2D/3D Geometric Transformations and Scene Graphs

Week 4

Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University
A little quick math background

• Notation for sets, functions, mappings
• Linear transformations
• Matrices
 – Matrix-vector multiplication
 – Matrix-matrix multiplication
• Geometry of curves in 2D
 – Implicit representation
 – Explicit representation
Implicit representations

• Equation to tell whether we are on the curve
 \[\{ \mathbf{v} \mid f(\mathbf{v}) = 0 \} \]

• Example: line (orthogonal to \(\mathbf{u} \), distance \(k \) from \(\mathbf{0} \))
 \[\{ \mathbf{v} \mid \mathbf{v} \cdot \mathbf{u} + k = 0 \} \]

• Example: circle (center \(\mathbf{p} \), radius \(r \))
 \[\{ \mathbf{v} \mid (\mathbf{v} - \mathbf{p}) \cdot (\mathbf{v} - \mathbf{p}) + r^2 = 0 \} \]

• Always define boundary of region
 – (if \(f \) is continuous)
Explicit representations

- Also called parametric
- Equation to map domain into plane
 \[\{ f(t) \mid t \in D \} \]
- Example: line (containing \(p \), parallel to \(u \))
 \[\{ p + tu \mid t \in \mathbb{R} \} \]
- Example: circle (center \(b \), radius \(r \))
 \[\{ p + r[\cos t \; \sin t]^T \mid t \in [0, 2\pi) \} \]
- Like tracing out the path of a particle over time
- Variable \(t \) is the “parameter”
Transforming geometry

- Move a subset of the plane using a mapping from the plane to itself

\[S \rightarrow \{ T(v) \mid v \in S \} \]

- Parametric representation:

\[\{ f(t) \mid t \in D \} \rightarrow \{ T(f(t)) \mid t \in D \} \]

- Implicit representation:

\[\{ v \mid f(v) = 0 \} \rightarrow \{ T(v) \mid f(v) = 0 \} \]

\[= \{ v \mid f(T^{-1}(v)) = 0 \} \]
Translation

- Simplest transformation: \(T(v) = v + u \)
- Inverse: \(T^{-1}(v) = v - u \)
- Example of transforming circle
Linear transformations

• One way to define a transformation is by matrix multiplication:

\[T(v) = Mv \]

• Such transformations are linear, which is to say:

\[T(au + v) = aT(u) + T(v) \]

(and in fact all linear transformations can be written this way)
Geometry of 2D linear trans.

- 2x2 matrices have simple geometric interpretations
 - uniform scale
 - non-uniform scale
 - rotation
 - shear
 - reflection

- Reading off the matrix
Linear transformation gallery

- Uniform scale

\[
\begin{bmatrix}
s & 0 \\
0 & s
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
sx \\
sy
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.5 & 0 \\
0 & 1.5
\end{bmatrix}
\]
Linear transformation gallery

- Nonuniform scale

\[
\begin{bmatrix}
s_x & 0 \\
0 & s_y
\end{bmatrix}\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
s_xx \\
s_yy
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.5 & 0 \\
0 & 0.8
\end{bmatrix}
\]
Linear transformation gallery

- Rotation

\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
x \cos \theta - y \sin \theta \\
x \sin \theta + y \cos \theta
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.866 & -0.05 \\
0.5 & 0.866
\end{bmatrix}
\]
Linear transformation gallery

• Reflection
 – can consider it a special case of nonuniform scale

\[
\begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\]
Linear transformation gallery

- Shear

\[
\begin{bmatrix}
1 & a \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \begin{bmatrix}
x + ay \\
y
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0.5 \\
0 & 1
\end{bmatrix}
\]
Composing transformations

- Want to move an object, then move it some more
 \[p \rightarrow T(p) \rightarrow S(T(p)) = (S \circ T)(p) \]
- We need to represent \(S \circ T \) ("S compose T")
 - and would like to use the same representation as for \(S \) and \(T \)
- Translation easy
 \[T(p) = p + u_T; \quad S(p) = p + u_S \]
 \[(S \circ T)(p) = p + (u_T + u_S) \]
- Translation by \(u_T \) then by \(u_S \) is translation by \(u_T + u_S \)
 - commutative!
Composing transformations

• Linear transformations also straightforward

\[T(p) = M_T p; \quad S(p) = M_S p \]

\[(S \circ T)(p) = M_S M_T p \]

• Transforming first by \(M_T \) then by \(M_S \) is the same as transforming by \(M_S M_T \)
 – only sometimes commutative
 • e.g. rotations & uniform scales
 • e.g. non-uniform scales w/o rotation
 – Note \(M_S M_T \), or \(S \circ T \), is \(T \) first, then \(S \)
Combining linear with translation

