps described in Section 4.1. We train
using Adam [23] with a learning rate of 10�4, �1 = 0.9,
�2 = 0.999, ✏ = 10�7, and a batch size of 16. Our mod-
els and ablations are trained to convergence over approxi-
mately 3.5 million steps on a single NVIDIA Tesla P100
GPU, which takes ⇠3 days.

We train two models, one targeting performance on
sRGB error metrics, and another targeting performance on
raw error metrics. For our “sRGB” model the network
output and synthetic ground-truth are both transformed to
sRGB space before computing the loss, as described in Sec-
tion 4.2. Our “Raw” model instead computes the loss di-
rectly between our network output and our raw synthetic
ground-truth, without this processing. For both experiments
we minimize L1 loss between the output and ground-truth
images.

5. Results
To evaluate our technique we use the Darmstadt Noise

Dataset [30], a benchmark of 50 real high-resolution images
where each noisy high-ISO image is paired with a (nearly)
noise-free low-ISO ground-truth image. The Darmstadt
dataset represents a significant improvement upon earlier
benchmarks for denoising, which tended to rely on syn-
thetic data and synthetic (and often unrealistic) noise mod-
els. Additional strengths of the Darmstadt dataset are that
it includes images taken from four different standard con-
sumer cameras of natural “in the wild” scene content, where
the camera metadata has been captured and the camera
noise properties have been carefully calibrated, and where
the image intensities are presented as raw unprocessed lin-
ear intensities. Another valuable property of this dataset
is that evaluation on the dataset is restricted through a care-
fully controlled online submission system: the entire dataset
is the test set, with the ground-truth noise-free images com-
pletely hidden from the public, and the frequency of sub-
missions to the dataset is limited. As a result, overfitting
to the test set of this benchmark is difficult. Though this
approach is common for object recognition [13] and stereo
[35] challenges, it is not common in the context of image
denoising.

The performance of our model on the Darmstadt dataset

(a) Noisy Input (b) Our Model

Figure 7. An image from the HDR+ dataset [21], where we present
(a) the noisy input image and (b) the output of our model, in the
same format as Figure 1. See the supplement for additional results.

CBDNet [18]). Visualizations of our model’s output com-
pared to other methods can be seen in Figure 1 and in the
supplement. Our model’s improved performance appears to
be partly due to the decreased low-frequency chroma arti-
facts in its output compared to our baselines.

To verify that our approach generalizes to other datasets
and devices, we evaluated our denoising method on raw im-
ages from the HDR+ dataset [21]. Results from these eval-
uations are provided in Figure 7 and in the supplemental
material.

Separately from our two primary models of interest, we
present an ablation study of “Our Model (sRGB),” in which
we remove one or more model components. “No CCM,
WB, Gain” indicates that when generating synthetic train-
ing data we did not perform the unprocessing steps of sRGB
to camera RGB CCM inversion, or inverting white balance
and digital gain. “No Tone Mapping, Gamma” indicates
that we did not perform the unprocessing steps of invert-
ing tone mapping or gamma decompression. “No Unpro-
cessing” indicates that we did not perform any unprocess-
ing steps, and “4⇥ bigger” indicates that we quadrupled the
number of channels in each conv layer. “Noise-blind” in-
dicates that the noise level was not provided as input to
the network. “AWGN” indicates that instead of using our
more realistic noise model when synthesizing training data,
we use additive white Gaussian noise with � sampled uni-
formly between 0.001 and 0.15 (the range reported in [30]).
“No Residual Output” indicates that our model architecture
directly predicts the output image, instead of predicting a
residual that is added to the input.

We see from this ablation study that removing any of our
proposed model components reduces quality. Performance
is most sensitive to our modeling of noise, as using Gaus-
sian noise significantly decreases performance. Unprocess-

ing also contributes substantially, especially when evaluated
on sRGB metrics, albeit slightly less than a realistic noise
model. Notably, increasing the network size does not make
up for the omission of unprocessing steps. Our only abla-
tion study that actually removes a component of our neural
network architecture (the residual output block) results in
the smallest decrease in performance.

5.1. Runtimes

Table 1 also includes runtimes for as many models as we
were able to find. Many of these runtimes were produced on
different hardware platforms with different timing conven-
tions, so we detail how these numbers were produced here.
The runtime of our model is 22ms for the 512⇥512 images
of the Darmstadt dataset, using our TensorFlow implemen-
tation running on a single NVIDIA GeForce GTX 1080Ti
GPU, excluding the time taken for data to be transferred to
the GPU. We report the mean over 100 runs. The runtime
for DnCNN is taken from [41], which reports a runtime on
a GPU (Nvidia Titan X) of 60ms for a 512⇥512 image, also
not including GPU memory transfer times. The runtime for
N3Net [31] is taken from that paper, which reports a run-
time of 3.5⇥ that of [41], suggesting a runtime of 210ms.
In [6] they report a runtime of 60 seconds on a 512⇥512
image for a CPU implementation, and note that their run-
time is less than that of KSVD [2], which we note accord-
ingly. The runtime for CBDNet was taken from [18], and
the runtimes for BM3D, TNRD, TWSC, and MCWNNM
were taken from [39]. We were unable to find reported run-
times for the remaining techniques in Table 1, though in
[30] they note that “many of the benchmarked algorithms
are too slow to be applied to megapixel-sized images”. Our
model is the fastest technique by a significant margin: 9⇥
faster than N3Net [31] and 18⇥ faster than CBDnet [18],
the next two best performing techniques after our own.

