Ray Tracing

Week 3

Acknowledgement: The course slides are adapted from the slides prepared by Steve
Marschner of Cornell University

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray tracing idea

\/)
>;\< light source

viewer (eye)

<

objects
in scene

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray tracing idea

\/)
>;\< light source

viewer (eye)

<

objects
in scene

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray tracing idea

\/)
>;\< light source

viewer (eye)

<

ui
/ewlhg I7
ay

visible point

objects
in scene

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray tracing idea

\/
>;\< light source
viewer (eye)

<

3

2.

Vi 3
/ .

visible point

objects
in scene

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray tracing algorithm

=)

o~

- \\
viewer (eye)

V“

light source

%

3.

Vi >
/ .

fay =

for each pixel { e -
compute viewing ray visible poin
intersect ray with scene

compute illumination at visible point
put result into image

}

objects
in scene

Hacettepe BCOS5I1 | Spring 2012 « Week3

Generating eye rays

* Use window analogy directly

viewpoint —_ __ view plane

Hacettepe BCOS5I1 | Spring 2012 « Week3

Generating eye rays

* Use window analogy directly

viewpoint —__ __ view plane

Hacettepe BCOS5I1 | Spring 2012 « Week3

Generating eye rays

* Use window analogy directly

viewpoint —___ __ view plane

o+ pixel
position

Hacettepe BCOS5I1 | Spring 2012 « Week3

Generating eye rays

* Use window analogy directly

viewpoint — / __ view plane

\ A

position

viewing ray

Hacettepe BCOS5I1 | Spring 2012 « Week3

Durer’s Ray casting machine

* Albrecht Durer, 1 6th century

The movable threads
(probably made of silk) were
stretched across the frame at
right angles to each other

PULLEY SYSTEM

At the wall, the string was attached
to a weight, which acted as a pulley
(see engraving), keeping the string
taut as it passed through the needle
eye and frame to the pointer at its
other end.

Pulley weight Pointer,

"

Source: F. Durand

plotted point by point shutter

Wooden frame

Hacettepe BCOS5I1 | Spring 2012 « Week3

Durer’s Ray casting machine

r, 1 6th century

Albrecht Dure

s by

T

i

i

a

i

T ad

T

_:“

F. Durand

Hacettepe BCOS5I1 | Spring 2012 « Week3

Source

Generating eye rays

* Use window analogy directly

view rect

viewpoint

pixel
position

view rect viewing ray
pixel
position viewing ray
PERSPECTIVE
ORTHOGRAPHIC

Hacettepe BCOS5I1 | Spring 2012 « Week3

Vector math review

* Vectors and points

* Vector operations
— addition
— scalar product

* More products
— dot product
— cross product

* Bases and orthogonality

Hacettepe BCOS5I1 | Spring 2012 « Week3

Generating eye rays—orthographic

* Just need to compute the view plane point s:

N

p=s;d=d,
r(t)=p+tud

— but where exactly is the view rectangle?

Hacettepe BCOS5I1 | Spring 2012 « Week3

Generating eye rays—orthographic

* Positioning the view rectangle
— establish three vectors to be camera basis: u, v, w
— view rectangle is in u—Vv plane, specified by |, r, t,b

— NOW ray generation b

is easy: 3

S—e—+uu-—+ vv
p=s;d=—w
r(t) =p+td

Hacettepe BCOS5I1 | Spring 2012 « Week3

Generating eye rays—perspective

* View rectangle needs to be away from viewpoint

* Distance is important: “focal length” of camera
— still use camera frame but position view rect away from
viewpoint
— ray origin always e
— ray direction now
controlled by s

p=¢
r)=p+ud

Hacettepe BCOS5I1 | Spring 2012 « Week3

Generating eye rays—perspective

* Compute s in the same way; just subtract dw

— coordinates of s are (u, v, —d)

s—=e+uua+vv —dw

p=e d=s—e 3/?«
r(t) =p+td ’//°./ i

Hacettepe BCOS5I1 | Spring 2012 « Week3

Pixel-to-image mapping

* One last detail: (u, v) coords of a pixel

A v=1t
J =25
()(0’2) (@) (@) 0(312)
|:>
() (@) (@) (@)
(0,1)
By A A a i; v=~>0
Too0| 00 ol TGO . ~ “
_ ! I
j=-5 3 <
) \y
| N
! !
u=1+(r—1)(i+0.5)/n,
v=>0b+(t—0)(j +0.5)/n,