• Need to use both in single framework
• Can represent arbitrary seq. as
 \[T(p) = M_T p + u_T \]
 \[S(p) = M_S p + u_S \]
 \[(S \circ T)(p) = M_S(M_T p + u_T) + u_S \]
 \[= (M_S M_T)p + (M_S u_T + u_S) \]
 – e.g. \(S(T(0)) = S(u_T) \)

• Transforming by \(M_T \) and \(u_T \), then by \(M_S \) and \(u_S \), is the same as transforming by \(M_S M_T \) and \(u_S + M_S u_T \)
 – This will work but is a little awkward
Homogeneous coordinates

- A trick for representing the foregoing more elegantly
- Extra component w for vectors, extra row/column for matrices
 - for affine, can always keep $w = 1$
- Represent linear transformations with dummy extra row and column

\[
\begin{bmatrix}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1 \\
\end{bmatrix} =
\begin{bmatrix}
ax + by \\
cx + dy \\
1 \\
\end{bmatrix}
\]
Homogeneous coordinates

• Represent translation using the extra column

\[
\begin{bmatrix}
1 & 0 & t \\
0 & 1 & s \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
x + t \\
y + s \\
1 \\
\end{bmatrix}
\]
Homogeneous coordinates

- Composition just works, by 3x3 matrix multiplication

\[
\begin{bmatrix}
M_S & u_S \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
M_T & u_T \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
p \\
1
\end{bmatrix}
= \begin{bmatrix}
(M_SM_T)p + (M_Su_T + u_S) \\
1
\end{bmatrix}
\]

- This is exactly the same as carrying around \(M \) and \(u \)
 - but cleaner
 - and generalizes in useful ways as we’ll see later
Affine transformations

• The set of transformations we have been looking at is known as the “affine” transformations
 – straight lines preserved; parallel lines preserved
 – ratios of lengths along lines preserved (midpoints preserved)
Affine transformation gallery

• Translation

\[
\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 2.15 \\
0 & 1 & 0.85 \\
0 & 0 & 1
\end{bmatrix}
\]
Affine transformation gallery

- Uniform scale

\[
\begin{bmatrix}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\quad
\begin{bmatrix}
1.5 & 0 & 0 \\
0 & 1.5 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
Affine transformation gallery

- Nonuniform scale

\[
\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\quad
\begin{bmatrix}
1.5 & 0 & 0 \\
0 & 0.8 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
Affine transformation gallery

- **Rotation**

\[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0.866 & -0.5 & 0 \\
0.5 & 0.866 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Affine transformation gallery

• Reflection
 – can consider it a special case of nonuniform scale

\[
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Affine transformation gallery

- Shear

\[
\begin{bmatrix}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\quad
\begin{bmatrix}
1 & 0.5 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
General affine transformations

• The previous slides showed “canonical” examples of the types of affine transformations
• Generally, transformations contain elements of multiple types
 – often define them as products of canonical transforms
 – sometimes work with their properties more directly
Composite affine transformations

- In general **not** commutative: order matters!

rotate, then translate
translate, then rotate
Composite affine transformations

- In general not commutative: order matters!

rotate, then translate

translate, then rotate
Composite affine transformations

- In general **not** commutative: order matters!

rotate, then translate

translate, then rotate
Composite affine transformations

- In general not commutative: order matters!

rotate, then translate
translate, then rotate
Composite affine transformations

• Another example

scale, then rotate

rotate, then scale
Composite affine transformations

- Another example

scale, then rotate

rotate, then scale
Composite affine transformations

• Another example

scale, then rotate
rotate, then scale
Composite affine transformations

• Another example

scale, then rotate

rotate, then scale
Rigid motions

• A transform made up of only translation and rotation is a rigid motion or a rigid body transformation

• The linear part is an orthonormal matrix

\[
R = \begin{bmatrix}
Q & u \\
0 & 1
\end{bmatrix}
\]

• Inverse of orthonormal matrix is transpose
 – so inverse of rigid motion is easy:

\[
R^{-1}R = \begin{bmatrix}
Q^T & -Q^T u \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
Q & u \\
0 & 1
\end{bmatrix}
\]
Composing to change axes