6. Conclusion
We have presented a technique for “unprocessing”

generic images into data that resembles the raw measure-
ments captured by real camera sensors, by modeling and
inverting each step of a camera’s image processing pipeline.
This allowed us to train a convolutional neural network for
the task of denoising raw image data, where we synthesized
large amounts of realistic noisy/clean paired training data
from abundantly available Internet images. Furthermore, by
incorporating standard image processing operations into the
learning procedure itself, we are able to train a network that
is explicitly aware of how its output will be processed be-
fore it is evaluated. When our resulting learned model is ap-
plied to the Darmstadt Noise Dataset [30] it achieves 14%-
38% lower error rates and 9⇥-18⇥ faster runtimes than the
previous state of the art.
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Abstract

Machine learning techniques work best when the data
used for training resembles the data used for evaluation.
This holds true for learned single-image denoising algo-
rithms, which are applied to real raw camera sensor read-
ings but, due to practical constraints, are often trained on
synthetic image data. Though it is understood that general-
izing from synthetic to real images requires careful consid-
eration of the noise properties of camera sensors, the other
aspects of an image processing pipeline (such as gain, color
correction, and tone mapping) are often overlooked, despite
their significant effect on how raw measurements are trans-
formed into finished images. To address this, we present a
technique to “unprocess” images by inverting each step of
an image processing pipeline, thereby allowing us to syn-
thesize realistic raw sensor measurements from commonly
available Internet photos. We additionally model the rel-
evant components of an image processing pipeline when
evaluating our loss function, which allows training to be
aware of all relevant photometric processing that will oc-
cur after denoising. By unprocessing and processing train-
ing data and model outputs in this way, we are able to train
a simple convolutional neural network that has 14%-38%
lower error rates and is 9⇥-18⇥ faster than the previous
state of the art on the Darmstadt Noise Dataset [30], and
generalizes to sensors outside of that dataset as well.

1. Introduction

Traditional single-image denoising algorithms often an-
alytically model properties of images and the noise they are
designed to remove. In contrast, modern denoising meth-
ods often employ neural networks to learn a mapping from
noisy images to noise-free images. Deep learning is capable
of representing complex properties of images and noise, but
training these models requires large paired datasets. As a re-
sult, most learning-based denoising techniques rely on syn-
thetic training data. Despite significant work on designing
neural networks for denoising, recent benchmarks [3, 30]

(a) Noisy Input, PSNR = 18.76 (b) Ground Truth

(c) N3Net [31], PSNR = 32.42 (d) Our Model, PSNR = 35.35

Figure 1. An image from the Darmstadt Noise Dataset [30], where
we present (a) the noisy input image, (b) the ground truth noise-
free image, (c) the output of the previous state-of-the-art algo-
rithm, and (d) the output of our model. All four images were con-
verted from raw Bayer space to sRGB for visualization. Alongside
each result are three cropped sub-images, rendered with nearest-
neighbor interpolation. See the supplement for additional results.

reveal that deep learning models are often outperformed by
traditional, hand-engineered algorithms when evaluated on
real noisy raw images.
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Machine learning techniques work best when the data
used for training resembles the data used for evaluation.
This holds true for learned single-image denoising algo-
rithms, which are applied to real raw camera sensor read-
ings but, due to practical constraints, are often trained on
synthetic image data. Though it is understood that general-
izing from synthetic to real images requires careful consid-
eration of the noise properties of camera sensors, the other
aspects of an image processing pipeline (such as gain, color
correction, and tone mapping) are often overlooked, despite
their significant effect on how raw measurements are trans-
formed into finished images. To address this, we present a
technique to “unprocess” images by inverting each step of
an image processing pipeline, thereby allowing us to syn-
thesize realistic raw sensor measurements from commonly
available Internet photos. We additionally model the rel-
evant components of an image processing pipeline when
evaluating our loss function, which allows training to be
aware of all relevant photometric processing that will oc-
cur after denoising. By unprocessing and processing train-
ing data and model outputs in this way, we are able to train
a simple convolutional neural network that has 14%-38%
lower error rates and is 9⇥-18⇥ faster than the previous
state of the art on the Darmstadt Noise Dataset [30], and
generalizes to sensors outside of that dataset as well.

