Ray Tracing

Week 3

Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University

I

Hacettepe BCO511 Spring 2012 • Week3

Ray tracing idea

Ray tracing idea

Ray tracing idea


```
Ray tracing idea
```


Ray tracing algorithm

Durer's Ray casting machine

• Albrecht Durer, I 6th century

Source: F. Durand

Hacettepe BCO511 Spring 2012 • Week3

Durer's Ray casting machine

• Albrecht Durer, 16th century

Source: F. Durand

Hacettepe BCO511 Spring 2012 • Week3

Vector math review

- Vectors and points
- Vector operations
 - addition
 - scalar product
- More products
 - dot product
 - cross product
- Bases and orthogonality

Generating eye rays—orthographic

• Just need to compute the view plane point s:

- but where exactly is the view rectangle?

Generating eye rays—orthographic

- Positioning the view rectangle
 - establish three vectors to be camera basis: u, v, w
 - view rectangle is in **u**-v plane, specified by I, r, t, b
 - now ray generation is easy:

$$\mathbf{s} = \mathbf{e} + u\mathbf{u} + v\mathbf{v}$$

 $\mathbf{p} = \mathbf{s}; \ \mathbf{d} = -\mathbf{w}$
 $\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$

Generating eye rays—perspective

- View rectangle needs to be away from viewpoint
- Distance is important: "focal length" of camera
 - still use camera frame but position view rect away from viewpoint
 - ray origin always **e**
 - ray direction now controlled by s

Generating eye rays—perspective

- Compute s in the same way; just subtract dw
 - coordinates of **s** are (u, v, -d)

$$\mathbf{s} = \mathbf{e} + u\mathbf{u} + v\mathbf{v} - d\mathbf{w}$$

$$\mathbf{p} = \mathbf{e}; \ \mathbf{d} = \mathbf{s} - \mathbf{e}$$

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

same direction, different origins

same origin, different directions

Pixel-to-image mapping

• One last detail: (u, v) coords of a pixel

Ray intersection

Ray: a half line

- Standard representation: point **p** and direction **d** $\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$
 - this is a *parametric* equation for the line
 - lets us directly generate the points on the line
 - if we restrict to t > 0 then we have a ray
 - note replacing **d** with a**d** doesn't change ray (a > 0)

Ray-sphere intersection: algebraic

• Condition I: point is on ray

 $\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$

- Condition 2: point is on sphere
 - assume unit sphere; see Shirley or notes for general

$$\|\mathbf{x}\| = 1 \Leftrightarrow \|\mathbf{x}\|^2 = 1$$
$$f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} - 1 = 0$$

• Substitute:

$$(\mathbf{p} + t\mathbf{d}) \cdot (\mathbf{p} + t\mathbf{d}) - 1 = 0$$

- this is a quadratic equation in t

Ray-sphere intersection: algebraic

• Solution for *t* by quadratic formula:

$$\begin{split} t &= \frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - (\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p} - 1)}}{\mathbf{d} \cdot \mathbf{d}} \\ t &= -\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - \mathbf{p} \cdot \mathbf{p} + 1} \end{split}$$

- simpler form holds when **d** is a unit vector but we won't assume this in practice (reason later)
- I'll use the unit-vector form to make the geometric interpretation

Ray-sphere intersection: geometric

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs

- 2D example
- 3D is the same!

- 2D example
- 3D is the same!

- 2D example
- 3D is the same!

$$p_x + t_{x\min} d_x = x_{\min}$$
$$t_{x\min} = (x_{\min} - p_x)/d_x$$

- 2D example
- 3D is the same!

$$p_{x} + t_{x\min} d_{x} = x_{\min}$$

$$t_{x\min} = (x_{\min} - p_{x})/d_{x}$$

$$p_{y} + t_{y\min} d_{y} = y_{\min}$$

$$t_{y\min} = (y_{\min} - p_{y})/d_{y}$$

$$(p_{x}, p_{y})$$

$$t_{x\min}$$

$$(d_{x}, d_{y})$$

$$t_{x\max}$$

$$y_{\min}$$

Intersecting intersections

- Each intersection is an interval
- Want last entry point and first exit point

Shirley fig. 10.16

 $t_{\min} = \max(t_{x\min}, t_{y\min})$ $t_{\max} = \min(t_{x\max}, t_{y\max})$

Ray-triangle intersection

• Condition I: point is on ray

 $\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$

• Condition 2: point is on plane

 $(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0$

- Condition 3: point is on the inside of all three edges
- First solve I&2 (ray-plane intersection)
 - substitute and solve for t:

$$(\mathbf{p} + t\mathbf{d} - \mathbf{a}) \cdot \mathbf{n} = 0$$
$$t = \frac{(\mathbf{a} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