• Want to rotate about a particular point
 – could work out formulas directly…

• Know how to rotate about the origin
 – so translate that point to the origin

\[M = T^{-1}RT \]
Composing to change axes

• Want to rotate about a particular point
 – could work out formulas directly…
• Know how to rotate about the origin
 – so translate that point to the origin

\[M = T^{-1} RT \]
Composing to change axes

• Want to rotate about a particular point
 – could work out formulas directly…
• Know how to rotate about the origin
 – so translate that point to the origin

$$M = T^{-1}RT$$
Composing to change axes

- Want to rotate about a particular point
 - could work out formulas directly...
- Know how to rotate about the origin
 - so translate that point to the origin

\[M = T^{-1}RT \]
Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin
 – so translate to the origin and rotate to align axes

\[M = T^{-1} R^{-1} S R T \]
Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin
 – so translate to the origin and rotate to align axes

\[M = T^{-1}R^{-1}SRT \]
Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin
 – so translate to the origin and rotate to align axes

$$M = T^{-1}R^{-1}SRT$$
Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin
 – so translate to the origin and rotate to align axes

$$M = T^{-1}R^{-1}SRT$$
Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin
 – so translate to the origin and rotate to align axes

\[M = T^{-1}R^{-1}SRT \]
Composing to change axes

• Want to scale along a particular axis and point
• Know how to scale along the y axis at the origin
 – so translate to the origin and rotate to align axes

\[M = T^{-1}R^{-1}SRT \]
Transforming points and vectors

• Recall distinction points vs. vectors
 – vectors are just offsets (differences between points)
 – points have a location
 • represented by vector offset from a fixed origin
• Points and vectors transform differently
 – points respond to translation; vectors do not

\[
\begin{align*}
\mathbf{v} & = \mathbf{p} - \mathbf{q} \\
T(x) & = Mx + t \\
T(p - q) & = Mp + t - (Mq + t) \\
& = M(p - q) + (t - t) = Mv
\end{align*}
\]
Transforming points and vectors

• Homogeneous coords. let us exclude translation
 – just put 0 rather than 1 in the last place

\[
\begin{bmatrix}
M & t \\
0^T & 1
\end{bmatrix}
\begin{bmatrix}
p \\
1
\end{bmatrix}
= \begin{bmatrix}
Mp + t \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
M & t \\
0^T & 1
\end{bmatrix}
\begin{bmatrix}
v \\
0
\end{bmatrix}
= \begin{bmatrix}
Mv \\
0
\end{bmatrix}
\]

– and note that subtracting two points cancels the extra coordinate, resulting in a vector!

• Preview: projective transformations
 – what’s really going on with this last coordinate?
 – think of \(R^2 \) embedded in \(R^3 \): all affine xfs. preserve \(z=1 \) plane
 – could have other transforms; project back to \(z=1 \)
More math background

• Coordinate systems
 – Expressing vectors with respect to bases
 – Linear transformations as changes of basis
Affine change of coordinates

- Six degrees of freedom

\[
\begin{bmatrix}
a_1 & a_2 & a_3 \\
a_4 & a_5 & a_6 \\
0 & 0 & 1
\end{bmatrix}
\]

or

\[
\begin{bmatrix}
u \\
v \\
p
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]
Affine change of coordinates

- Coordinate frame: point plus basis
- Interpretation: transformation changes representation of point from one basis to another
- “Frame to canonical” matrix has frame in columns
 - takes points represented in frame
 - represents them in canonical basis
 - e.g. $[0 \ 0]$, $[1 \ 0]$, $[0 \ 1]$
- Seems backward but bears thinking about
Affine change of coordinates

• A new way to “read off” the matrix
 – e.g. shear from earlier
 – can look at picture, see effect on basis vectors, write down matrix

• Also an easy way to construct transforms
 – e.g. scale by 2 across direction (1,2)
Affine change of coordinates

• When we move an object to the origin to apply a transformation, we are really changing coordinates
 – the transformation is easy to express in object’s frame
 – so define it there and transform it

\[T_e = F T_F F^{-1} \]

– \(T_e \) is the transformation expressed wrt. \(\{e_1, e_2\} \)
– \(T_F \) is the transformation expressed in natural frame
– \(F \) is the frame-to-canonical matrix \([u \; v \; p]\)

• This is a similarity transformation
Coordinate frame summary

- Frame = point plus basis
- Frame matrix (frame-to-canonical) is

\[F = \begin{bmatrix} u & v & p \\ 0 & 0 & 1 \end{bmatrix} \]

- Move points to and from frame by multiplying with \(F \)

\[p_e = Fp_F \quad p_F = F^{-1}p_e \]

- Move transformations using similarity transforms

\[T_e = FFT_FF^{-1} \quad T_F = F^{-1}T_eF \]
Data structures with transforms

- Representing a drawing ("scene")
- List of objects
- Transform for each object
 - can use minimal primitives: ellipse is transformed circle
 - transform applies to points of object
Example