1. Introduction

Traditional single-image denoising algorithms often an-
alytically model properties of images and the noise they are
designed to remove. In contrast, modern denoising meth-
ods often employ neural networks to learn a mapping from
noisy images to noise-free images. Deep learning is capable
of representing complex properties of images and noise, but
training these models requires large paired datasets. As a re-
sult, most learning-based denoising techniques rely on syn-
thetic training data. Despite significant work on designing
neural networks for denoising, recent benchmarks [3, 30]

(a) Noisy Input, PSNR = 18.76 (b) Ground Truth

(c) N3Net [31], PSNR = 32.42 (d) Our Model, PSNR = 35.35

Figure 1. An image from the Darmstadt Noise Dataset [30], where
we present (a) the noisy input image, (b) the ground truth noise-
free image, (c) the output of the previous state-of-the-art algo-
rithm, and (d) the output of our model. All four images were con-
verted from raw Bayer space to sRGB for visualization. Alongside
each result are three cropped sub-images, rendered with nearest-
neighbor interpolation. See the supplement for additional results.

reveal that deep learning models are often outperformed by
traditional, hand-engineered algorithms when evaluated on
real noisy raw images.
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FULL-RES PROCESSING

LOW-RES COEFFICIENT PREDICTION

§3.4.1 guidance map

slicing
layer

apply
coefficients

full-res input

pixel-wise
network

§3.1.2 local features

§3.3 VOLFHG�FRHসLFLHQWV

   §3.2 bilateral grid 
RI�FRHসLFLHQWV

§3.1.4 fusion

§3.4.2 full-res output

low-res input §3.1.1 low-level features §3.1.3 global features

Fig. 2. Our new network architecture seeks to perform as much computation as possible at a low resolution, while still capturing high-frequency e�ects at full
image resolution. It consists of two distinct streams operating at di�erent resolutions. The low-resolution stream (top) processes a downsampled version
Ĩ of the input I through several convolutional layers so as to estimate a bilateral grid of a�ine coe�icients A. This low-resolution stream is further split in
two paths to learn both local features Li and global features G i , which are fused (F ) before making the final prediction. The global and local paths share
a common set of low-level features S i . In turn, the high-resolution stream (bo�om) performs a minimal yet critical amount of work: it learns a grayscale
guidance map � used by our new slicing node to upsample the grid of a�ine coe�icients back to full-resolution Ā. These per-pixel local a�ine transformations
are then applied to the full-resolution input, which yields the final output O.

Where i = 1, . . . ,nS indexes the layers, c and c 0 index the layers’
channels, wi is an array of weights for the convolutions, bi is a
vector of biases, and the summation is over �1  x 0,�0  1 (i.e.,
the convolution kernels have 3 ⇥ 3 spatial extent). We use the ReLU
activation function � (·) = max(·, 0) and use zero-padding as the
boundary condition in all convolutions.
These low-level layers progressively reduce the spatial dimen-

sions by a total factor of 2nS . Thus nS has two e�ects: 1) it drives the
spatial downsampling between the low-resolution input Ĩ and the
�nal grid of a�ne coe�cients—the higher nS , the coarser the �nal
grid, and 2) nS controls the complexity of the prediction: deeper
layers have an exponentially larger spatial support and more com-
plex non-linearities (by composition); thus, they can extract more
complex patterns in the input. Figure 3 shows a comparison with a
network in which the low-level layers have been removed, and re-
placed by a hard-coded splatting operation [Chen et al. 2007]. With-
out these layers, the network loses much of its expressive power.
Our architecture, uses nS = 4 low-level layers. Table 1 summarizes
the dimensions of each layer.

3.1.2 Local features path. The last low-level features layer SnS
is then processed by a stack of nL = 2 convolutional layers Li in
the local path (Figure 2, yellow). These layers take the same form as
Equation (1), identifying L0 := SnS , but this time with stride s = 1.
We keep both the spatial resolution and number of features constant
in the local path. Because the resolution is held constant, the spatial
support of the �lters only grows linearly with nL . A deep enough

stack of convolution layers, roughly measured by nS +nL , is critical
to capturing useful semantic features [Krizhevsky et al. 2012]. If a
higher spatial resolution is desired for the �nal grid of coe�cients,
one can reduce nS and increase nL to compensate accordingly, so as
not to reduce the expressiveness of the network. Without the local
path, the predicted coe�cients would lose any notion of spatial
location.

(a) input (b) reference (c) ours (d) fixed splat

Fig. 3. Our low-level convolutional layers are fully learned and can extract
semantic information. Replacing these layers with the standard bilateral
grid spla�ing operation causes the network to lose much of its expressive
power. In this example of our Face brightening operator (a-b), the network
with hardcoded spla�ing (d) cannot detect the face properly because the
grid’s resolution is too low. Instead, it slightly brightens all skintones, as
is visible on the hands. Our progressive downsampling with strided con-
volutions learns the semantic features required to solve this task properly
(c), brightening only the face while darkening the background like in the
reference.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 118. Publication date: July 2017.

