
Hacettepe BCO511 Spring 2012 • Week4

2D/3D Geometric Transformations 
and Scene Graphs

1

Week 4

Acknowledgement: The course slides are adapted from the slides prepared by Steve 
Marschner of Cornell University



Hacettepe BCO511 Spring 2012 • Week4

A little quick math background

• Notation for sets, functions, mappings
• Linear transformations
• Matrices

– Matrix-vector multiplication
– Matrix-matrix multiplication

• Geometry of curves in 2D
– Implicit representation
– Explicit representation

2



Hacettepe BCO511 Spring 2012 • Week4

Implicit representations

• Equation to tell whether we are on the curve
 

• Example: line (orthogonal to u, distance k from 0)
 

• Example: circle (center p, radius r)
 

• Always define boundary of region 
– (if f is continuous)

3



Hacettepe BCO511 Spring 2012 • Week4

Explicit representations

• Also called parametric
• Equation to map domain into plane
 

• Example: line (containing p, parallel to u)
 

• Example: circle (center b, radius r)
 

• Like tracing out the path of a particle over time
• Variable t is the “parameter”

4



Hacettepe BCO511 Spring 2012 • Week4

Transforming geometry

• Move a subset of the plane using a mapping from the 
plane to itself
 

• Parametric representation:
 

• Implicit representation:
 

 

5



Hacettepe BCO511 Spring 2012 • Week4

Translation

• Simplest transformation: 
• Inverse:
• Example of transforming circle

6



Hacettepe BCO511 Spring 2012 • Week4

Linear transformations

• One way to define a transformation is by matrix 
multiplication:
 

• Such transformations are linear, which is to say:
 

(and in fact all linear transformations can be written this way)

7



Hacettepe BCO511 Spring 2012 • Week4

Geometry of 2D linear trans.

• 2x2 matrices have simple geometric interpretations
– uniform scale
– non-uniform scale
– rotation
– shear
– reflection

• Reading off the matrix

8



Hacettepe BCO511 Spring 2012 • Week4

Linear transformation gallery

• Uniform scale

9



Hacettepe BCO511 Spring 2012 • Week4

Linear transformation gallery

• Nonuniform scale

10



Hacettepe BCO511 Spring 2012 • Week4

Linear transformation gallery

• Rotation

11



Hacettepe BCO511 Spring 2012 • Week4

Linear transformation gallery

• Reflection
– can consider it a special case

of nonuniform scale

12



Hacettepe BCO511 Spring 2012 • Week4

Linear transformation gallery

• Shear

13



Hacettepe BCO511 Spring 2012 • Week4

Composing transformations

• Want to move an object, then move it some more
–  

• We need to represent S o T (“S compose T”)
– and would like to use the same representation as for S and T

• Translation easy
–  

• Translation by uT then by uS is translation by uT + uS

– commutative!

14



Hacettepe BCO511 Spring 2012 • Week4

Composing transformations

• Linear transformations also straightforward
–  

• Transforming first by MT then by MS is the same as 

transforming by MSMT

– only sometimes commutative
• e.g. rotations & uniform scales
• e.g. non-uniform scales w/o rotation

– Note MSMT, or S o T, is T first, then S

15



Hacettepe BCO511 Spring 2012 • Week4

Combining linear with translation

• Need to use both in single framework
• Can represent arbitrary seq. as 

–  

–  

–  

– e. g. 

