2D/3D Geometric Transformations and Scene Graphs

Week 4

Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University

Hacettepe BCO511 Spring 2012 • Week4

A little quick math background

- Notation for sets, functions, mappings
- Linear transformations
- Matrices
 - Matrix-vector multiplication
 - Matrix-matrix multiplication
- Geometry of curves in 2D
 - Implicit representation
 - Explicit representation

Implicit representations

- Equation to tell whether we are on the curve $\{{\bf v}\,|\,f({\bf v})=0\}$
- Example: line (orthogonal to **u**, distance k from **0**) $\{\mathbf{v} | \mathbf{v} \cdot \mathbf{u} + k = 0\}$
- Example: circle (center \mathbf{p} , radius r) $\{\mathbf{v} | (\mathbf{v} - \mathbf{p}) \cdot (\mathbf{v} - \mathbf{p}) + r^2 = 0\}$
- Always define boundary of region
 (if f is continuous)

Explicit representations

- Also called parametric
- Equation to map domain into plane $\{f(t) \, | \, t \in D\}$
- Example: line (containing **p**, parallel to **u**) $\{\mathbf{p} + t\mathbf{u} \mid t \in \mathbb{R}\}$
- Example: circle (center **b**, radius *r*)

 $\{\mathbf{p} + r[\cos t \, \sin t\,]^T \,|\, t \in [0, 2\pi)\}$

- Like tracing out the path of a particle over time
- Variable t is the "parameter"

Transforming geometry

Move a subset of the plane using a mapping from the plane to itself

 $S \to \{T(\mathbf{v}) \,|\, \mathbf{v} \in S\}$

• Parametric representation:

$$\{f(t) \, | \, t \in D\} \to \{T(f(t)) \, | \, t \in D\}$$

• Implicit representation:

$$\{\mathbf{v} \,|\, f(\mathbf{v}) = 0\} \to \{T(\mathbf{v}) \,|\, f(\mathbf{v}) = 0\}$$
$$= \{\mathbf{v} \,|\, f(T^{-1}(\mathbf{v})) = 0\}$$

Translation

- Simplest transformation: $T(\mathbf{v}) = \mathbf{v} + \mathbf{u}$
- Inverse: $T^{-1}(\mathbf{v}) = \mathbf{v} \mathbf{u}$
- Example of transforming circle

Linear transformations

• One way to define a transformation is by matrix multiplication:

 $T(\mathbf{v}) = M\mathbf{v}$

• Such transformations are *linear*, which is to say:

 $T(a\mathbf{u} + \mathbf{v}) = aT(\mathbf{u}) + T(\mathbf{v})$

(and in fact all linear transformations can be written this way)

Geometry of 2D linear trans.

- 2x2 matrices have simple geometric interpretations
 - uniform scale
 - non-uniform scale
 - rotation
 - shear
 - reflection
- Reading off the matrix

• Uniform scale $\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} sx \\ sy \end{bmatrix}$ $\begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix}$

- Reflection
 - can consider it a special case of nonuniform scale

• Shear $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + ay \\ y \end{bmatrix}$ $\begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$

Composing transformations

• Want to move an object, then move it some more

$$\mathbf{p} \to T(\mathbf{p}) \to S(T(\mathbf{p})) = (S \circ T)(\mathbf{p})$$

- We need to represent S o T ("S compose T")
 - and would like to use the same representation as for S and T
- Translation easy

$$- T(\mathbf{p}) = \mathbf{p} + \mathbf{u}_T; S(\mathbf{p}) = \mathbf{p} + \mathbf{u}_S$$

 $(S \circ T)(\mathbf{p}) = \mathbf{p} + (\mathbf{u}_T + \mathbf{u}_S)$

- Translation by \mathbf{u}_T then by \mathbf{u}_S is translation by $\mathbf{u}_T + \mathbf{u}_S$
 - commutative!