Key idea: Learn to imitate a reference operator, work much faster 
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Local Laplacian 37.8 dB

Human retouch 33 dB

Face brightening 38.9 dB

HDR+ 32.7 dB

Style Transfer 25 dB

Photoshop 28.2 dB

input reference reference
(cropped)our output GLসHUHQFHour output

(cropped)
reference

Fig. 14. Our method can learn accurate and fast approximations of a wide variety of image operators, by training on input/output pairs processed by
that operator. These operators can be complicated “black box” image processing pipelines where only a binary is available, such as HDR+ or Photoshop
filters/actions. Some operators, such as face-brightening, requires semantic understanding. Our model is even capable of learning from highly subjective
human-annotated input/output pairs, using the MIT-Adobe FiveK dataset. The di�erence is rescaled to use the full [0, 1] range.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 118. Publication date: July 2017.
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Input LDR Images Aligned LDR Images

HDR Merger
Sec. 3.2 Tonemapper

Final Tonemapped 
HDR Image

Alignment with
Optical Flow

Final HDR Image

Fig. 3. In our approach, we first align the input LDR images using the optical flow method of Liu [2009] to the reference image (medium exposure). We
then use the aligned LDR images as the input to our learning-based HDR merge system to produce a high-quality HDR image which is then tonemapped to
produce the final image.

Our Tonemapped HDR Image Linear Ours Ground Truth
Fig. 4. We compare the result of training our system using the loss func-
tion in Eq. 2 in the linear and tonemapped (indicated as “Ours”) domains.
Tonemapping boosts the pixel values in the dark regions, and thus, opti-
mization in the tonemapped domain gives more emphasis to these darker
pixels in comparison with the optimization in the linear domain. Therefore,
optimizing in the linear domain o!en produces results with discoloration,
noise, and other artifacts in the dark regions, as shown in the insets.

T =
log(1 + µH )
log(1 + µ) , (1)

where µ is a parameter which de!nes the amount of compression,
H is the HDR image in the linear domain, and T is the tonemapped
image. In our implementation, H is always in the range [0, 1] and
we set µ to 5000. In our approach, we train the learning system
by minimizing the !2 distance of the tonemapped estimated and
ground truth HDR images de!ned as:

E =
3∑

k=1

(
T̂k −Tk

)2
, (2)

where T̂ and T are the estimated and ground truth tonemapped
HDR images and the summation is over color channels.
Note that we could have chosen to instead train our system by

computing the error in Eq. 2 directly on the estimated (Ĥ ) and
ground truth (H ) HDR images in the linear domain. Although this
system produces HDR images with small error in the linear HDR
domain, the estimated images typically demonstrate discoloration,
noise, and other artifacts after tonemapping, as shown in Fig. 4.

3.2 Learning-Based HDR Merge
The goal of the HDR merge process is to take the aligned LDR
images, I1, I2, I3, as input and produce a high-quality HDR image, H .
Intuitively, this process requires estimating the quality of the input
aligned HDR images and combining them based on their quality.
For example, an image should not contribute to the !nal HDR result
in the regions with alignment artifacts, noise, or saturation.

Generally, we need the aligned images in both the LDR and HDR
domains to measure their quality. The images in the LDR domain
are required to detect the noisy or saturated regions. For example,
a simple rule would be to consider all the pixels that are smaller

Estimated 
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Aligned Images
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CNN
Fig. 6

Blending
Weights

Alpha Blend
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Estimated 
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Blending
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HDR Merger

3) Weight and Image Estimator (WIE)

2) Weight Estimator (WE)

1) Direct

HDR Merger

HDR Merger

LDR

Aligned Images

HDR

LDR

Aligned Images

HDR

Fig. 5. Each row demonstrates a di"erent architecture for learning the
HDR merge process. The top row shows the architecture where we model
the entire process using a CNN. We constrain the problem for the other
two architectures (middle and bo#om rows) by using the knowledge from
existing techniques. See the text in Sec. 3.2 for more details.

than 0.1 and larger than 0.9, noisy and saturated, respectively. More-
over, the images in the HDR domain could be helpful for detecting
misalignments by, for example, measuring the amount of deviation
from the reference image.

Therefore, the HDR merge process can be formally written as:
H = д(I,H), (3)

where д is a function which de!nes the relationship of the HDR
image, H , to the inputs. Here, H is the set of aligned images in
the HDR domain, H1,H2,H3. Note that these are obtained from the
aligned LDR images, Ii , as: Hi = I

γ
i /ti , where ti is the exposure

time of the ith image.2 As discussed earlier, the HDR merge process,
which is de!ned with the function д, is complex. Therefore, we
propose to model it with a learning system and present and compare
three di"erent architectures for this purpose (see Fig. 5).

We start by discussing the !rst and simplest architecture (direct),
where the entire process is modeled with a single CNN. We then use
knowledge from the existing HDR merge techniques to constrain
the problem in the weight estimator (WE) architecture by using the
network to only estimate a set of blending weights. Finally, in the
weight and image estimator (WIE) architecture, we relax some of the
constraints of the WE architecture by using the network to output a
set of re!ned aligned LDR images in addition to the blendingweights.
Overall, the three architectures produce high-quality results, but
have small di"erences which we discuss later.
2During the preprocessing step, a gamma curve is used to map the images from linear
HDR domain to the LDR domain, and thus, we raise the LDR images to the power of
gamma to take them to the HDR domain.
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Fig. 3. In our approach, we first align the input LDR images using the optical flow method of Liu [2009] to the reference image (medium exposure). We
then use the aligned LDR images as the input to our learning-based HDR merge system to produce a high-quality HDR image which is then tonemapped to
produce the final image.

