Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University.

Pipeline and Rasterization

Week 6
The graphics pipeline

• The standard approach to object-order graphics

• Many versions exist
 – software, e.g. Pixar’s REYES architecture
 • many options for quality and flexibility
 – hardware, e.g. graphics cards in PCs
 • amazing performance: millions of triangles per frame

• We’ll focus on an abstract version of hardware pipeline

• “Pipeline” because of the many stages
 – very parallelizable
 – leads to remarkable performance of graphics cards (many times the flops of the CPU at \(\sim 1/5 \) the clock speed)
Pipeline

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

you are here

APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY
Primitives

• Points
• Line segments
 – and chains of connected line segments
• Triangles
• And that’s all!
 – Curves? Approximate them with chains of line segments
 – Polygons? Break them up into triangles
 – Curved regions? Approximate them with triangles
• Trend has been toward minimal primitives
 – simple, uniform, repetitive: good for parallelism
Rasterization

• First job: enumerate the pixels covered by a primitive
 – simple, aliased definition: pixels whose centers fall inside
• Second job: interpolate values across the primitive
 – e.g. colors computed at vertices
 – e.g. normals at vertices
 – will see applications later on
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside
Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels
Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels
Point sampling in action
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Midpoint algorithm in action
Algorithms for drawing lines

- line equation:
 \[y = b + m x \]
- Simple algorithm:
 evaluate line equation per column
- W.l.o.g. \(x_0 < x_1 \); \(0 \leq m \leq 1 \)

```plaintext
for x = ceil(x0) to floor(x1)
  y = b + m*x
  output(x, round(y))
```

\[y = 1.91 + 0.37 \times x \]
Optimizing line drawing

- Multiplying and rounding is slow
- At each pixel the only options are E and NE
- \(d = m(x + 1) + b - y \)
- \(d > 0.5 \) decides between E and NE
Optimizing line drawing

- \[d = m(x + 1) + b - y \]
- Only need to update \(d \) for integer steps in \(x \) and \(y \)
- Do that with addition
- Known as “DDA” (digital differential analyzer)
Midpoint line algorithm

\[x = \text{ceil}(x_0) \]
\[y = \text{round}(mx + b) \]
\[d = m(x + 1) + b - y \]
while \(x < \text{floor}(x_1) \)
 if \(d > 0.5 \)
 \[y += 1 \]
 \[d -= 1 \]
 \[x += 1 \]
\[d += m \]
output(\(x, y \))
Linear interpolation

• We often attach attributes to vertices
 – e.g. computed diffuse color of a hair being drawn using lines
 – want color to vary smoothly along a chain of line segments

• Recall basic definition
 – 1D: \(f(x) = (1 - \alpha) y_0 + \alpha y_1 \)
 – where \(\alpha = (x - x_0) / (x_1 - x_0) \)

• In the 2D case of a line segment, alpha is just the fraction of the distance from \((x_0, y_0)\) to \((x_1, y_1)\)
Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate

\[\alpha = \frac{v \cdot (q - p_0)}{L} \]
\[L = v \cdot (p_1 - p_0) \]
Linear interpolation

• Pixels are not exactly on the line
• Define 2D function by projection on line
 – this is linear in 2D
 – therefore can use DDA to interpolate

\[
\alpha = \mathbf{v} \cdot (\mathbf{q} - \mathbf{p}_0) / L \\
L = \mathbf{v} \cdot (\mathbf{p}_1 - \mathbf{p}_0)
\]
Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate
Alternate interpretation

• We are updating d and α as we step from pixel to pixel
 – d tells us how far from the line we are
 – α tells us how far along the line we are

• So d and α are coordinates in a coordinate system oriented to the line
Alternate interpretation

- View loop as visiting all pixels the line passes through
 - Interpolate d and α for each pixel
 - Only output frag. if pixel is in band
- This makes linear interpolation the primary operation
Pixel-walk line rasterization

\[
x = \text{ceil}(x_0) \\
y = \text{round}(mx + b) \\
d = mx + b - y \\
\text{while } x < \text{floor}(x_1) \\
\quad \text{if } d > 0.5 \\
\quad \quad y += 1; d -= 1; \\
\quad \text{else} \\
\quad \quad x += 1; d += m; \\
\quad \text{if } -0.5 < d \leq 0.5 \\
\quad \quad \text{output}(x, y)
\]
Rasterizing triangles