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray intersection

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray: a half line

» Standard representation: point p and direction d
r(t) =p+td
— this is a parametric equation for the line
— lets us directly generate the points on the line

— if we restrict to t > 0 then we have a ray
— note replacing d with ad doesn’t change ray (a > 0)

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray-sphere intersection: algebraic

* Condition |: point is on ray
r(t) =p+td

* Condition 2: point is on sphere
— assume unit sphere; see Shirley or notes for general

x| =1< [x]|* =1
X =% —1 =0

* Substitute:
(p+td)-(p+itd)—1=0

— this is a quadratic equation in t

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray-sphere intersection: algebraic

* Solution for t by quadratic formula:

—d-pt+/(d-p2—-(d-d)(p-p—1)
d-d
t=-d-pt+/(d-p)2—p-p+]!

— simpler form holds when d is a unit vector
but we won’t assume this in practice (reason later)

— Pll use the unit-vector form to make the geometric interpretation

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray-sphere intersection: geometric

tm = o] 0 2 d
9

2, =p-p—(p-d)
At = /1 —12

m

=(p-d)?-p-p+1

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray-box intersection

* Could intersect with 6 faces individually

* Better way: box is the intersection of 3 slabs

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray-box intersection

* Could intersect with 6 faces individually

* Better way: box is the intersection of 3 slabs

Hacettepe BCOS5I | Spring 2012 « Week3

Ray-box intersection

* Could intersect with 6 faces individually

* Better way: box is the intersection of 3 slabs

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray-box intersection

* Could intersect with 6 faces individually

* Better way: box is the intersection of 3 slabs

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ray-slab intersection

e 2D example

e 3D is the same!

(xmim ymin)

Hacettepe BCOS5I1 | Spring 2012 « Week3

(Xmax: Ymax)

20

Ray-slab intersection

e 2D example

e 3D is the same!

Ymin

Hacettepe BCOS5I1 | Spring 2012 « Week3

Ymax

Xmin Xmax

20

Ray-slab intersection

e 2D example

e 3D is the same!

Pax -+ Tomin (].1: — Lmin

Lemin = ('Tmin —]).1:),/(_[.'1:

Hacettepe BCOS5I1 | Spring 2012 « Week3

(Px: Py)

txmin

Xmin

r)(n\d)(

Xmax

(dy,d,)

Ray-slab intersection

e 2D example

e 3D is the same!

Pz T Lzmin da; — Lmin (dx. dy)
Lzmin = ('rl'llill = '])g;)/d;l; Ymin
Py + tymin dy — Ymin =" Vitiias
t'yl'uin — (?/min -])y)/dy fxmin
(Px: Py)
Xmin Xmax

Hacettepe BCOS5I1 | Spring 2012 « Week3 20

Intersecting intersections

e Each intersection v*tymax
is an interval
* Want last
entry point and 7 — | B
first exit point : /[
/ /1
tmin = MaX(tzmin, f"ljlllill)
. / te [bemine (xmax] > -
tmax = MIN({xmax, {yumx)
te [bymin (ymax] - =
te [(xmm' (xmax] A [{yminf Iymax] P—
Shirley fig. 10.16

Hacettepe BCOS5I1 | Spring 2012 « Week3 21

Ray-triangle intersection

Condition |: point is on ray

r(t) =p+td

Condition 2: point is on plane

(x—a)-n=0

Condition 3: point is on the inside of all three edges

First solve |&2 (ray—plane intersection)
— substitute and solve for t:

(p+td—a) - n=0

,_a—p)-n
o d n

Hacettepe BCOS5I1 | Spring 2012 « Week3

22

Ray-triangle intersection

* In plane, triangle is the intersection of 3 half spaces

Hacettepe BCOS5I1 | Spring 2012 « Week3

23

Ray-triangle intersection

* In plane, triangle is the intersection of 3 half spaces

Hacettepe BCOS5I1 | Spring 2012 « Week3

23

Ray-triangle intersection

* In plane, triangle is the intersection of 3 half spaces

Hacettepe BCOS5I | Spring 2012 « Week3

23

Ray-triangle intersection

* In plane, triangle is the intersection of 3 half spaces

Hacettepe BCOS5I | Spring 2012 « Week3

23

Inside-edge test

* Need outside vs. inside

e Reduce to clockwise vs. counterclockwise
— vector of edge to vector to X

* Use cross product to decide

Hacettepe BCOS5I1 | Spring 2012 « Week3

24

Ray-triangle intersection

Hacettepe BCOS5I | Spring 2012 « Week3

25

Ray-triangle intersection

* a more efficient method
— use barycentric coordinates

C
Pe W
D R
a b

Source: F Durand

Hacettepe BCOS5I1 | Spring 2012 « Week3

26

Barycentric definition of a plane

* P(&, B,Y)=xatfb+yc
with & + p +y =I

L c
Pe

@

a %

Source: F Durand

Hacettepe BCOS5I1 | Spring 2012 « Week3

27

Barycentric definition of a triangle

* P(&, B,Y)=xatfb+yc
with & + p +y =I

* O< x <I
0< B <l 5 ©
O<y<I

Source: F Durand

Hacettepe BCOS5I1 | Spring 2012 « Week3

28

Given P, how can we compute &, 3, Y ?

* Compute the areas of the opposite subtriangle
— Ratio with complete area

0=AJA, PB=A/A Y=AJA

Use signed areas for pointscoutside the triangle

T
O
a b

Source: F Durand

Hacettepe BCOS5I1 | Spring 2012 « Week3

29

Intuition behind area formula

* Pis barycenter of aand Q

* Ais the interpolation coefficient on aQ

* All points on line parallel to bc have the same

* All such Ta triangles have same height/area

Source: F Durand

.
.
-
.
.
.
.
a -
.
.
-
-
.
-
.

Hacettepe BCOS5I1 | Spring 2012 « Week3

Simplify

* Sincex + B + vy =|

we can write X =l- B -y
* P(B.Y)=(1-B-y)a+ BbC tyc
N b

Source: F Durand

Hacettepe BCOS5I1 | Spring 2012 « Week3

31

Simplify

* P(B,Y)=(1-B-Y) a + Bb +Yc
* P(B,Y)=a + B(b-a) +Y(c-a)

* Non-orthogonal coordinate system of'the plane

< C
‘" b

Sodrce: F Durand

Hacettepe BCOS51 | Spring 2012 « Week3 44 3

How do we use it for intersection?

Insert ray equation into barycentric expression of
triangle

P(t)= a+f (b-a)+Y (c-a)
Intersection if P+y<Il; O0<B and O<y

C
Pe W
D R
a b

Hacettepe BCOS5I1 | Spring 2012 « Week3 33

Source: F Durand

Intersection

RxttDy= ax+P (bx-ax)+Y (cx-ax)
Ry+tDy= ay+ (by-ay)+Y (cy-ay)
R, +tD,= a,+f (bz-az)+y (cz-a;)

A ~

Hacettepe BCOS5I1 | Spring 2012 « Week3

Source: F Durand

34

Matrix form

ax _ bx
a, - by
aZ _ bZ

. a
Pe <¢:i§7
D R
a b

Source: F Durand

Hacettepe BCOS5I1 | Spring 2012 « Week3

a —c
a,-c
a, —c

S O

‘4 —R.
ay_Ry
a. —R

z z

35

Cramer’s rule

X X X

a, - Ry a,-c¢, Dy

/)) — aZ - RZ aZ - CZ DZ
4]

Source: F Durand

Hacettepe BCOS5I1 | Spring 2012 « Week3

36

Advantage

Efficient
Store no plane equation

Get the barycentric coordinates for free
Useful for interpolation, texture mapping