- Can represent drawing with flat list
 - but editing operations require updating many transforms
Example

- Can represent drawing with flat list
 - but editing operations require updating many transforms
Groups of objects

• Treat a set of objects as one
• Introduce new object type: group
 – contains list of references to member objects
• This makes the model into a tree
 – interior nodes = groups
 – leaf nodes = objects
 – edges = membership of object in group
Example

- Add group as a new object type
 - lets the data structure reflect the drawing structure
 - enables high-level editing by changing just one node
Example

• Add group as a new object type
 – lets the data structure reflect the drawing structure
 – enables high-level editing by changing just one node
The Scene Graph (tree)

- A name given to various kinds of graph structures (nodes connected together) used to represent scenes
- Simplest form: tree
 - just saw this
 - every node has one parent
 - leaf nodes are identified with objects in the scene
Concatenation and hierarchy

• Transforms associated with nodes or edges
• Each transform applies to all geometry below it
 – want group transform to transform each member
 – members already transformed—concatenate
• Frame transform for object is product of all matrices along path from root
 – each object’s transform describes relationship between its local coordinates and its group’s coordinates
 – frame-to-canonical transform is the result of repeatedly changing coordinates from group to containing group
Instances

• Simple idea: allow an object to be a member of more than one group at once
 – transform different in each case
 – leads to linked copies
 – single editing operation changes all instances
Example

- Allow multiple references to nodes
 - reflects more of drawing structure
 - allows editing of repeated parts in one operation
Example

• Allow multiple references to nodes
 – reflects more of drawing structure
 – allows editing of repeated parts in one operation
Example

• Allow multiple references to nodes
 – reflects more of drawing structure
 – allows editing of repeated parts in one operation
The Scene Graph (with instances)

- With instances, there is no more tree
 - an object that is instanced multiple times has more than one parent
- Transform tree becomes DAG
 - directed acyclic graph
 - group is not allowed to contain itself, even indirectly
- Transforms still accumulate along path from root
 - now paths from root to leaves are identified with scene objects
Implementing a hierarchy

- Object-oriented language is convenient
 - define shapes and groups as derived from single class

```java
abstract class Shape {
    void draw();
}

class Square extends Shape {
    void draw() {
        // draw unit square
    }
}

class Circle extends Shape {
    void draw() {
        // draw unit circle
    }
}
```
Implementing traversal

• Pass a transform down the hierarchy
 – before drawing, concatenate

abstract class Shape {
 void draw(Transform t_c);
}

class Square extends Shape {
 void draw(Transform t_c) {
 // draw t_c * unit square
 }
}

class Circle extends Shape {
 void draw(Transform t_c) {
 // draw t_c * unit circle
 }
}
Implementing traversal

- Pass a transform down the hierarchy
 - before drawing, concatenate

abstract class Shape {
 void draw(Transform t_c);
}

class Square extends Shape {
 void draw(Transform t_c) {
 // draw t_c * unit square
 }
}

class Circle extends Shape {
 void draw(Transform t_c) {
 // draw t_c * unit circle
 }
}

class Group extends Shape {
 Transform t;
 ShapeList members;
 void draw(Transform t_c) {
 for (m in members) {
 m.draw(t_c * t);
 }
 }
}
Basic Scene Graph operations

• Editing a transformation
 – good to present usable UI

• Getting transform of object in canonical (world) frame
 – traverse path from root to leaf

• Grouping and ungrouping
 – can do these operations without moving anything
 – group: insert identity node
 – ungroup: remove node, push transform to children

• Reparenting
 – move node from one parent to another
 – can do without altering position
Adding more than geometry

• Objects have properties besides shape
 – color, shading parameters
 – approximation parameters (e.g. precision of subdividing curved surfaces into triangles)
 – behavior in response to user input
 – …

• Setting properties for entire groups is useful
 – paint entire window green

• Many systems include some kind of property nodes
 – in traversal they are read as, e.g., “set current color”
Scene Graph variations

- Where transforms go
 - in every node
 - on edges
 - in group nodes only
 - in special Transform nodes

- Tree vs. DAG

- Nodes for cameras and lights?
Translation

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Translation

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix}
\]
Translation

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Translation

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
x'
y'
z'
1
\end{bmatrix}
= \begin{bmatrix}
x
y
z
1
\end{bmatrix}
\begin{bmatrix}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotation about z axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
=
\begin{bmatrix}
 \cos \theta & -\sin \theta & 0 & 0 \\
 \sin \theta & \cos \theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Rotation about z axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & -\sin \theta & 0 & 0 \\
 \sin \theta & \cos \theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Rotation about x axis