Composing transformations

• Linear transformations also straightforward

$$T(\mathbf{p}) = M_T \mathbf{p}; S(\mathbf{p}) = M_S \mathbf{p}$$
$$(S \circ T)(\mathbf{p}) = M_S M_T \mathbf{p}$$

- Transforming first by M_T then by M_S is the same as transforming by $M_S M_T$
 - only sometimes commutative
 - e.g. rotations & uniform scales
 - e.g. non-uniform scales w/o rotation
 - Note $M_S M_T$, or S o T, is T first, then S

Combining linear with translation

- Need to use both in single framework
- Can represent arbitrary seq. as $T(\mathbf{p}) = M\mathbf{p} + \mathbf{u}$ - $T(\mathbf{p}) = M_T\mathbf{p} + \mathbf{u}_T$

-
$$S(\mathbf{p}) = M_S \mathbf{p} + \mathbf{u}_S$$

- $(S \circ T)(\mathbf{p}) = M_S(M_T \mathbf{p} + \mathbf{u}_T) + \mathbf{u}_S$
 $= (M_S M_T) \mathbf{p} + (M_S \mathbf{u}_T + \mathbf{u}_S)$
- e.g. $S(T(0)) = S(\mathbf{u}_T)$

• Transforming by M_T and \mathbf{u}_T , then by M_S and \mathbf{u}_S , is the same as transforming by $M_S M_T$ and $\mathbf{u}_S + M_S \mathbf{u}_T$

- This will work but is a little awkward Hacettepe BCO511 Spring 2012 • Week4

Homogeneous coordinates

- A trick for representing the foregoing more elegantly
- Extra component w for vectors, extra row/column for matrices
 - for affine, can always keep w = I
- Represent linear transformations with dummy extra row and column

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax+by \\ cx+dy \\ 1 \end{bmatrix}$$

Homogeneous coordinates

• Represent translation using the extra column

$$\begin{bmatrix} 1 & 0 & t \\ 0 & 1 & s \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+t \\ y+s \\ 1 \end{bmatrix}$$

Homogeneous coordinates

• Composition just works, by 3x3 matrix multiplication

$$\begin{bmatrix} M_S & \mathbf{u}_S \\ 0 & 1 \end{bmatrix} \begin{bmatrix} M_T & \mathbf{u}_T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} (M_S M_T) \mathbf{p} + (M_S \mathbf{u}_T + \mathbf{u}_S) \\ 1 \end{bmatrix}$$

- This is exactly the same as carrying around M and u
 but cleaner
 - and generalizes in useful ways as we'll see later

Affine transformations

- The set of transformations we have been looking at is known as the "affine" transformations
 - straight lines preserved; parallel lines preserved
 - ratios of lengths along lines preserved (midpoints preserved)

• Translation

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2.15 \\ 0 & 1 & 0.85 \\ 0 & 0 & 1 \end{bmatrix}$$

• Uniform scale

$$\begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1.5 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Nonuniform scale

$$\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1.5 & 0 & 0 \\ 0 & 0.8 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Rotation $\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.866 & -0.5 & 0 \\ 0.5 & 0.866 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- Reflection
 - can consider it a special case of nonuniform scale

• Shear

General affine transformations

- The previous slides showed "canonical" examples of the types of affine transformations
- Generally, transformations contain elements of multiple types
 - often define them as products of canonical transforms
 - sometimes work with their properties more directly

• In general **not** commutative: order matters!