C
Pe W
D R
a b

Hacettepe BCOS5I1 | Spring 2012 « Week3

Source: F Durand

37

Image so far

* With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <=iy <ny
for 0 <=ix <nx {
ray = camera.getRay(ix, iy);
hitSurface, t = s.intersect(ray, 0, +inf)
if hitSurface is not null
image.set(ix, iy, white);

Hacettepe BCOS51 1 Spring 2012 » Week3

38

Intersection against many shapes

e The basic idea is:

Group.intersect (ray, tMin, tMax) {
tBest = +inf; firstSurface = null;
for surface in surfaceList {
hitSurface, t = surface.intersect(ray, tMin, tBest);
if hitSurface is not null {
tBest = t;
firstSurface = hitSurface;
}
}

return hitSurface, tBest;

}

— this is linear in the number of shapes
but there are sublinear methods (acceleration structures)

Hacettepe BCOS5I1 | Spring 2012 « Week3

39

Image so far

* With eye ray generation and scene intersection

for 0 <=iy <ny
for0<=ix<nx {
ray = camera.getRay(ix, iy);
¢ = scene.trace(ray, O, +inf);
image.set(ix, iy, ¢);

}

Scene.trace(ray, tMin, tMax) {
surface, t = surfs.intersect(ray, tMin, tMax);
if (surface != null) return surface.color();
else return black;

}

Hacettepe BCOS5I | Spring 2012 « Week3

40

Shading

* Compute light reflected toward camera

* Inputs:
— eye direction >\,/<
— light direction \

(for each of many lights) \ X
— surface normal 1 AR /
— surface parameters \

(color; shininess, ...)

Hacettepe BCOS5I1 | Spring 2012 « Week3 41

Diffuse reflection

* Light is scattered uniformly in all directions

— the surface color is the same for all viewing directions

e Lambert’s cosine law

N

//\\

YYYYYY

YYY

Top face of cube Top face of In general, light per unit
receives a certain 60° rotated cube area is proportional to
amount of light intercepts half the light cosO=1+*n

Hacettepe BCOS5I1 | Spring 2012 « Week3 42

Lambertian shading

* Shading independent of view direction

NS
//'\\

\1 AR

o)

Hacettepe BCOS5I1 | Spring 2012 « Week3

R

\%

4

A

illumination
from source

|

d — kdlmaX(O,n . l)

|

diffuse
coefficient

diffusely
reflected
light

Lambertian shading

* Produces matte appearance

Hacettepe BCOS5I1 | Spring 2012 « Week3

44

[Foley et al.]

Diffuse shading

Hacettepe BCOS5I1 | Spring 2012 « Week3

45

Image so far

Scene.trace(Ray ray, tMin, tMax) {

surface, t = hit(ray, tMin, tMax);

if surface is not null {
point = ray.evaluate(t);
normal = surface.getNormal(point);
return surface.shade(ray, point,

normal, light);
}

else return backgroundColor;

}

Surface.shade(ray, point, normal, light) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading

}

Hacettepe BCOS5I1 | Spring 2012 « Week3

46

Shadows

* Surface is only illuminated if nothing blocks its view of the light.

* With ray tracing it’s easy to check
— just intersect a ray with the scene!

Hacettepe BCOS5I1 | Spring 2012 « Week3

47

Image so far

Surface.shade(ray, point, normal, light) {
shadRay = (point, light.pos — point);
if (shadRay not blocked) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading
}

return black;

}

Hacettepe BCOS5I1 | Spring 2012 « Week3

48

Multiple lights

* Important to fill in black shadows
* Just loop over lights, add contributions

* Ambient shading
— black shadows are not really right
— one solution: dim light at camera
— alternative: add a constant “ambient” color to the shading...