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotation about x axis

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotation about y axis

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} =
\begin{bmatrix}
cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]
Rotation about y axis

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} = \begin{bmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
General rotations

• A rotation in 2D is around a point

• A rotation in 3D is around an axis
 – so 3D rotation is w.r.t a line, not just a point
 – there are many more 3D rotations than 2D
 • a 3D space around a given point, not just 1D
Specifying rotations

• In 2D, a rotation just has an angle
 – if it’s about a particular center, it’s a point and angle

• In 3D, specifying a rotation is more complex
 – basic rotation about origin: unit vector (axis) and angle
 • convention: positive rotation is CCW when vector is pointing at you
 – about different center: point (center), unit vector, and angle
 • this is redundant: think of a second point on the same axis...

• Alternative: Euler angles
 – stack up three coord axis rotations
Coming up with the matrix

• Showed matrices for coordinate axis rotations
 – but what if we want rotation about some random axis?

• Compute by composing elementary transforms
 – transform rotation axis to align with x axis
 – apply rotation
 – inverse transform back into position

• Just as in 2D this can be interpreted as a similarity transform
Building general rotations

- Using elementary transforms you need three
 - translate axis to pass through origin
 - rotate about y to get into x-y plane
 - rotate about z to align with x axis

- Alternative: construct frame and change coordinates
 - choose \(p, u, v, w \) to be orthonormal frame with \(p \) and \(u \) matching the rotation axis
 - apply similarity transform \(T = F R_x(\theta) F^{-1} \)
Orthonormal frames in 3D

• Useful tools for constructing transformations

• Recall rigid motions
 – affine transforms with pure rotation
 – columns (and rows) form right handed ONB
 • that is, an orthonormal basis

\[F = \begin{bmatrix} u & v & w & p \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]
Building 3D frames

• Given a vector \mathbf{a} and a secondary vector \mathbf{b}
 – The \mathbf{u} axis should be parallel to \mathbf{a}; the \mathbf{u}–\mathbf{v} plane should contain \mathbf{b}
 • $\mathbf{u} = \mathbf{u} / ||\mathbf{u}||$
 • $\mathbf{w} = \mathbf{u} \times \mathbf{b} ; \mathbf{w} = \mathbf{w} / ||\mathbf{w}||$
 • $\mathbf{v} = \mathbf{w} \times \mathbf{u}$

• Given just a vector \mathbf{a}
 – The \mathbf{u} axis should be parallel to \mathbf{a}; don’t care about orientation about that axis
 • Same process but choose arbitrary \mathbf{b} first
 • Good choice is not near \mathbf{a}: e.g. set smallest entry to 1
Building general rotations

- Alternative: construct frame and change coordinates
 - choose \(p, u, v, w \) to be orthonormal frame with \(p \) and \(u \) matching the rotation axis
 - apply similarity transform \(T = F R_x(\theta) F^{-1} \)
 - interpretation: move to \(x \) axis, rotate, move back
 - interpretation: rewrite \(u \)-axis rotation in new coordinates
 - (each is equally valid)
Building transforms from points

• Recall 2D affine transformation has 6 degrees of freedom (DOFs)
 – this is the number of “knobs” we have to set to define one

• Therefore 6 constraints suffice to define the transformation
 – handy kind of constraint: point p maps to point q (2 constraints at once)
 – three point constraints add up to constrain all 6 DOFs
 (i.e. can map any triangle to any other triangle)

• 3D affine transformation has 12 degrees of freedom
 – count them by looking at the matrix entries we’re allowed to change

• Therefore 12 constraints suffice to define the transformation
 – in 3D, this is 4 point constraints
 (i.e. can map any tetrahedron to any other tetrahedron)
Transforming normal vectors

• Transforming surface normals
 – differences of points (and therefore tangents) transform OK
 – normals do not

\[
\begin{align*}
\text{have: } & t \cdot n = t^T n = 0 \\
\text{want: } & Mt \cdot Xn = t^T M^T Xn = 0 \\
\text{so set } & X = (M^T)^{-1} \\
\text{then: } & Mt \cdot Xn = t^T M^T (M^T)^{-1} n = t^T n = 0
\end{align*}
\]
Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not

$$
\begin{align*}
\text{have: } \mathbf{t} \cdot \mathbf{n} &= \mathbf{t}^T \mathbf{n} = 0 \\
\text{want: } M\mathbf{t} \cdot X\mathbf{n} &= \mathbf{t}^T M^T X \mathbf{n} = 0 \\
\text{so set } X &= (M^T)^{-1} \\
\text{then: } M\mathbf{t} \cdot X\mathbf{n} &= \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0
\end{align*}
$$