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Ray Tracing
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Week 3

Acknowledgement: The course slides are adapted from the slides prepared by Steve 
Marschner of Cornell University
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Ray tracing algorithm

for each pixel {
    compute viewing ray
    intersect ray with scene
    compute illumination at visible point
    put result into image
    }
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Generating eye rays

• Use window analogy directly
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Durer’s Ray casting machine

• Albrecht Durer, 16th century
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Source: F. Durand
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• Use window analogy directly
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Generating eye rays
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Vector math review

• Vectors and points

• Vector operations
– addition
– scalar product

• More products
– dot product
– cross product

• Bases and orthogonality
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Generating eye rays—orthographic

• Just need to compute the view plane point s:

– but where exactly is the view rectangle?

9

s

p = s; d = dv
r(t) = p + td

dv



• Positioning the view rectangle
– establish three vectors to be camera basis: u, v, w
– view rectangle is in u–v plane, specified by l, r, t, b
– now ray generation

is easy:
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Generating eye rays—orthographic
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Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

s = e + uu + vv
p = s; d = �w
r(t) = p + td
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Generating eye rays—perspective

• View rectangle needs to be away from viewpoint
• Distance is important: “focal length” of camera

– still use camera frame but position view rect away from 
viewpoint

– ray origin always e
– ray direction now

controlled by s
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s

e

 d = s – e

p = e
r(t) = p + td
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Generating eye rays—perspective

• Compute s in the same way; just subtract dw
– coordinates of s are (u, v, –d)
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s = e + uu + vv � dw
p = e; d = s� e
r(t) = p + td
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Pixel-to-image mapping

• One last detail: (u, v) coords of a pixel
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58 3. Raster Images

Figure 3.10. Coordinates of a four pixel by three pixel screen. Note that in some APIs the
y-axis will point downwards.

Again, these coordinates are simply conventions, but they will be important

to remember later when implementing cameras and viewing transformations.

3.2.1 Pixel Values

So far we have described the values of pixels in terms of real numbers, represent-

ing intensity (possibly separately for red, green, and blue) at a point in the image.

This suggests that images should be arrays of floating-point numbers, with either

one (for grayscale, or black and white, images) or three (for RGB color images)

32-bit floating point numbers stored per pixel. This format is sometimes used,

when its precision and range of values are needed, but images have a lot of pix-

els and memory and bandwidth for storing and transmitting images are invariably

scarce. Just one ten-megapixel photograph would consume about 115 MB of

RAM in this format.Why 115 MB and not 120
MB?

Less range is required for images that are meant to be displayed directly.

While the range of possible light intensities is unbounded in principle, any given

device has a decidedly finite maximum intensity, so in many contexts it is per-

fectly sufficient for pixels to have a bounded range, usually taken to be [0, 1] for
simplicity. For instance, the possible values in an 8-bit image are 0, 1/255, 2/255, . . . , 254/255, 1.The denominator of 255,

rather than 256, is
awkward, but being able to
represent 0 and 1 exactly is
important.

Images stored with floating point numbers, allowing a wide range of values, are

often called high dynamic range (HDR) images to distinguish them from fixed-

range, or low dynamic range (LDR) images that are stored with integers. See

!

!

!

!

!

!

!

!

4.4. Orthographic views 73
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same direction, different origins

Perspective projection
same origin, different directions

Figure 4.8. Ray generation using the camera frame. Left: in an orthographic view, the rays

start at the pixels’ locations on the image plane, and all share the same direction, which is

equal to the view direction. Right: in a perspective view, the rays start at the viewpoint, and

each ray’s direction is defined by the line through the viewpoint, e, and the pixel’s location on

the image plane.

of the image, as measured from e along the v direction. Usually l < 0 < r and
b < 0 < t. (See Figure 4.8.) Many systems assume

l = −r and b = −t so
that a width and height

suffice.

In Section 3.2 we discussed pixel coordinates in an image. To fit an image

with nx × ny pixels into a rectangle of size (r − l) × (t − b), the pixels are
spaced a distance (r − l)/nx apart horizontally and (t − b)/ny apart vertically,

with a half-pixel space around the edge to center the pixel grid within the image

rectangle. This means that the pixel at position (i, j) in the raster image has the
position

u = l + (r − l)(i + 0.5)/nx

v = b + (t − b)(j + 0.5)/ny

(4.1)

where (u, v) are the coordinates of the pixel’s position on the image plane, mea-
sured with respect to the origin e and the basis {u,v}. With l and r both

specified, there is

redundancy: moving the

viewpoint a bit to the right

and correspondingly

decreasing l and r will not

change the view (and

similarly on the v axis).