• Transforming by MT and uT, then by MS and uS, is the 

same as transforming by MSMT and uS + MSuT

– This will work but is a little awkward
16



Hacettepe BCO511 Spring 2012 • Week4

Homogeneous coordinates

• A trick for representing the foregoing more elegantly
• Extra component w for vectors, extra row/column for 

matrices
– for affine, can always keep w = 1

• Represent linear transformations with dummy extra 
row and column

17



Hacettepe BCO511 Spring 2012 • Week4

Homogeneous coordinates

• Represent translation using the extra column

18



Hacettepe BCO511 Spring 2012 • Week4

Homogeneous coordinates

• Composition just works, by 3x3 matrix multiplication

• This is exactly the same as carrying around M and u 
– but cleaner
– and generalizes in useful ways as we’ll see later

19



Hacettepe BCO511 Spring 2012 • Week4

Affine transformations

• The set of transformations we have been looking at is 
known as the “affine” transformations
– straight lines preserved; parallel lines preserved
– ratios of lengths along lines preserved (midpoints preserved)

20



Hacettepe BCO511 Spring 2012 • Week4

Affine transformation gallery

• Translation

21



Hacettepe BCO511 Spring 2012 • Week4

Affine transformation gallery

• Uniform scale

22



Hacettepe BCO511 Spring 2012 • Week4

Affine transformation gallery

• Nonuniform scale

23



Hacettepe BCO511 Spring 2012 • Week4

Affine transformation gallery

• Rotation

24



Hacettepe BCO511 Spring 2012 • Week4

Affine transformation gallery

• Reflection
– can consider it a special case

of nonuniform scale

25



Hacettepe BCO511 Spring 2012 • Week4

Affine transformation gallery

• Shear

26



Hacettepe BCO511 Spring 2012 • Week4

General affine transformations

• The previous slides showed “canonical” examples of 
the types of affine transformations

• Generally, transformations contain elements of multiple 
types
– often define them as products of canonical transforms
– sometimes work with their properties more directly

27



Hacettepe BCO511 Spring 2012 • Week4

Composite affine transformations

• In general not commutative: order matters!

rotate, then translate translate, then rotate

28



Hacettepe BCO511 Spring 2012 • Week4

Composite affine transformations

• In general not commutative: order matters!

rotate, then translate translate, then rotate

28



Hacettepe BCO511 Spring 2012 • Week4

Composite affine transformations

• In general not commutative: order matters!

rotate, then translate translate, then rotate

28



Hacettepe BCO511 Spring 2012 • Week4

Composite affine transformations

• In general not commutative: order matters!

rotate, then translate translate, then rotate

28



Hacettepe BCO511 Spring 2012 • Week4

Composite affine transformations

• Another example

scale, then rotate rotate, then scale

29



Hacettepe BCO511 Spring 2012 • Week4

Composite affine transformations

• Another example

scale, then rotate rotate, then scale

29



Hacettepe BCO511 Spring 2012 • Week4

Composite affine transformations

• Another example

scale, then rotate rotate, then scale

29



Hacettepe BCO511 Spring 2012 • Week4

Composite affine transformations

• Another example

scale, then rotate rotate, then scale

29



Hacettepe BCO511 Spring 2012 • Week4

Rigid motions

• A transform made up of only translation and rotation is 
a rigid motion or a rigid body transformation

• The linear part is an orthonormal matrix

• Inverse of orthonormal matrix is transpose
– so inverse of rigid motion is easy:

30



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

31



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

31



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

31



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

31



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

32



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

32



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

32



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

32



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

32



Hacettepe BCO511 Spring 2012 • Week4

Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

32



Hacettepe BCO511 Spring 2012 • Week4

Transforming points and vectors

• Recall distinction points vs. vectors
– vectors are just offsets (differences between points)
– points have a location

• represented by vector offset from a fixed origin

• Points and vectors transform differently
– points respond to translation; vectors do not

33



Hacettepe BCO511 Spring 2012 • Week4

Transforming points and vectors

• Homogeneous coords. let us exclude translation
– just put 0 rather than 1 in the last place

– and note that subtracting two points cancels the extra 
coordinate, resulting in a vector!

• Preview: projective transformations
– what’s really going on with this last coordinate?