- The most common case in most applications
 - with good antialiasing can be the only case
 - some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 - walk from pixel to pixel over (at least) the polygon’s area
 - evaluate linear functions as you go
 - use those functions to decide which pixels are inside
Rasterizing triangles

• Input:
 – three 2D points (the triangle’s vertices in pixel space)
 • \((x_0, y_0); (x_1, y_1); (x_2, y_2)\)
 – parameter values at each vertex
 • \(q_{00}, \ldots, q_{0n}; q_{10}, \ldots, q_{1n}; q_{20}, \ldots, q_{2n}\)

• Output: a list of fragments, each with
 – the integer pixel coordinates \((x, y)\)
 – interpolated parameter values \(q_0, \ldots, q_n\)
Rasterizing triangles

- **Summary**
 1. Evaluation of linear functions on pixel grid
 2. Functions defined by parameter values at vertices
 3. Using extra parameters to determine fragment set
Incremental linear evaluation

• A linear (affine, really) function on the plane is:

\[q(x, y) = c_x x + c_y y + c_k \]

• Linear functions are efficient to evaluate on a grid:

\[q(x + 1, y) = c_x (x + 1) + c_y y + c_k = q(x, y) + c_x \]
\[q(x, y + 1) = c_x x + c_y (y + 1) + c_k = q(x, y) + c_y \]
Incremental linear evaluation

linEval(xl, xh, yl, yh, cx, cy, ck) {

 // setup
 qRow = cx*xl + cy*yl + ck;

 // traversal
 for y = yl to yh {
 qPix = qRow;
 for x = xl to xh {
 output(x, y, qPix);
 qPix += cx;
 }
 qRow += cy;
 }
}

\[c_x = .005; c_y = .005; c_k = 0 \]
(image size 100x100)
Rasterizing triangles

- **Summary**
 1. Evaluation of linear functions on pixel grid
 2. Functions defined by parameter values at vertices
 3. Using extra parameters to determine fragment set
Defining parameter functions

• To interpolate parameters across a triangle we need to find the $c_x, c_y,$ and c_k that define the (unique) linear function that matches the given values at all 3 vertices

 – this is 3 constraints on 3 unknown coefficients:

 \[
 \begin{align*}
 c_x x_0 + c_y y_0 + c_k &= q_0 \\
 c_x x_1 + c_y y_1 + c_k &= q_1 \\
 c_x x_2 + c_y y_2 + c_k &= q_2
 \end{align*}
 \]

 (each states that the function agrees with the given value at one vertex)

 – leading to a 3x3 matrix equation for the coefficients:

 \[
 \begin{bmatrix}
 x_0 & y_0 & 1 \\
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 c_x \\
 c_y \\
 c_k
 \end{bmatrix}
 =
 \begin{bmatrix}
 q_0 \\
 q_1 \\
 q_2
 \end{bmatrix}
 \]

 (singular iff triangle is degenerate)
Defining parameter functions

• More efficient version: shift origin to \((x_0, y_0)\)

\[
q(x, y) = c_x(x - x_0) + c_y(y - y_0) + q_0
\]

\[
q(x_1, y_1) = c_x(x_1 - x_0) + c_y(y_1 - y_0) + q_0 = q_1
\]

\[
q(x_2, y_2) = c_x(x_2 - x_0) + c_y(y_2 - y_0) + q_0 = q_2
\]

– now this is a 2x2 linear system (since \(q_0\) falls out):

\[
\begin{bmatrix}
(x_1 - x_0) & (y_1 - y_0) \\
(x_2 - x_0) & (y_2 - y_0)
\end{bmatrix}
\begin{bmatrix}
 c_x \\
 c_y
\end{bmatrix}
= \begin{bmatrix}
 q_1 - q_0 \\
 q_2 - q_0
\end{bmatrix}
\]

– solve using Cramer’s rule (see Shirley):

\[
c_x = (\Delta q_1 \Delta y_2 - \Delta q_2 \Delta y_1) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)
\]

\[
c_y = (\Delta q_2 \Delta x_1 - \Delta q_1 \Delta x_2) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)
\]
Defining parameter functions

linInterp(xl, xh, yl, yh, x0, y0, q0, x1, y1, q1, x2, y2, q2) {

 // setup
 det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0);
 cx = ((q1-q0)*(y2-y0) - (q2-q0)*(y1-y0)) / det;
 cy = ((q2-q0)*(x1-x0) - (q1-q0)*(x2-x0)) / det;
 qRow = cx*(xl-x0) + cy*(yl-y0) + q0;