Our Tonemapped HDR Image Linear Ours Ground Truth
Fig. 4. We compare the result of training our system using the loss func-
tion in Eq. 2 in the linear and tonemapped (indicated as “Ours”) domains.
Tonemapping boosts the pixel values in the dark regions, and thus, opti-
mization in the tonemapped domain gives more emphasis to these darker
pixels in comparison with the optimization in the linear domain. Therefore,
optimizing in the linear domain o!en produces results with discoloration,
noise, and other artifacts in the dark regions, as shown in the insets.

T =
log(1 + µH )
log(1 + µ) , (1)

where µ is a parameter which de!nes the amount of compression,
H is the HDR image in the linear domain, and T is the tonemapped
image. In our implementation, H is always in the range [0, 1] and
we set µ to 5000. In our approach, we train the learning system
by minimizing the !2 distance of the tonemapped estimated and
ground truth HDR images de!ned as:

E =
3∑

k=1

(
T̂k −Tk

)2
, (2)

where T̂ and T are the estimated and ground truth tonemapped
HDR images and the summation is over color channels.
Note that we could have chosen to instead train our system by

computing the error in Eq. 2 directly on the estimated (Ĥ ) and
ground truth (H ) HDR images in the linear domain. Although this
system produces HDR images with small error in the linear HDR
domain, the estimated images typically demonstrate discoloration,
noise, and other artifacts after tonemapping, as shown in Fig. 4.

3.2 Learning-Based HDR Merge
The goal of the HDR merge process is to take the aligned LDR
images, I1, I2, I3, as input and produce a high-quality HDR image, H .
Intuitively, this process requires estimating the quality of the input
aligned HDR images and combining them based on their quality.
For example, an image should not contribute to the !nal HDR result
in the regions with alignment artifacts, noise, or saturation.

Generally, we need the aligned images in both the LDR and HDR
domains to measure their quality. The images in the LDR domain
are required to detect the noisy or saturated regions. For example,
a simple rule would be to consider all the pixels that are smaller
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Fig. 5. Each row demonstrates a di"erent architecture for learning the
HDR merge process. The top row shows the architecture where we model
the entire process using a CNN. We constrain the problem for the other
two architectures (middle and bo#om rows) by using the knowledge from
existing techniques. See the text in Sec. 3.2 for more details.

than 0.1 and larger than 0.9, noisy and saturated, respectively. More-
over, the images in the HDR domain could be helpful for detecting
misalignments by, for example, measuring the amount of deviation
from the reference image.

Therefore, the HDR merge process can be formally written as:
H = д(I,H), (3)

where д is a function which de!nes the relationship of the HDR
image, H , to the inputs. Here, H is the set of aligned images in
the HDR domain, H1,H2,H3. Note that these are obtained from the
aligned LDR images, Ii , as: Hi = I

γ
i /ti , where ti is the exposure

time of the ith image.2 As discussed earlier, the HDR merge process,
which is de!ned with the function д, is complex. Therefore, we
propose to model it with a learning system and present and compare
three di"erent architectures for this purpose (see Fig. 5).

We start by discussing the !rst and simplest architecture (direct),
where the entire process is modeled with a single CNN. We then use
knowledge from the existing HDR merge techniques to constrain
the problem in the weight estimator (WE) architecture by using the
network to only estimate a set of blending weights. Finally, in the
weight and image estimator (WIE) architecture, we relax some of the
constraints of the WE architecture by using the network to output a
set of re!ned aligned LDR images in addition to the blendingweights.
Overall, the three architectures produce high-quality results, but
have small di"erences which we discuss later.
2During the preprocessing step, a gamma curve is used to map the images from linear
HDR domain to the LDR domain, and thus, we raise the LDR images to the power of
gamma to take them to the HDR domain.
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Fig. 6. We use a network with four fully convolutional layers and decreasing
kernel sizes as our model. We use sigmoid as the activation function for the
last layer and use rectified linear unit (ReLU) for the rest of the layers. We
use the same network in our three di!erent system architectures with the
exception of the number of outputs which is di!erent in each case.

The direct end-to-end training of this network is challenging
and usually the convergence is very slow. Therefore, we propose to
perform the training in two stages. In the !rst stage, we force the
network to output the original aligned images as the re!ned ones,
i.e., Ĩ = I, by minimizing the !2 error of the output of the network
and the original aligned images. This stage constrains the network
to generate meaningful outputs and produce results with similar
performance as the WE architecture.

In the second stage, we simply perform a direct end-to-end train-
ing and further optimize the network by synthesizing re!ned aligned
images. Therefore, this architecture is able to produce results with
the best numerical errors (see Table 1). However, as shown in
Figs. 11 and 12, this additional "exibility in comparison to the WE
architecture comes at the cost of producing slightly overblurred
results in dark regions.