Inside-edge test

- Need outside vs. inside
- Reduce to clockwise vs. counterclockwise
 vector of edge to vector to x
- Use cross product to decide

Ray-triangle intersection

$$(\mathbf{b} - \mathbf{a}) \times (\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} > 0$$

 $(\mathbf{c} - \mathbf{b}) \times (\mathbf{x} - \mathbf{b}) \cdot \mathbf{n} > 0$
 $(\mathbf{a} - \mathbf{c}) \times (\mathbf{x} - \mathbf{c}) \cdot \mathbf{n} > 0$

Ray-triangle intersection

- a more efficient method
 - use barycentric coordinates

Source: F. Durand

Barycentric definition of a plane

P a a

Source: F. Durand

Barycentric definition of a triangle

- P(α, β, γ)= α a+ β b+ γ c with $\alpha + \beta + \gamma = I$
- $0 < \alpha < 1$ $0 < \beta < 1$ $0 < \gamma < 1$ P

a

Source: F. Durand

Given P, how can we compute α , β , γ ?

- Compute the areas of the opposite subtriangle
 - Ratio with complete area

$$\alpha = A_a/A$$
, $\beta = A_b/A$ $\gamma = A_c/A$

Use signed areas for points outside the triangle

Intuition behind area formula

- P is barycenter of a and Q
- A is the interpolation coefficient on aQ
- All points on line parallel to be have the same $\boldsymbol{\alpha}$
- All such Ta triangles have same height/area

Source: F. Durand

Simplify

- Since $\alpha + \beta + \gamma = I$ we can write $\alpha = I - \beta - \gamma$
- $P(\beta, \gamma) = (I \beta \gamma) a + \beta b + \gamma c$

Source: F. Durand

Simplify

- $P(\beta, \gamma) = (I \beta \gamma) a + \beta b + \gamma c$
- $P(\beta, \gamma) = a + \beta(b-a) + \gamma(c-a)$

C

Non-orthogonal coordinate system of the plane

Hacettepe BCO511 Spring 2012 • Week3

P

How do we use it for intersection?

Insert ray equation into barycentric expression of triangle $P(t) = a + \beta (b-a) + \gamma (c-a)$ Intersection if $\beta + \gamma < 1$; $0 < \beta$ and 0<γ р a Source: F. Durand

Intersection

Matrix form

Cramer's rule

Advantage

Efficient Store no plane equation Get the barycentric coordinates for free Useful for interpolation, texture mapping

Image so far

• With eye ray generation and sphere intersection

```
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
  for 0 <= ix < nx {
    ray = camera.getRay(ix, iy);
    hitSurface, t = s.intersect(ray, 0, +inf)
    if hitSurface is not null
    image.set(ix, iy, white);
}</pre>
```


Intersection against many shapes

• The basic idea is:

```
Group.intersect (ray, tMin, tMax) {
   tBest = +inf; firstSurface = null;
   for surface in surfaceList {
      hitSurface, t = surface.intersect(ray, tMin, tBest);
      if hitSurface is not null {
        tBest = t;
        firstSurface = hitSurface;
      }
   }
  return hitSurface, tBest;
}
```

 this is linear in the number of shapes but there are sublinear methods (acceleration structures)

Image so far

• With eye ray generation and scene intersection

```
for 0 <= iy < ny
for 0 <= ix < nx {
    ray = camera.getRay(ix, iy);
    c = scene.trace(ray, 0, +inf);
    image.set(ix, iy, c);
}</pre>
```

```
Scene.trace(ray, tMin, tMax) {
    surface, t = surfs.intersect(ray, tMin, tMax);
    if (surface != null) return surface.color();
    else return black;
}
```


. . .

Shading

- Compute light reflected toward camera
- Inputs:
 - eye direction
 - light direction
 (for each of many lights)
 - surface normal
 - surface parameters (color, shininess, ...)