– think of R2 embedded in R3: all affine xfs. preserve z=1 plane

– could have other transforms; project back to z=1

34



Hacettepe BCO511 Spring 2012 • Week4

More math background

• Coordinate systems
– Expressing vectors with respect to bases
– Linear transformations as changes of basis

35



Hacettepe BCO511 Spring 2012 • Week4

Affine change of coordinates

• Six degrees of freedom

or

36



Hacettepe BCO511 Spring 2012 • Week4

Affine change of coordinates

• Coordinate frame: point plus basis
• Interpretation: transformation

changes representation of
point from one basis to another

• “Frame to canonical” matrix has
frame in columns
– takes points represented in frame
– represents them in canonical basis
– e.g. [0 0], [1 0], [0 1]

• Seems backward but bears thinking about

37



Hacettepe BCO511 Spring 2012 • Week4

Affine change of coordinates

• A new way to “read off” the matrix
– e.g. shear from earlier
– can look at picture, see effect

on basis vectors, write
down matrix

• Also an easy way to construct transforms
– e. g. scale by 2 across direction (1,2)

38



Hacettepe BCO511 Spring 2012 • Week4

Affine change of coordinates

• When we move an object to the origin to apply a 
transformation, we are really changing coordinates
– the transformation is easy to express in object’s frame
– so define it there and transform it

– Te is the transformation expressed wrt. {e1, e2}

– TF is the transformation expressed in natural frame

– F is the frame-to-canonical matrix [u v p]

• This is a similarity transformation

39



Hacettepe BCO511 Spring 2012 • Week4

Coordinate frame summary

• Frame = point plus basis
• Frame matrix (frame-to-canonical) is

• Move points to and from frame by multiplying with F

• Move transformations using similarity transforms

40



Hacettepe BCO511 Spring 2012 • Week4

Data structures with transforms

• Representing a drawing (“scene”)
• List of objects
• Transform for each object

– can use minimal primitives: ellipse is transformed circle
– transform applies to points of object

41



Hacettepe BCO511 Spring 2012 • Week4

Example

• Can represent drawing with flat list
– but editing operations require updating many transforms

42



Hacettepe BCO511 Spring 2012 • Week4

Example

• Can represent drawing with flat list
– but editing operations require updating many transforms

42



Hacettepe BCO511 Spring 2012 • Week4

Groups of objects

• Treat a set of objects as one
• Introduce new object type: group

– contains list of references to member objects

• This makes the model into a tree
– interior nodes = groups
– leaf nodes = objects
– edges = membership of object in group

43



Hacettepe BCO511 Spring 2012 • Week4

Example

• Add group as a new object type
– lets the data structure reflect the drawing structure
– enables high-level editing by changing just one node

44



Hacettepe BCO511 Spring 2012 • Week4

Example

• Add group as a new object type
– lets the data structure reflect the drawing structure
– enables high-level editing by changing just one node

44



Hacettepe BCO511 Spring 2012 • Week4

The Scene Graph (tree)

• A name given to various kinds of graph structures 
(nodes connected together) used to represent scenes

• Simplest form: tree
– just saw this
– every node has one parent
– leaf nodes are identified

with objects in the scene

45



Hacettepe BCO511 Spring 2012 • Week4

Concatenation and hierarchy

• Transforms associated with nodes or edges
• Each transform applies to all geometry below it

– want group transform to transform each member
– members already transformed—concatenate

• Frame transform for object is product of all matrices 
along path from root
– each object’s transform describes relationship between its 

local coordinates and its group’s coordinates
– frame-to-canonical transform is the result of repeatedly 

changing coordinates from group to containing group

46



Hacettepe BCO511 Spring 2012 • Week4

Instances

• Simple idea: allow an object to be a member of more 
than one group at once
– transform different in each case
– leads to linked copies
– single editing operation changes all instances

47



Hacettepe BCO511 Spring 2012 • Week4

Example

• Allow multiple references to nodes
– reflects more of drawing structure
– allows editing of repeated parts in one operation

48



Hacettepe BCO511 Spring 2012 • Week4

Example

• Allow multiple references to nodes
– reflects more of drawing structure
– allows editing of repeated parts in one operation

