3D Viewing

Week 5

Acknowledgement: The course slides are adapted from the slides prepared by Steve
Marschner of Cornell University

Hacettepe BCOS51 | Spring 2012 « Week5

Viewing, backward and forward

* So far have used the backward approach to viewing
— start from pixel
— ask what part of scene projects to pixel
— explicitly construct the ray corresponding to the pixel

* Next will look at the forward approach
— start from a point in 3D
— compute its projection into the image

e Central tool is matrix transformations

— combines seamlessly with coordinate transformations used to position
camera and model

— ultimate goal: single matrix operation to map any 3D point to its correct
screen location.

Hacettepe BCOS51 | Spring 2012 « Week5

Forward viewing

* Would like to just invert the ray generation process
* Problem I|:ray generation produces rays, not points in scene

* Inverting the ray tracing process requires division for the
perspective case

Hacettepe BCOS51 | Spring 2012 « Week5

Mathematics of projection

* Always work in eye coords
— assume eye point at 0 and plane perpendicular to z

* Orthographic case
— a simple projection: just toss out z

* Perspective case: scale diminishes with z
— and increases with d

Hacettepe BCOS51 | Spring 2012 « Week5

Pipeline of transformations

» Standard sequence of transforms

object space camera space Q (—
[B
O T'e——
D | —
c I S
8 -~—
husf ~—
B | —

modeling t ceflmerat. projection viewport
transformation rangggrmation transformation transformation

o\

>
world space canonical
view volume

Hacettepe BCOS51 | Spring 2012 « Week5

Parallel projection: orthographic

projection
plane

(v, 0)

0

to implement orthographic, just toss out z:

Ed x| 1 0 0 0] |"
| =lyl=10 1 0 of |’
) [oo oo 1]

Hacettepe BCOS51 | Spring 2012 « Week5

View volume: orthographic

Hacettepe BCOS51 | Spring 2012 « Week5

Viewing a cube of size 2

» Start by looking at a restricted case: the canonical view volume
 lItis the cube [0,1]3, viewed from the z direction

« Matrix to project it into a square image in [0,1]? is trivial:

1 0 0 0
01 0 0
00 0 1

Hacettepe BCOS51 | Spring 2012 « Week5

Viewing a cube of size 2

* To draw in image, need coordinates in pixel units, though

* Exactly the opposite of mapping (i,j) to (u,v) in ray generation

Hacettepe BCOS51 | Spring 2012 « Week5

Windowing transforms

* This transformation is worth generalizing: take one axis-aligned
rectangle or box to another
— a useful, if mundane, piece of a transformation chain

(Xp> Yi)

CTRY)

translate

=
>

X

scale

(X = X1 Yp =YD

translate

=
>

X

Hacettepe BCOS51 | Spring 2012 « Week5

y

A

\

(Xp = X1, Yo =YD

CYRY)

L
>

X

(X7 Y1)

=
>

X

[Shirley3e f. 6-16; eq. 6-6]

/
0

- ./ /

Th—T]

0

Lp T

/ /

Xy, —X
g0 oo
0 vy | |0 1
Yn—Yi
0 0 1| L0 0
x/xh—x/ Iy
l h
O Th—I]
/ ’ ’ ’
Yn Y, Y1Ynh — YY1
Y —Y1 Y —Y1
0 1

Viewport transformation

1 ny— .5
—1 -5
-1 1 -5 Ny— .3
B - N 0 ne—19 1 T
Lscreen 2 2 L canonical
Yscreen | — 0 nQy nyQ— ! Ycanonical
1 0 0 1 | L 1 |

Hacettepe BCOS51 | Spring 2012 « Week5

Viewport transformation

* In 3D, carry along z for the ride
— one extra row and column

AZ Ne—17
2 0 0 2_1
My, = 0 3 0 =5
0 0 1 0
0 0O O 1

Hacettepe BCOS51 | Spring 2012 « Week5

Orthographic projection

* First generalization: different view rectangle
— retain the minus-z view direction

— specify view by left, right, top, bottom (as in RT)
— also near, far

Hacettepe BCOS51 | Spring 2012 « Week5

Clipping planes

* In object-order systems we always use at least two
clipping planes that further constrain the view volume

— near plane: parallel to view plane; things between it and the
viewpoint will not be rendered

— far plane: also parallel; things behind it will not be rendered

* These planes are:
— partly to remove unnecessary stuff (e.g. behind the camera)

— but really to constrain the range of depths
(we’ll see why later)

Hacettepe BCOS51 | Spring 2012 « Week5

Orthographic projection

* We can implement this by mapping the view volume
to the canonical view volume.

* This is just a 3D windowing transformation!

:E/h—xz 0 0 acgzch—x;,ba:l
Th—I] LTh—T]
0 Y —Yi 0 Y Yh — YR Yl
Yh — Y1 Yn — Y1
Z/ —Z/ z/zh—z’ Z1
0 0 zZ—zi lzh—z}lb
0 0 0 1
- 2 _r4l -
r—I (2) 0 r—é
4
M _ 0 t—b 0 t—b
orth — 0 0 2 _ n+f
n—f n—f
0 0 0 _

Hacettepe BCOS51 | Spring 2012 « Week5

Camera and modeling matrices

* We worked out all the preceding transforms starting from eye
coordinates
— before we do any of this stuff we need to transform into that space

* Transform from world (canonical) to eye space is traditionally
called the viewing matrix
— it is the canonical-to-frame matrix for the camera frame

— that is, FC‘I

* Remember that geometry would originally have been in the
object’s local coordinates; transform into world coordinates is

called the modeling matrix, M__

* Note some systems (e.g. OpenGL) combine the two into a
modelview matrix and just skip world coordinates