 // traversal (same as before)
 for y = yl to yh {
 qPix = qRow;
 for x = xl to xh {
 output(x, y, qPix);
 qPix += cx;
 }
 qRow += cy;
 }
}
Interpolating several parameters

linInterp(xl, xh, yl, yh, n, x0, y0, q0[], x1, y1, q1[], x2, y2, q2[]) {

 // setup
 for k = 0 to n-1
 // compute cx[k], cy[k], qRow[k]
 // from q0[k], q1[k], q2[k]

 // traversal
 for y = yl to yh {
 for k = 1 to n, qPix[k] = qRow[k];
 for x = xl to xh {
 output(x, y, qPix);
 for k = 1 to n, qPix[k] += cx[k];
 }
 for k = 1 to n, qRow[k] += cy[k];
 }
}
Rasterizing triangles

- **Summary**
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set
Clipping to the triangle

- Interpolate three *barycentric coordinates* across the plane
 - each barycentric coord is 1 at one vert. and 0 at the other two
- Output fragments only when all three are > 0.
Barycentric coordinates

- A coordinate system for triangles
 - algebraic viewpoint:
 \[p = \alpha a + \beta b + \gamma c \]
 \[\alpha + \beta + \gamma = 1 \]
 - geometric viewpoint (areas):
- Triangle interior test:
 \[\alpha > 0; \beta > 0; \gamma > 0 \]
Barycentric coordinates

- A coordinate system for triangles
 - geometric viewpoint: distances
 - linear viewpoint: basis of edges

\[\alpha = 1 - \beta - \gamma \]
\[p = a + \beta(b - a) + \gamma(c - a) \]
Barycentric coordinates

• Linear viewpoint: basis for the plane

– in this view, the triangle interior test is just

\[\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1 \]
Walking edge equations

- We need to update values of the three edge equations with single-pixel steps in x and y
- Edge equation already in form of dot product
- Components of vector are the increments
Pixel-walk (Pineda) rasterization

- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment
Rasterizing triangles

- Exercise caution with rounding and arbitrary decisions
 - need to visit these pixels once
 - but it’s important not to visit them twice!
Clipping

• Rasterizer tends to assume triangles are on screen
 – particularly problematic to have triangles crossing the plane $z = 0$

• After projection, before perspective divide
 – clip against the planes $x, y, z = 1, -1$ (6 planes)
 – primitive operation: clip triangle against axis-aligned plane
Clipping a triangle against a plane

- 4 cases, based on sidedness of vertices
 - all in (keep)
 - all out (discard)
 - one in, two out (one clipped triangle)
 - two in, one out (two clipped triangles)
Pipeline Operations
Pipeline

Application

Command Stream

Vertex Processing

Transformed Geometry

Rasterization

Fragments

Fragment Processing

Framebuffer Image

Display

3D transformations; shading

Conversion of primitives to pixels

Blending, compositing, shading

User sees this
Pipeline of transformations

- Standard sequence of transforms
Hidden surface elimination

• We have discussed how to map primitives to image space
 – projection and perspective are depth cues
 – occlusion is another very important cue
Back face culling

• For closed shapes you will never see the inside
 – therefore only draw surfaces that face the camera
 – implement by checking $\mathbf{n} \cdot \mathbf{v}$
Back face culling

• For closed shapes you will never see the inside
 – therefore only draw surfaces that face the camera
 – implement by checking $\mathbf{n} \cdot \mathbf{v}$
Back face culling

• For closed shapes you will never see the inside
 – therefore only draw surfaces that face the camera
 – implement by checking $\mathbf{n} \cdot \mathbf{v}$
Back face culling

• For closed shapes you will never see the inside
 – therefore only draw surfaces that face the camera
 – implement by checking $\mathbf{n} \cdot \mathbf{v}$
Painter’s algorithm

• Simplest way to do hidden surfaces
• Draw from back to front, use overwriting in framebuffer
Painter’s algorithm

• Simplest way to do hidden surfaces
• Draw from back to front, use overwriting in framebuffer
Painter’s algorithm

• Simplest way to do hidden surfaces
• Draw from back to front, use overwriting in framebuffer
Painter’s algorithm

- Simplest way to do hidden surfaces
- Draw from back to front, use overwriting in framebuffer
Painter’s algorithm

• Simplest way to do hidden surfaces
• Draw from back to front, use overwriting in framebuffer
Painter’s algorithm

• Simplest way to do hidden surfaces
• Draw from back to front, use overwriting in framebuffer
Painter’s algorithm