R

rotate, then translate

• In general **not** commutative: order matters!

rotate, then translate

• In general **not** commutative: order matters!

rotate, then translate

• In general **not** commutative: order matters!

rotate, then translate

• Another example

rotate, then scale

Rigid motions

- A transform made up of only translation and rotation is a rigid motion or a rigid body transformation
- The linear part is an orthonormal matrix

$$R = \begin{bmatrix} Q & \mathbf{u} \\ 0 & 1 \end{bmatrix}$$

- Inverse of orthonormal matrix is transpose
 - so inverse of rigid motion is easy:

$$R^{-1}R = \begin{bmatrix} Q^T & -Q^T\mathbf{u} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} Q & \mathbf{u} \\ 0 & 1 \end{bmatrix}$$

- Want to rotate about a particular point
 could work out formulas directly...
- Know how to rotate about the origin
 - so translate that point to the origin

 $M = T^{-1}RT$

- Want to rotate about a particular point
 could work out formulas directly...
- Know how to rotate about the origin
 - so translate that point to the origin

 $M = T^{-1}RT$

- Want to rotate about a particular point
 could work out formulas directly...
- Know how to rotate about the origin
 - so translate that point to the origin

 $M = T^{-1}RT$

- Want to rotate about a particular point
 could work out formulas directly...
- Know how to rotate about the origin
 - so translate that point to the origin

 $M = T^{-1}RT$

- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 so translate to the origin and rotate to align axes

 $M = T^{-1}R^{-1}SRT$

- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 - so translate to the origin and rotate to align axes

- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 so translate to the origin and rotate to align axes

- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 so translate to the origin and rotate to align axes

- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 - so translate to the origin and rotate to align axes

- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 so translate to the origin and rotate to align axes

 $M = T^{-1}R^{-1}SRT$

Transforming points and vectors

- Recall distinction points vs. vectors
 - vectors are just offsets (differences between points)
 - points have a location
 - represented by vector offset from a fixed origin
- Points and vectors transform differently
 - points respond to translation; vectors do not

$$\mathbf{v} = \mathbf{p} - \mathbf{q}$$

$$T(\mathbf{x}) = M\mathbf{x} + \mathbf{t}$$

$$T(\mathbf{p} - \mathbf{q}) = M\mathbf{p} + \mathbf{t} - (M\mathbf{q} + \mathbf{t})$$

$$= M(\mathbf{p} - \mathbf{q}) + (\mathbf{t} - \mathbf{t}) = M\mathbf{v}$$

Transforming points and vectors

- Homogeneous coords. let us exclude translation
 - just put 0 rather than 1 in the last place

$$\begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} M\mathbf{p} + \mathbf{t} \\ 1 \end{bmatrix} \begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} M\mathbf{v} \\ 0 \end{bmatrix}$$

- and note that subtracting two points cancels the extra coordinate, resulting in a vector!
- Preview: projective transformations
 - what's really going on with this last coordinate?
 - think of R^2 embedded in R^3 : all affine xfs. preserve z=1 plane
 - could have other transforms; project back to z=1

More math background

- Coordinate systems
 - Expressing vectors with respect to bases
 - Linear transformations as changes of basis

• Six degrees of freedom

- Coordinate frame: point plus basis
- Interpretation: transformation changes representation of point from one basis to another
- "Frame to canonical" matrix has frame in columns
 - takes points represented in frame
 - represents them in canonical basis
 - e.g. [0 0], [1 0], [0 1]
- Seems backward but bears thinking about

 $\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{bmatrix}$

- A new way to "read off" the matrix
 - e.g. shear from earlier
 - can look at picture, see effect on basis vectors, write down matrix

Also an easy way to construct transform:

- e.g. scale by 2 across direction (1,2)

- When we move an object to the origin to apply a transformation, we are really changing coordinates
 - the transformation is easy to express in object's frame
 - so define it there and transform it

$$T_e = F T_F F^{-1}$$

- T_e is the transformation expressed wrt. $\{e_1, e_2\}$

- $-T_F$ is the transformation expressed in natural frame
- -F is the frame-to-canonical matrix [u v p]
- This is a similarity transformation

Coordinate frame summary

- Frame = point plus basis
- Frame matrix (frame-to-canonical) is

$$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{bmatrix}$$

• Move points to and from frame by multiplying with F

$$p_e = F p_F \quad p_F = F^{-1} p_e$$

• Move transformations using similarity transforms $T_e = FT_F F^{-1} \quad T_F = F^{-1}T_e F$