Network Architecture. As shown in Fig. 6, we propose to use a CNN
with four convolutional layers similar to the architecture proposed
by Kalantari et al. [2016]. We particularly selected this architecture,
since they were able to successfully model the process of generating
a novel view image from a set of aligned images, which is a similar
but di#erent problem. In our system, the networks have a decreasing
!lter size starting from 7 in the !rst layer to 1 in the last layer. All the
layers with the exception of the last layer are followed by a recti!ed
linear unit (ReLU). For the last layer, we use sigmoid activation
function so the output of the network is always between 0 and 1.
We use a fully convolutional network, so our system can handle
images of any size. Moreover, the !nal HDR image at each pixel can
usually be obtained from pixel colors of the aligned images at the
same pixel or a small region around it. Therefore, all our layers have
stride of one, i.e., our network does not perform downsampling or
upsampling.
We use the same network in the three system architectures, but

with di#erent number of output channels, no . Speci!cally, this num-
ber is equal to 3 corresponding to the color channels of the output
HDR image in the direct architecture. In theWE architecture the net-
work outputs the blending weights, α1,α2,α3, each with 3 channels,
and thus, no = 9. Finally, for the network in the WIE architecture
no = 18, since it outputs the re!ned aligned images, Ĩ1, Ĩ2, Ĩ3, each
with 3 color channels, in addition to the blending weights.

Discussion. In summary, the three architectures produce high-
quality results, better than state-of-the-art approaches (Table 1),

Eq
. 6

Dynamic Set Static Set

Ground Truth HDR Image

Middle Image of Static Set

Input LDR Images

Fig. 7. We ask a subject to stay still and capture three bracketed exposure
images on a tripod which are then combined to produce the ground truth
image. We also ask the subject to move and capture another set of bracketed
exposure images. We construct our input set by taking the low and high
exposure images from this dynamic set and the middle exposure image from
the static set.

0 10.5

1

0 10.5

1

0 10.5

1

Fig. 8. The triangle functions that we use as the blending weights to gener-
ate our ground truth HDR images.

but have small di#erences. The direct architecture is the simplest
among the three, but in rare cases leaves small residual alignment
artifacts in the results. The WE architecture is the most constrained
one and is able to better suppress the artifacts in these rare cases.
Finally, similar to the direct architecture, the WIE architecture is
able to synthesize content that is not available in the aligned LDR
images. However, the direct and WIE architectures slightly overblur
images in dark regions to suppress the noise, as will be shown later
in Figs. 11 and 12. Therefore, we believe the WE is the most stable
architecture and produces results with the best visual quality.

4 DATASET
Training deep networks usually requires a large number of training
examples. In our case, each training example should consist of a set
of LDR images of a dynamic scene and their corresponding ground
truth HDR image. Unfortunately, most existing HDR datasets either
lack ground truth images [Tursun et al. 2015, 2016], are captured
from static scenes [Funt and Shi 2010], or have a small number of
scenes with only rigid motion [Karaduzovic-Hadziabdic et al. 2016].
We could potentially use the HDR video dataset of Froehlich et
al. [2014] to produce our training sets. However, the number of
distinct scenes in this dataset is limited, making it unsuitable for
training deep networks.

To overcome this problem, we create our own training dataset of
74 di#erent scenes and substantially extend it through data augmen-
tation. Next, we discuss the capturing mechanism, data augmenta-
tion, and the process to generate our !nal training examples.

Capturing Process. The goal is to produce a set of LDR images
with motion and their corresponding ground truth HDR image. For

ACM Transactions on Graphics, Vol. 36, No. 4, Article 144. Publication date: July 2017.
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Deep High Dynamic Range Imaging of Dynamic Scenes
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LDR Images Our Tonemapped HDR Image Sen (46.12 dB)Kang (40.02 dB) Ours (48.88 dB) Ground Truth
Fig. 1. We propose a learning-based approach to produce a high-quality HDR image (shown in middle) given three di!erently exposed LDR images of a
dynamic scene (shown on the le"). We first use the optical flow method of Liu [2009] to align the images with low and high exposures to the one with medium
exposure, which we call the reference image (shown with blue border). Note that, we use reference to refer to the LDR image with the medium exposure,
which is di!erent from the ground truth HDR image. Our learning system generates an HDR image, which is aligned to the reference image, but contains
information from the other two images. For example, the details on the table are saturated in the reference image, but are visible in the image with the shorter
exposure. The method of Kang et al. [2003] is able to recover the saturated regions, but contains some minor artifacts. However, the patch-based method of
Sen et al. [2012] is not able to properly reproduce the details in this region because of extreme motion. Moreover, Kang et al.’s method introduces alignment
artifacts which appear as tearing in the bo#om inset. The method of Sen et al. produces a reasonable result in this region, but their result is noisy since they
heavily rely on the reference image. Our method produces a high-quality result, be#er than other approaches both visually and numerically. See Sec. 4 for
details about the process of obtaining the input LDR and ground truth HDR images. The full images as well as comparison against a few other approaches are
shown in the supplementary materials. The di!erences in the results presented throughout the paper are best seen by zooming into the electronic version.