Hacettepe BCOS51 | Spring 2012 « Week5

Viewing transformation

\
~
N
b
'
/ —
7 4

the camera matrix rewrites all coordinates in eye space

Hacettepe BCOS51 | Spring 2012 « Week5

Orthographic transformation chain

» Start with coordinates in object’s local coordinates

« Transform into world coords (modeling transform, M)

° I = -
Transform into eye coords (camera xf, M_,_ = F ')

» Orthographic projection,M__.,

* Viewport transform, MVP

Ps = Mvp MorthMcamMm Po

- - - Ny ng—179 r_2 r-+1 -
B 50 0 M E 0 0 iy
Ys | _ 0 % 0 ny2 0 t—b 0 T i—b
2 0 0 1 0 0 0 2 -2
|1 0 0 O 1 110 0 0 1

Hacettepe BCOS51 | Spring 2012 « Week5

Perspective projection

projection
plane

similar triangles:

y' Y
d —

, |
y = —dy/z

Hacettepe BCOS51 | Spring 2012 « Week5

Homogeneous coordinates revisited

* Perspective requires division
— that is not part of affine transformations
— in affine, parallel lines stay parallel

* therefore not vanishing point
* therefore no rays converging on viewpoint

* “True” purpose of homogeneous coords: projection

Hacettepe BCOS51 | Spring 2012 « Week5

20

Homogeneous coordinates revisited

* Introduced w = | coordinate as a placeholder
R — .I,‘

£
l
)| - |

S

— used as a convenience for unifying translation with linear

* Can also allow arbitrary w

o — — —

£Z w.r

Y wy
2 W2

l w

h— L —

Hacettepe BCOS51 | Spring 2012 « Week5

Implications of w

I w.r

Y wy
Wwe

>
p— ()

w

All scalar multiples of a 4-vector are equivalent

* When w is not zero, can divide by w
— therefore these points represent “normal” affine points

* When w is zero, it’'s a point at infinity, a.k.a. a direction
— this is the point where parallel lines intersect
— can also think of it as the vanishing point

* Digression on projective space

Hacettepe BCOS51 | Spring 2012 « Week5

Perspective projection

projection
plane

R

- -

0

(v', =d)

to implement perspective, just move z to w:

11 [—dz /2| dx | d 0
y'| = |—dy/z| ~ |dy| = |0 d
1l | 1 | |-z] |o oo

Hacettepe BCOS51 | Spring 2012 « Week5

View volume: perspective

. - o
N oA
\

Hacettepe BCOS51 | Spring 2012 « Week5

S

View volume: perspective (clipped)

Hacettepe BCOS51 | Spring 2012 « Week5

25

Carrying depth through perspective

* Perspective has a varying denominator—can’t preserve depth!

* Compromise: preserve depth on near and far planes

Ed [Z] d 0 0 0] [z]
Y U 0 d 0 O0f |y
A 0 0 a bl]|z
1] [-z] [0 0 -1 of |1]

— that is, choose a and b so that z'(n) = nand Z'(f) = f.

M

2(z) =az+ b

!

> az + b
, ; ~ ~
-4 (-4

want :/('u.) = n and :/(,/') = /

result: a = —(n+ f) and b =nf (try it)

Hacettepe BCOS51 | Spring 2012 « Week5 26

Official perspective matrix

* Use near plane distance as the projection distance
— i.e,d=-n

* Scale by —1 to have fewer minus signs
— scaling the matrix does not change the projective transformation

n 0 0 0]
P 0 n 0 0
0 0 n+f —fn
00 1 0

Hacettepe BCOS51 | Spring 2012 « Week5

27

Perspective projection matrix

* Product of perspective matrix with orth. projection matrix

1\/Ipe]r — MorthP
- 2

r—I

o O
b [
‘3 - ooct‘wo

o O
T
Sp

oS O

Hacettepe BCOS51 | Spring 2012 « Week5

S
—I—Ol‘woo
R -

S~

- O O

0‘ S~
|
~ 3

~~ o
+ |
3 o~

~

S

_

3
i

|
~+ 3
T

S ~+
+ |
— O

I
kh
SO O O 3

~-
S |

S O 3 O

28

Perspective transformation chain

Transform into world coords (modeling transform, M)

: S
Transform into eye coords (camera xf,M_, _ =F_"')

* Perspective matrix, P

Orthographic projection, M_ .,

Viewport transform, MVP

Ps — Mvp MorthPMcamMmpo

<
L
|
1

2] [0 0 327723 0 0 -7 m 0 0 0] EN
ys| |0 %o Ll 0 0 —H 0o 0 0 Iy o |
Z| |0 0 1 0 0 0 & -2 |0 0 ntf —fo| T |z
1y Lo o o0 1J[Lo o0 o0 1][0 0 1 0 |1

Hacettepe BCOS51 | Spring 2012 « Week5 29

OpenGL view frustum: orthographic

(Xn)/t: _f)

pd
| z=|-n

(Xll Yb: _n) - —

Note OpenGL puts the near and far planes at —n and —f
so that the user can give positive numbers

Hacettepe BCOS51 | Spring 2012 « Week5

OpenGL view frustum: perspective

(Xp Yt =)

Note OpenGL puts the near and far planes at —n and —f
so that the user can give positive numbers

Hacettepe BCOS51 | Spring 2012 « Week5

31

Pipeline of transformations

» Standard sequence of transforms

object space camera space Q (—
[B
O T'e——
D | —
c I S
8 -~—
husf ~—
B | —

modeling t ceflmerat. projection viewport
transformation rangggrmation transformation transformation

o\

>
world space canonical
view volume

Hacettepe BCOS51 | Spring 2012 « Week5