In an orthographic view we can simply use the pixel’s image-plane posi-

tion as the ray’s starting point, and we already know the ray’s direction is the

view direction. The procedure for generating orthographic viewing rays is then:

compute u and v using (4.1)
ray.direction← −w

ray.origin← e + uu + v v

It’s very simple to make an oblique parallel view: just allow the image plane

normal, w, to be specified separately from the view direction; the procedure is

otherwise exactly the same.

u
=

l

u
=

r

v = b

v = t
j

i

i =
 –

.5

i =
 3

.5

j = 2.5

j = –.5
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Ray intersection
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Ray: a half line

• Standard representation: point p and direction d

– this is a parametric equation for the line
– lets us directly generate the points on the line
– if we restrict to t > 0 then we have a ray
– note replacing d with ad doesn’t change ray (a > 0)
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Ray-sphere intersection: algebraic

• Condition 1: point is on ray

• Condition 2: point is on sphere
– assume unit sphere; see Shirley or notes for general

• Substitute:

– this is a quadratic equation in t

16
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Ray-sphere intersection: algebraic

• Solution for t by quadratic formula:

– simpler form holds when d is a unit vector
but we won’t assume this in practice (reason later)

– I’ll use the unit-vector form to make the geometric interpretation
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Ray-sphere intersection: geometric
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Ray-box intersection

• Could intersect with 6 faces individually

• Better way: box is the intersection of 3 slabs
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Ray-slab intersection

• 2D example

• 3D is the same!
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Intersecting intersections

• Each intersection
is an interval

• Want last
entry point and
first exit point

Shirley fig. 10.16
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Ray-triangle intersection

• Condition 1: point is on ray

• Condition 2: point is on plane

• Condition 3: point is on the inside of all three edges

• First solve 1&2 (ray–plane intersection)
– substitute and solve for t:

22
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Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces
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Inside-edge test

• Need outside vs. inside

• Reduce to clockwise vs. counterclockwise
– vector of edge to vector to x

• Use cross product to decide
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Ray-triangle intersection
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Ray-triangle intersection

• a more efficient method 
– use barycentric coordinates
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Source: F. Durand
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Barycentric definition of a plane

• P( α, β, γ)=αa+βb+γc
with α + β + γ =1

27

Source: F. Durand
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Barycentric definition of a triangle

• P( α, β, γ)=αa+βb+γc
with α + β + γ =1

• 0< α <1
0< β <1
0< γ <1
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Source: F. Durand
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Given P, how can we compute α, β, γ ?

• Compute the areas of the opposite subtriangle
– Ratio with complete area

	

 	

 α=Aa/A,      β=Ab/A	

 	

 γ=Ac/A

Use signed areas for points outside the triangle
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Source: F. Durand

c 

a 

P Ta 
T 

b 



Hacettepe BCO511 Spring 2012 • Week3

Intuition behind area formula

• P is barycenter of a and Q
• A is the interpolation coefficient on aQ

• All points on line parallel to bc have the same α
• All such Ta triangles have same height/area

30

Source: F. Durand
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Simplify

• Since α + β + γ =1
we can write α =1− β − γ

• P(β, γ)=(1−β−γ) a + βb +γc

31

Source: F. Durand
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Simplify

• P(β, γ)=(1−β−γ) a + βb +γc

• P(β, γ)=a + β(b-a) +γ(c-a)
• Non-orthogonal coordinate system of the plane

32

Source: F. Durand
44 

c 

a b 

P 



Hacettepe BCO511 Spring 2012 • Week3

How do we use it for intersection?

33

Source: F. Durand

Insert ray equation into barycentric expression of 
triangle

P(t)= a+β (b-a)+γ (c-a)
Intersection if  β+γ<1;    0<β   and    0<γ

a b 

P 
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Intersection
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Source: F. Durand

Rx+tDx= ax+β (bx-ax)+γ (cx-ax)

Ry+tDy= ay+β (by-ay)+γ (cy-ay)

Rz+tDz= az+β (bz-az)+γ (cz-az)
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Matrix form
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Source: F. Durand
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Cramer’s rule

36

Source: F. Durand
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Advantage
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Source: F. Durand
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Efficient
Store no plane equation
Get the barycentric coordinates for free

Useful for interpolation, texture mapping
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Image so far

• With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
    for 0 <= ix < nx {
        ray = camera.getRay(ix, iy);
        hitSurface, t = s.intersect(ray, 0, +inf)
        if hitSurface is not null
            image.set(ix, iy, white);
    }

38



• The basic idea is:

– this is linear in the number of shapes
but there are sublinear methods (acceleration structures)
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Intersection against many shapes

Group.intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
        hitSurface, t = surface.intersect(ray, tMin, tBest);
        if hitSurface is not null {
            tBest = t;
            firstSurface = hitSurface;
        }
    }
return hitSurface, tBest;
}
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Image so far

• With eye ray generation and scene intersection

for 0 <= iy < ny
    for 0 <= ix < nx {
        ray = camera.getRay(ix, iy);
        c = scene.trace(ray, 0, +inf);
        image.set(ix, iy, c);
    }

…

Scene.trace(ray, tMin, tMax) {
    surface, t = surfs.intersect(ray, tMin, tMax);
    if (surface != null) return surface.color();
    else return black;
}