Data structures with transforms

- Representing a drawing ("scene")
- List of objects
- Transform for each object
 - can use minimal primitives: ellipse is transformed circle
 - transform applies to points of object

- Can represent drawing with flat list
 - but editing operations require updating many transforms

- Can represent drawing with flat list
 - but editing operations require updating many transforms

Groups of objects

- Treat a set of objects as one
- Introduce new object type: group

 contains list of references to member objects
- This makes the model into a tree
 - interior nodes = groups
 - leaf nodes = objects
 - edges = membership of object in group

- Add group as a new object type
 - lets the data structure reflect the drawing structure
 - enables high-level editing by changing just one node

- Add group as a new object type
 - lets the data structure reflect the drawing structure
 - enables high-level editing by changing just one node

The Scene Graph (tree)

- A name given to various kinds of graph structures (nodes connected together) used to represent scenes
- Simplest form: tree
 - just saw this
 - every node has one parent
 - leaf nodes are identified
 with objects in the scene

Concatenation and hierarchy

- Transforms associated with nodes or edges
- Each transform applies to all geometry below it
 - want group transform to transform each member
 - members already transformed—concatenate
- Frame transform for object is product of all matrices along path from root
 - each object's transform describes relationship between its local coordinates and its group's coordinates
 - frame-to-canonical transform is the result of repeatedly changing coordinates from group to containing group

Instances

- Simple idea: allow an object to be a member of more than one group at once
 - transform different in each case
 - leads to linked copies
 - single editing operation changes all instances

- Allow multiple references to nodes
 - reflects more of drawing structure
 - allows editing of repeated parts in one operation

- Allow multiple references to nodes
 - reflects more of drawing structure
 - allows editing of repeated parts in one operation

- Allow multiple references to nodes
 - reflects more of drawing structure
 - allows editing of repeated parts in one operation

The Scene Graph (with instances)

- With instances, there is no more tree
 - an object that is instanced multiple times has more than one parent
- Transform tree becomes DAG
 - directed acyclic graph
 - group is not allowed to contain itself, even indirectly
- Transforms still accumulate along path from root
 - now paths from root to leaves are identified with scene objects

Implementing a hierarchy

- Object-oriented language is convenient
 - define shapes and groups as derived from single class

```
abstract class Shape {
   void draw();
}
class Square extends Shape {
   void draw() {
      // draw unit square
   }
}
class Circle extends Shape {
   void draw() {
      // draw unit circle
   }
}
```

Implementing traversal

• Pass a transform down the hierarchy

```
- before drawing, concatenate
```

```
abstract class Shape {
   void draw(Transform t_c);
}
class Square extends Shape {
   void draw(Transform t_c) {
      // draw t_c * unit square
   }
}
class Circle extends Shape {
   void draw(Transform t_c) {
      // draw t_c * unit circle
   }
}
```

Implementing traversal

• Pass a transform down the hierarchy

```
- before drawing, concatenate
```

```
abstract class Shape {
   void draw(Transform t_c);
}
class Square extends Shape {
   void draw(Transform t_c) {
}
```

```
// draw t_c * unit square
```

```
class Circle extends Shape {
   void draw(Transform t_c) {
      // draw t_c * unit circle
   }
}
```

```
class Group extends Shape {
   Transform t;
   ShapeList members;
   void draw(Transform t_c) {
     for (m in members) {
        m.draw(t_c * t);
     }
   }
}
```

Basic Scene Graph operations

- Editing a transformation
 - good to present usable UI
- Getting transform of object in canonical (world) frame

 traverse path from root to leaf
- Grouping and ungrouping
 - can do these operations without moving anything
 - group: insert identity node
 - ungroup: remove node, push transform to children
- Reparenting
 - move node from one parent to another
 - can do without altering position