48



Hacettepe BCO511 Spring 2012 • Week4

Example

• Allow multiple references to nodes
– reflects more of drawing structure
– allows editing of repeated parts in one operation

48



Hacettepe BCO511 Spring 2012 • Week4

The Scene Graph (with instances)

• With instances, there is no more tree
– an object that is instanced multiple 

times has more than one parent

• Transform tree becomes DAG
– directed acyclic graph
– group is not allowed to contain 

itself, even indirectly

• Transforms still accumulate 
along path from root
– now paths from root to leaves

are identified with scene objects

49



Hacettepe BCO511 Spring 2012 • Week4

Implementing a hierarchy

• Object-oriented language is convenient
– define shapes and groups as derived from single class

abstract class Shape {
    void draw();
}

class Square extends Shape {
    void draw() {
        // draw unit square
    }
}

class Circle extends Shape {
    void draw() {
        // draw unit circle
    }
}

50



Hacettepe BCO511 Spring 2012 • Week4

Implementing traversal

• Pass a transform down the hierarchy
– before drawing, concatenate

abstract class Shape {
    void draw(Transform t_c);
}

class Square extends Shape {
    void draw(Transform t_c) {
        // draw t_c * unit square
    }
}

class Circle extends Shape {
    void draw(Transform t_c) {
        // draw t_c * unit circle
    }
}

51



Hacettepe BCO511 Spring 2012 • Week4

Implementing traversal

• Pass a transform down the hierarchy
– before drawing, concatenate

abstract class Shape {
    void draw(Transform t_c);
}

class Square extends Shape {
    void draw(Transform t_c) {
        // draw t_c * unit square
    }
}

class Circle extends Shape {
    void draw(Transform t_c) {
        // draw t_c * unit circle
    }
}

class Group extends Shape {
    Transform t;
    ShapeList members;
    void draw(Transform t_c) {
        for (m in members) {
            m.draw(t_c * t);
        }
    }
}

51



Hacettepe BCO511 Spring 2012 • Week4

Basic Scene Graph operations

• Editing a transformation
– good to present usable UI

• Getting transform of object in canonical (world) frame
– traverse path from root to leaf

• Grouping and ungrouping
– can do these operations without moving anything
– group: insert identity node
– ungroup: remove node, push transform to children

• Reparenting
– move node from one parent to another
– can do without altering position

52



Hacettepe BCO511 Spring 2012 • Week4

Adding more than geometry

• Objects have properties besides shape
– color, shading parameters
– approximation parameters (e.g. precision of subdividing 

curved surfaces into triangles)
– behavior in response to user input
– …

• Setting properties for entire groups is useful
– paint entire window green

• Many systems include some kind of property nodes
– in traversal they are read as, e.g., “set current color”

53



Hacettepe BCO511 Spring 2012 • Week4

Scene Graph variations

• Where transforms go
– in every node
– on edges
– in group nodes only
– in special Transform nodes

• Tree vs. DAG
• Nodes for cameras and lights?

54



Hacettepe BCO511 Spring 2012 • Week4

Translation

55



Hacettepe BCO511 Spring 2012 • Week4

Translation

55



Hacettepe BCO511 Spring 2012 • Week4

Translation

55



Hacettepe BCO511 Spring 2012 • Week4

Translation

55



Hacettepe BCO511 Spring 2012 • Week4

Scaling

56



Hacettepe BCO511 Spring 2012 • Week4

Scaling

56



Hacettepe BCO511 Spring 2012 • Week4

Scaling

56



Hacettepe BCO511 Spring 2012 • Week4

Scaling

56



Hacettepe BCO511 Spring 2012 • Week4

Rotation about z axis

57



Hacettepe BCO511 Spring 2012 • Week4

Rotation about z axis

57



Hacettepe BCO511 Spring 2012 • Week4

Rotation about x axis

58



Hacettepe BCO511 Spring 2012 • Week4

Rotation about x axis

58



Hacettepe BCO511 Spring 2012 • Week4

Rotation about y axis

59



Hacettepe BCO511 Spring 2012 • Week4

Rotation about y axis

59



Hacettepe BCO511 Spring 2012 • Week4

General rotations

• A rotation in 2D is around a point

• A rotation in 3D is around an axis
– so 3D rotation is w.r.t a line, not just a point
– there are many more 3D rotations than 2D