Hacettepe BCOS5I1 | Spring 2012 « Week3

49

Image so far

shade(ray, point, normal, lights) {
result = ambient;
for light in lights {
if (shadow ray not blocked) {
result += shading contribution;

J
}

return result;

}

Hacettepe BCOS5I1 | Spring 2012 « Week3

50

Specular shading (Blinn-Phong)

* Intensity depends on view direction

— bright near mirror configuration

N
//'\\

AN

Hacettepe BCOS5I1 | Spring 2012 « Week3

51

Specular shading (Blinn-Phong)

* Close to mirror < half vector near normal
— Measure “near” by dot product of unit vectors

>/‘.\/< h = bisector(v, 1)
\ v v+l
Loyt / v +1
A\

Ls = ks I max(0, cos a)?
‘ = ks I max(0,n - h)?
t

specularly
reflected
light

specular

coefficient
Hacettepe BCOS5I1 | Spring 2012 « Week3 52

Phong model—plots

* Increasing n narrows the lobe

COS*- U cO)

~ \ \
\ |
\ l‘
\ "‘\ |
\ “I l
\.‘\ I\ \

\ \
\\ -“ .
\
\
\ \
\\ \\
90)

Fig. 16.9 Different values of cos” a used in the Phong illumination model

Hacettepe BCOS5I1 | Spring 2012 « Week3

[Foley et al.]

53

Specular shading

Hacettepe BCOS5I1 | Spring 2012 « Week3

54

[Foley et al.]

Diffuse + Phong shading

Hacettepe BCOS5I1 | Spring 2012 « Week3

55

Ambient shading

* Shading that does not depend on anything

— add constant color to account for disregarded illumination
and fill in black shadows

ambient
coefficient

reflected
ambient
light
Hacettepe BCOS5I1 | Spring 2012 « Week3

56

Putting it together

* Usually include ambient, diffuse, Phong in one model

L =L,+ Lq+ Ly
= ko Iy + kg I max(0,n-1) + ks I max(0,n - h)P

* The final result is the sum over many lights

N
L=L,+ Z [(La)i + (Ls)i]
1=1
N
L=kqlo+ Y [kql;max(0,n 1)+ ks I; max(0,n - h;)?]
1=1

Hacettepe BCOS5I1 | Spring 2012 « Week3 57

Mirror reflection

* Consider perfectly shiny surface
— there isn’t a highlight
— instead there’s a reflection of other objects
* Can render this using recursive ray tracing

— to find out mirror reflection color, ask what color is seen
from surface point in reflection direction

— already computing reflection direction for Phong...

o “Glazed” material has mirror reflection and diffuse
L = I‘(_l a5 l“(l' 5 I*m

— where L_ is evaluated by tracing a new ray

Hacettepe BCOS5I1 | Spring 2012 « Week3 58

Mirror reflection

* Intensity depends on view direction

— reflects incident light from mirror direction

<

AR / r=v+2(n-vn-v)

r v
=2(n-v)n—v

Hacettepe BCOS5I1 | Spring 2012 « Week3

59

Diffuse + mirror reflection (glazed)

(glazed material on floor)

Hacettepe BCOS5I1 | Spring 2012 « Week3

60

Ray tracer architecture 101

* You want a class called Ray
— point and direction; evaluate(t)
— possible: tMin, tMax

* Some things can be intersected with rays
— individual surfaces
— groups of surfaces (acceleration goes here)
— the whole scene
— make these all subclasses of Surface
— limit the range of valid t values (e.g. shadow rays)

* Once you have the visible intersection, compute the color
— may want to separate shading code from geometry
— separate class: Material (each Surface holds a reference to one)
— its job is to compute the color

Hacettepe BCOS5I1 | Spring 2012 « Week3

6l

Architectural practicalities

* Return values
— surface intersection tends to want to return multiple values
* t,surface or shader, normal vector, maybe surface point
— in many programming languages (e.g. Java) this is a pain
— typical solution: an intersection record
* a class with fields for all these things

* keep track of the intersection record for the closest intersection
* be careful of accidental aliasing (which is very easy if you’re new to Java)

* Efficiency

— what objects are created for every ray? try to find a place for them
where you can reuse them.

— Shadow rays can be cheaper (any intersection will do, don’t need closest)
— but:“First Get it Right, Then Make it Fast”

Hacettepe BCOS5I1 | Spring 2012 « Week3 62