Producing a high dynamic range (HDR) image from a set of images with
di!erent exposures is a challenging process for dynamic scenes. A category
of existing techniques "rst register the input images to a reference image and
then merge the aligned images into an HDR image. However, the artifacts
of the registration usually appear as ghosting and tearing in the "nal HDR
images. In this paper, we propose a learning-based approach to address
this problem for dynamic scenes. We use a convolutional neural network
(CNN) as our learning model and present and compare three di!erent system
architectures to model the HDR merge process. Furthermore, we create a
large dataset of input LDR images and their corresponding ground truth
HDR images to train our system. We demonstrate the performance of our
system by producing high-quality HDR images from a set of three LDR
images. Experimental results show that our method consistently produces
better results than several state-of-the-art approaches on challenging scenes.

CCS Concepts: • Computing methodologies → Computational pho-
tography;

Additional Key Words and Phrases: high dynamic range imaging, convolu-
tional neural network
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1 INTRODUCTION
Standard digital cameras typically take images with under/over-
exposed regions because of their sensors’ limited dynamic range.
Themost commonway to capture high dynamic range (HDR) images
using these cameras is to take a series of low dynamic range (LDR)
images at di!erent exposures and then merge them into an HDR
image [Debevec and Malik 1997]. This method produces spectacular
images for tripod mounted cameras and static scenes, but generates
results with ghosting artifacts when the scene is dynamic or the
camera is hand-held.
Generally, this problem can be broken down into two stages: 1)

aligning the input LDR images and 2) merging the aligned images
into an HDR image. The problem of image alignment has been
extensively studied and many powerful optical $ow algorithms
have been developed. These methods [Liu 2009; Chen et al. 2013]
are typically able to reasonably align images with complex non-rigid
motion, but produce artifacts in the regionswith no correspondences
(see Fig. 2). These artifacts usually appear in the HDR results, which
are obtained by merging the aligned images during the second stage.

Our main observation is that the artifacts of the alignment can be
signi"cantly reduced during merging. However, this is a complex

ACM Transactions on Graphics, Vol. 36, No. 4, Article 144. Publication date: July 2017.
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Kang Sen Hu Oh Ours Ours Ours
(2003) (2012) (2013) (2015) Direct WE WIE

PSNR-T 39.10 40.75 35.49 32.19 42.92 42.74 43.26
HDR-VDP-2 64.46 63.43 60.86 61.31 67.45 66.63 67.50
PSNR-L 39.97 37.95 30.40 34.43 41.69 41.25 41.60

Table 1. !antitative comparison of our three system architectures against
several state-of-the-art methods. The PSNR-T and PSNR-L refer to the PSNR
(dB) values calculated on the tonemapped (using Eq. 1) and linear images,
respectively. All the values are averaged over 15 test scenes and larger values
mean higher quality.

Oh et al.
36.27

Ours
43.58

Ground
Truth

Hu et al.
38.23

Sen et al.
41.85

Kang et al.
37.24

Fig. 13. Comparison of our approach against several state-of-the-art meth-
ods on one of the 15 test sets. See supplementary materials for the full
images including the input LDR images.

our aligned images as the input to their method, which we found
to signi!cantly improve their results. To evaluate the results, we
compute the PSNR values for images in the tonemapped (PSNR-T)3
and linear (PSNR-L) domains. Note that, since we observe the HDR
images after tonemapping, the PSNR values in the tonemapped do-
main better re"ect the quality of the HDR images. However, we
also show the PSNR values in the linear domain for completeness.
Moreover, we measure the quality of the results using HDR-VDP-
2 [Mantiuk et al. 2011], which is a visual metric speci!cally designed
to evaluate the quality of HDR images.

Table 1 shows the result of this comparison averaged over 15 test
scenes. Note that, none of the test scenes are included in the training
sets and they are captured from di#erent subjects. As can be seen,
all our three architectures produce results with better numerical
errors than the state-of-the-art techniques. Moreover, while all the
architectures have similar numerical errors, the WE architecture is
slightly worse. This is perhaps because this architecture is the most
constrained, and thus, is not as "exible as the other architectures in
minimizing the error. However, we believe the WE architecture is
slightly more stable and produces results with higher visual quality,
and thus, use it to produce the results in the rest of the paper.

3Note that, we use Eq. 1 as our tonemapping operator in this case, which is di#erent
from the operator used to show the !nal images. Since the operator in Eq. 1 does not
clamp the images, the tonemapped images contain all the HDR information.

O
ur

s
H

u 
et

 a
l.

Se
n 

et
 a

l.

OursHu et al.Sen et al.Our Tonemapped HDR Image
Fig. 14. Comparison of our approach against the patch-based methods of
Sen et al. [2012] and Hu et al. [2013].