• a 3D space around a given point, not just 1D

2D 3D

60



Hacettepe BCO511 Spring 2012 • Week4

Specifying rotations

• In 2D, a rotation just has an angle
– if it’s about a particular center, it’s a point and angle

• In 3D, specifying a rotation is more complex
– basic rotation about origin: unit vector (axis) and angle

• convention: positive rotation is CCW when vector is pointing at you
– about different center: point (center), unit vector, and angle

• this is redundant: think of a second point on the same axis...

• Alternative: Euler angles
– stack up three coord axis rotations

61



Hacettepe BCO511 Spring 2012 • Week4

Coming up with the matrix

• Showed matrices for coordinate axis rotations
– but what if we want rotation about some random axis?

• Compute by composing elementary transforms
– transform rotation axis to align with x axis
– apply rotation
– inverse transform back into position

• Just as in 2D this can be interpreted as a similarity transform

62



Hacettepe BCO511 Spring 2012 • Week4

Building general rotations

• Using elementary transforms you need three
– translate axis to pass through origin
– rotate about y to get into x-y plane
– rotate about z to align with x axis

• Alternative: construct frame and change coordinates
– choose p, u, v, w to be orthonormal frame with p and u matching the 

rotation axis

– apply similarity transform T = F Rx(θ ) F–1

63



Hacettepe BCO511 Spring 2012 • Week4

Orthonormal frames in 3D	


• Useful tools for constructing transformations

• Recall rigid motions
– affine transforms with pure rotation
– columns (and rows) form right handed ONB

• that is, an orthonormal basis

64



Hacettepe BCO511 Spring 2012 • Week4

Building 3D frames

• Given a vector a and a secondary vector b
– The u axis should be parallel to a; the u–v plane should contain b

• u = u / ||u||
• w = u x b; w = w / ||w||
• v = w x u

• Given just a vector a
– The u axis should be parallel to a; don’t care about orientation about 

that axis
• Same process but choose arbitrary b first
• Good choice is not near a: e.g. set smallest entry to 1

65



Hacettepe BCO511 Spring 2012 • Week4

Building general rotations

• Alternative: construct frame and change coordinates
– choose p, u, v, w to be orthonormal frame with p and u matching the 

rotation axis

– apply similarity transform T = F Rx(θ ) F–1

– interpretation: move to x axis, rotate, move back
– interpretation: rewrite u-axis rotation in new coordinates
– (each is equally valid)

66



Hacettepe BCO511 Spring 2012 • Week4

Building transforms from points

• Recall2D affine transformation has 6 degrees of freedom 
(DOFs)
– this is the number of “knobs” we have to set to define one

• Therefore 6 constraints suffice to define the transformation
– handy kind of constraint: point p maps to point q (2 constraints at once)
– three point constraints add up to constrain all 6 DOFs

(i.e. can map any triangle to any other triangle)

• 3D affine transformation has 12 degrees of freedom
– count them by looking at the matrix entries we’re allowed to change

• Therefore 12 constraints suffice to define the transformation
– in 3D, this is 4 point constraints

(i.e. can map any tetrahedron to any other tetrahedron)

67



Hacettepe BCO511 Spring 2012 • Week4

Transforming normal vectors

• Transforming surface normals
– differences of points (and therefore tangents) transform OK
– normals do not

68



Hacettepe BCO511 Spring 2012 • Week4

Transforming normal vectors

• Transforming surface normals
– differences of points (and therefore tangents) transform OK
– normals do not

68