Diffuse reflection

- Light is scattered uniformly in all directions
 the surface color is the same for all viewing directions
- Lambert's cosine law

Top face of 60° rotated cube intercepts half the light In general, light per unit area is proportional to $\cos \theta = \mathbf{I} \cdot \mathbf{n}$

Lambertian shading

• Shading independent of view direction

Hacettepe BCO511 Spring 2012 • Week3

Lambertian shading

• Produces matte appearance

[Foley et al.]

Diffuse shading

Image so far

```
Scene.trace(Ray ray, tMin, tMax) {
    surface, t = hit(ray, tMin, tMax);
    if surface is not null {
        point = ray.evaluate(t);
        normal = surface.getNormal(point);
        return surface.shade(ray, point,
            normal, light);
    }
    else return backgroundColor;
}
```

```
Surface.shade(ray, point, normal, light) {
    v = -normalize(ray.direction);
    l = normalize(light.pos - point);
    // compute shading
}
```


...

Shadows

- Surface is only illuminated if nothing blocks its view of the light.
- With ray tracing it's easy to check
 - just intersect a ray with the scene!

Image so far

```
Surface.shade(ray, point, normal, light) {
    shadRay = (point, light.pos - point);
    if (shadRay not blocked) {
        v = -normalize(ray.direction);
        l = normalize(light.pos - point);
        // compute shading
    }
    return black;
}
```


Multiple lights

- Important to fill in black shadows
- Just loop over lights, add contributions
- Ambient shading
 - black shadows are not really right
 - one solution: dim light at camera
 - alternative: add a constant "ambient" color to the shading...

Image so far

```
shade(ray, point, normal, lights) {
  result = ambient;
  for light in lights {
     if (shadow ray not blocked) {
        result += shading contribution;
     }
   }
  return result;
}
```


Specular shading (Blinn-Phong)

- Intensity depends on view direction
 - bright near mirror configuration

Specular shading (Blinn-Phong)

- Close to mirror ⇔ half vector near normal
 - Measure "near" by dot product of unit vectors

Phong model—plots

• Increasing *n* narrows the lobe

Fig. 16.9 Different values of $\cos^n \alpha$ used in the Phong illumination model.

Specular shading

Diffuse + Phong shading

Ambient shading

- Shading that does not depend on anything
 - add constant color to account for disregarded illumination and fill in black shadows

Putting it together

• Usually include ambient, diffuse, Phong in one model

$$L = L_a + L_d + L_s$$

= $k_a I_a + k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^p$

• The final result is the sum over many lights

$$L = L_a + \sum_{i=1}^{N} \left[(L_d)_i + (L_s)_i \right]$$
$$L = k_a I_a + \sum_{i=1}^{N} \left[k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l}_i) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h}_i)^p \right]$$
Mirror reflection

- Consider perfectly shiny surface
 - there isn't a highlight
 - instead there's a reflection of other objects
- Can render this using recursive ray tracing
 - to find out mirror reflection color, ask what color is seen from surface point in reflection direction
 - already computing reflection direction for Phong...
- "Glazed" material has mirror reflection and diffuse

$$L = L_a + L_d + L_m$$

– where L_m is evaluated by tracing a new ray

Mirror reflection

- Intensity depends on view direction
 - reflects incident light from mirror direction

$$\mathbf{r} = \mathbf{v} + 2((\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v})$$
$$= 2(\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v}$$

Diffuse + mirror reflection (glazed)

(glazed material on floor)

Ray tracer architecture 101

- You want a class called Ray
 - point and direction; evaluate(t)
 - possible: tMin, tMax
- Some things can be intersected with rays
 - individual surfaces
 - groups of surfaces (acceleration goes here)
 - the whole scene
 - make these all subclasses of Surface
 - limit the range of valid t values (e.g. shadow rays)
- Once you have the visible intersection, compute the color
 - may want to separate shading code from geometry
 - separate class: Material (each Surface holds a reference to one)
 - its job is to compute the color

Architectural practicalities

- Return values
 - surface intersection tends to want to return multiple values
 - t, surface or shader, normal vector, maybe surface point
 - in many programming languages (e.g. Java) this is a pain
 - typical solution: an intersection record
 - a class with fields for all these things
 - keep track of the intersection record for the closest intersection
 - be careful of accidental aliasing (which is very easy if you're new to Java)

• Efficiency

- what objects are created for every ray? try to find a place for them where you can reuse them.
- Shadow rays can be cheaper (any intersection will do, don't need closest)
- but: "First Get it Right, Then Make it Fast"