In Fig. 13, we compare our approach against other methods on
one of these scenes, demonstrating three people in a dark room with
bright windows. The !rst row of insets shows a region where the
highlights need to be reconstructed from the low exposure image.
The methods of Kang et al. and Oh et al. are able to recover the
highlights despite having small artifacts as indicated by the arrows.
The patch-based approaches of Sen et al. and Hu et al. are not able
to !nd corresponding patches in the low exposure image, and thus,
produce saturated highlights. Our approach is able to recover the
highlights and produces an HDR image which is reasonably close
to the ground truth. The second row demonstrates a region with
signi!cant motion, where the approaches by Kang et al. and Oh
et al. are not able to avoid introducing the alignment artifacts in
the !nal results. The methods of Sen et al. and Hu et al. are able to
faithfully reconstruct the hands. However, they often heavily rely
on the reference image, and thus, produce an overall noisy result.
In contrast, our approach is able to avoid alignment artifacts, but
draws information from the high exposure image and produces a
relatively noise-free results.

Comparison on Natural Scenes. We compare our method against
the patch-based approaches of Sen et al. and Hu et al. on three chal-
lenging test scenes in Fig. 14. Note that, we do not have ground truth
images in these cases as we captured images of natural dynamic
scenes. The top row shows a picture of an outdoor scene with a
moving car. In this case, the patch-based approaches are not able to
recover the top of the building, which is saturated in the reference
image, because of the car’s signi!cant motion. Moreover, these two
techniques produce noisy results in the dark regions because they
heavily rely on the reference.
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Abstract

High-dynamic-range (HDR) imaging is crucial for
many applications. Yet, acquiring HDR images with
a single shot remains a challenging problem. Whereas
modern deep learning approaches are successful at hal-
lucinating plausible HDR content from a single low-
dynamic-range (LDR) image, saturated scene details
often cannot be faithfully recovered. Inspired by recent
deep optical imaging approaches, we interpret this prob-
lem as jointly training an optical encoder and electronic
decoder where the encoder is parameterized by the point
spread function (PSF) of the lens, the bottleneck is the
sensor with a limited dynamic range, and the decoder is
a convolutional neural network (CNN). The lens sur-
face is then jointly optimized with the CNN in a train-
ing phase; we fabricate this optimized optical element
and attach it as a hardware add-on to a conventional
camera during inference. In extensive simulations and
with a physical prototype, we demonstrate that this
end-to-end deep optical imaging approach to single-shot
HDR imaging outperforms both purely CNN-based ap-
proaches and other PSF engineering approaches.

1. Introduction
High dynamic range (HDR) imaging is one of the

most widely used computational photography tech-
niques with a plethora of applications, for example in
image-based lighting [15], HDR display [59], and im-
age processing [55, 5]. However, the dynamic range of
a camera sensor is fundamentally limited by the full
well capacity of its pixels. When the number of gener-
ated photoelectrons exceed the full well capacity, which
is typically the case when imaging scenes with a high
contrast, intensity information is irreversibly lost due
to saturation. Ever shrinking pixel sizes, for example
in mobile devices, exacerbate this problem because the
full well capacity is proportional to the pixel size.

Several different strategies have been developed to
overcome the limited dynamic range of available sen-
sors. One class of techniques captures multiple low-
dynamic-range (LDR) sensor images with fixed [26] or

LDR Image, 0 EV

E2E Measurement, 0 EV E2E Reconstruction, 0 EV -2.3 EV

Optical Setup

LDR

Rec

GT

Figure 1: Conventional sensors are limited in their abil-
ity to capture high-dynamic-range (HDR) scenes. De-
tails in brighter parts of the image, such as the light
bulb, are saturated in a low-dynamic-range (LDR) pho-
tograph (top left). Our end-to-end (E2E) approach
jointly optimizes a diffractive optical element (top
right) and a neural network to enable single-shot HDR
imaging. This deep optical imaging system records a
single sensor image (bottom left) that contains opti-
cally encoded HDR information, which helps the net-
work recover an HDR image (bottom right).

varying [40, 16, 46] exposure settings. Unfortunately,
motion can be problematic when capturing dynamic
scenes with this approach. Another class of techniques
uses multiple optically aligned sensors [45, 66] to cap-
ture these exposures simultaneously, but calibration,
cost, and device form factor can be challenging with
such special-purpose cameras. Single-shot approaches
are an attractive solution, but traditionally required
custom exposure patterns to be multiplexed on the sen-
sor [49, 24, 61]. More recently, single-shot HDR imag-
ing approaches were proposed that hallucinate an HDR
image from a single saturated LDR image (HDR-CNN,
e.g. [18]). While successful in many cases, saturated
scenes details often cannot be faithfully recovered via
hallucination.

11375

Key ideas: 
• Minimize difference between reconstruction and tone-mapped GT images
• Jointly train an optical encoder and electronic decoder
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Light-stage dataset capture (Google)
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Now a feature in Google Pixel phones
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dy

Primal

Depth

Albedo

Normal Deep CNN

Reconstruction

dx

Key idea: Cast gradient-domain rendering as a learning problem
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Sponza (Easy)
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Fig. 3. Equal-time comparisons between Path Tracing (*), the baseline L1 screened Poisson reconstruction [Lehtinen et al. 2013] (a), a state-of-the-art
feature-based denoiser NFOR [Bi�erli et al. 2016] (b), kernel-predicting deep convolutional denoising [Bako et al. 2017, KPCN] (c), and the proposed method
(d). Path Tracing, NFOR and KPCN are given the sample counts in parentheses.
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