Adding more than geometry

- Objects have properties besides shape
 - color, shading parameters
 - approximation parameters (e.g. precision of subdividing curved surfaces into triangles)
 - behavior in response to user input
 - ...
- Setting properties for entire groups is useful
 - paint entire window green
- Many systems include some kind of property nodes
 - in traversal they are read as, e.g., "set current color"

Scene Graph variations

- Where transforms go
 - in every node
 - on edges
 - in group nodes only
 - in special Transform nodes
- Tree vs. DAG
- Nodes for cameras and lights?

$$\begin{bmatrix} x'\\y'\\z'\\1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x\\0 & 1 & 0 & t_y\\0 & 0 & 1 & t_z\\0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\z\\1 \end{bmatrix}$$

Rotation about z axis

Rotation about z axis

Rotation about x axis

Rotation about x axis

Rotation about y axis

Rotation about y axis

General rotations

- A rotation in 2D is around a point
- A rotation in 3D is around an axis
 - so 3D rotation is w.r.t a line, not just a point
 - there are many more 3D rotations than 2D
 - a 3D space around a given point, not just ID

Specifying rotations

- In 2D, a rotation just has an angle
 - if it's about a particular center, it's a point and angle
- In 3D, specifying a rotation is more complex
 - basic rotation about origin: unit vector (axis) and angle
 - convention: positive rotation is CCW when vector is pointing at you
 - about different center: point (center), unit vector, and angle
 - this is redundant: think of a second point on the same axis...
- Alternative: Euler angles
 - stack up three coord axis rotations

Coming up with the matrix

- Showed matrices for coordinate axis rotations
 - but what if we want rotation about some random axis?
- Compute by composing elementary transforms
 - transform rotation axis to align with x axis
 - apply rotation
 - inverse transform back into position
- Just as in 2D this can be interpreted as a similarity transform

Building general rotations

- Using elementary transforms you need three
 - translate axis to pass through origin
 - rotate about y to get into x-y plane
 - rotate about z to align with x axis
- Alternative: construct frame and change coordinates
 - choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
 - apply similarity transform $T = F R_{\chi}(\theta) F^{-1}$

Orthonormal frames in 3D

- Useful tools for constructing transformations
- Recall rigid motions
 - affine transforms with pure rotation
 - columns (and rows) form right handed ONB
 - that is, an **o**rtho**n**ormal **b**asis

$$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{p} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{v} \qquad \mathbf{v}$$

Building 3D frames

- Given a vector **a** and a secondary vector **b**
 - The **u** axis should be parallel to \mathbf{a} ; the **u**-**v** plane should contain **b**
 - u = u / ||u||
 - $w = u \times b; w = w / ||w||$
 - **v** = **w** × **u**
- Given just a vector **a**
 - The **u** axis should be parallel to **a**; don't care about orientation about that axis
 - Same process but choose arbitrary **b** first
 - Good choice is not near **a**: e.g. set smallest entry to I

Building general rotations

- Alternative: construct frame and change coordinates
 - choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
 - apply similarity transform $T = F R_{\chi}(\theta) F^{-1}$
 - interpretation: move to x axis, rotate, move back
 - interpretation: rewrite *u*-axis rotation in new coordinates
 - (each is equally valid)

Building transforms from points

- Recall2D affine transformation has 6 degrees of freedom (DOFs)
 - this is the number of "knobs" we have to set to define one
- Therefore 6 constraints suffice to define the transformation
 - handy kind of constraint: point **p** maps to point **q** (2 constraints at once)
 - three point constraints add up to constrain all 6 DOFs (i.e. can map any triangle to any other triangle)
- 3D affine transformation has 12 degrees of freedom
 - count them by looking at the matrix entries we're allowed to change
- Therefore I2 constraints suffice to define the transformation
 - in 3D, this is 4 point constraints
 (i.e. can map any tetrahedron to any other tetrahedron)

Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not

have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$

Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not

have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$