40
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Shading

• Compute light reflected toward camera

• Inputs:
– eye direction
– light direction 

(for each of many lights)
– surface normal
– surface parameters 

(color, shininess, …)

41
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• Light is scattered uniformly in all directions
– the surface color is the same for all viewing directions

• Lambert’s cosine law
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Diffuse reflection

Top face of cube
receives a certain 
amount of light

Top face of 
60º rotated cube

intercepts half the light

In general, light per unit
area is proportional to

cos θ = l • n

l n

42



• Shading independent of view direction
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Lambertian shading

diffuse
coefficient

diffusely
reflected

light

illumination
from source

v
l n

43

Ld = kd I max(0,n · l)
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Lambertian shading

• Produces matte appearance
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Diffuse shading
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Image so far

Scene.trace(Ray ray, tMin, tMax) {
    surface, t = hit(ray, tMin, tMax);
    if surface is not null {
        point = ray.evaluate(t);
        normal = surface.getNormal(point);
        return surface.shade(ray, point,
            normal, light);
    }
    else return backgroundColor;
}

…

Surface.shade(ray, point, normal, light) {
    v = –normalize(ray.direction);
    l = normalize(light.pos – point);
    // compute shading
}
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Shadows

• Surface is only illuminated if nothing blocks its view of the light.

• With ray tracing it’s easy to check
– just intersect a ray with the scene!
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Image so far

Surface.shade(ray, point, normal, light) {
    shadRay = (point, light.pos – point);
    if (shadRay not blocked) {
        v = –normalize(ray.direction);
        l = normalize(light.pos – point);
        // compute shading
    }
    return black;
}

48
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Multiple lights

• Important to fill in black shadows

• Just loop over lights, add contributions

• Ambient shading
– black shadows are not really right
– one solution: dim light at camera
– alternative: add a constant “ambient” color to the shading…
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Image so far

shade(ray, point, normal, lights) {
    result = ambient;
    for light in lights {
        if (shadow ray not blocked) {
            result += shading contribution;
        }
    }
    return result;
}

50



Hacettepe BCO511 Spring 2012 • Week3

Specular shading (Blinn-Phong)

• Intensity depends on view direction
– bright near mirror configuration

v
l n
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Specular shading (Blinn-Phong)

• Close to mirror ⇔ half vector near normal
– Measure “near” by dot product of unit vectors

specular
coefficient

specularly
reflected

light

n
v

hl

Ls = ks I max(0, cos �)p

= ks I max(0,n · h)p

52

h = bisector(v, l)

=
v + l
�v + l�
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Phong model—plots

• Increasing n narrows the lobe
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Specular shading
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Diffuse + Phong shading
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Ambient shading

• Shading that does not depend on anything
– add constant color to account for disregarded illumination 

and fill in black shadows

ambient
coefficient

reflected
ambient

light
56

La = ka Ia
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Putting it together

• Usually include ambient, diffuse, Phong in one model

• The final result is the sum over many lights

57

L = La + Ld + Ls

= ka Ia + kd I max(0,n · l) + ks I max(0,n · h)p

L = La +
N�

i=1

[(Ld)i + (Ls)i]

L = ka Ia +
N�

i=1

[kd Ii max(0,n · li) + ks Ii max(0,n · hi)p]
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Mirror reflection

• Consider perfectly shiny surface
– there isn’t a highlight
– instead there’s a reflection of other objects

• Can render this using recursive ray tracing
– to find out mirror reflection color, ask what color is seen 

from surface point in reflection direction
– already computing reflection direction for Phong…

• “Glazed” material has mirror reflection and diffuse

– where Lm is evaluated by tracing a new ray

58



r = v + 2((n · v)n� v)
= 2(n · v)n� v
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Mirror reflection

• Intensity depends on view direction
– reflects incident light from mirror direction

59
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Diffuse + mirror reflection (glazed)

(glazed material on floor)
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Ray tracer architecture 101

• You want a class called Ray
– point and direction; evaluate(t)
– possible: tMin, tMax

• Some things can be intersected with rays
– individual surfaces
– groups of surfaces (acceleration goes here)
– the whole scene
– make these all subclasses of Surface
– limit the range of valid t values (e.g. shadow rays)

• Once you have the visible intersection, compute the color
– may want to separate shading code from geometry
– separate class: Material (each Surface holds a reference to one)
– its job is to compute the color
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Architectural practicalities

• Return values
– surface intersection tends to want to return multiple values

• t, surface or shader, normal vector, maybe surface point
– in many programming languages (e.g. Java) this is a pain
– typical solution: an intersection record

• a class with fields for all these things
• keep track of the intersection record for the closest intersection
• be careful of accidental aliasing (which is very easy if you’re new to Java)

• Efficiency
– what objects are created for every ray? try to find a place for them 

where you can reuse them.
– Shadow rays can be cheaper (any intersection will do, don’t need closest)
– but: “First Get it Right, Then Make it Fast”
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