• Amounts to a topological sort of the graph of occlusions
 – that is, an edge from A to B means A sometimes occludes B
 – any sort is valid
 • ABCDEF
 • BADCFE
 – if there are cycles there is no sort
Painter’s algorithm

- Amounts to a topological sort of the graph of occlusions
 - that is, an edge from A to B means A sometimes occludes B
 - any sort is valid
 - ABCDEF
 - BADCFE
 - if there are cycles there is no sort
Painter’s algorithm

- Useful when a valid order is easy to come by
- Compatible with alpha blending
The z buffer

• In many (most) applications maintaining a z sort is too expensive
 – changes all the time as the view changes
 – many data structures exist, but complex

• Solution: draw in any order, keep track of closest
 – allocate extra channel per pixel to keep track of closest depth so far
 – when drawing, compare object’s depth to current closest depth and discard if greater
 – this works just like any other compositing operation
The z buffer

- another example of a memory-intensive brute force approach that works and has become the standard
Precision in z buffer

• The precision is distributed between the near and far clipping planes
 – this is why these planes have to exist
 – also why you can’t always just set them to very small and very large distances
• Generally use z' (not world z) in z buffer
Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space
Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space
Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space
Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space
Interpolating in projection

linear interp. in screen space \neq linear interp. in world (eye) space
Interpolating in projection

linear interp. in screen space \neq linear interp. in world (eye) space
Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space
Pipeline for minimal operation

- **Vertex stage** (input: position / vtx; color / tri)
 - transform position (object to screen space)
 - pass through color
- **Rasterizer**
 - pass through color
- **Fragment stage** (output: color)
 - write to color planes
Result of minimal pipeline
Pipeline for basic z buffer

- **Vertex stage** (input: position / vtx; color / tri)
 - transform position (object to screen space)
 - pass through color

- **Rasterizer**
 - interpolated parameter: z' (screen z)
 - pass through color

- **Fragment stage** (output: color, z')
 - write to color planes only if interpolated $z' <$ current z'
Result of z-buffer pipeline
Flat shading

• Shade using the real normal of the triangle
 – same result as ray tracing a bunch of triangles
• Leads to constant shading and faceted appearance
 – truest view of the mesh geometry
Pipeline for flat shading

• **Vertex stage** (input: position / vtx; color and normal / tri)
 – transform position and normal (object to eye space)
 – compute shaded color per triangle using normal
 – transform position (eye to screen space)

• **Rasterizer**
 – interpolated parameters: z' (screen z)
 – pass through color

• **Fragment stage** (output: color, z')
 – write to color planes only if interpolated $z' <$ current z'
Result of flat-shading pipeline
Local vs. infinite viewer, light

- Phong illumination requires geometric information:
 - light vector (function of position)
 - eye vector (function of position)
 - surface normal (from application)

- Light and eye vectors change
 - need to be computed (and normalized) for each face
Local vs. infinite viewer, light

• Look at case when eye or light is far away:
 – distant light source: nearly parallel illumination
 – distant eye point: nearly orthographic projection
 – in both cases, eye or light vector changes very little

• Optimization: approximate eye and/or light as infinitely far away
Directional light

• Directional (infinitely distant) light source
 – light vector always points in the same direction
 – often specified by position $[x \ y \ z \ 0]$
 – many pipelines are faster if you use directional lights
Directional light

• Directional (infinitely distant) light source
 – light vector always points in the same direction
 – often specified by position \([x \ y \ z \ 0]\)
 – many pipelines are faster if you use directional lights
Infinite viewer

- Orthographic camera
 - projection direction is constant

- “Infinite viewer”
 - even with perspective, can approximate eye vector using the image plane normal
 - can produce weirdness for wide-angle views
 - Blinn-Phong: light, eye, half vectors all constant!
Gouraud shading

- Often we’re trying to draw smooth surfaces, so facets are an artifact
 - compute colors at vertices using vertex normals
 - interpolate colors across triangles
 - “Gouraud shading”
 - “Smooth shading”
Gouraud shading

• Often we’re trying to draw smooth surfaces, so facets are an artifact
 – compute colors at vertices using vertex normals
 – interpolate colors across triangles
 – “Gouraud shading”
 – “Smooth shading”
Pipeline for Gouraud shading

- **Vertex stage** (input: position, color, and normal / vtx)
 - transform position and normal (object to eye space)
 - compute shaded color per vertex
 - transform position (eye to screen space)

- **Rasterizer**
 - interpolated parameters: \(z' \) (screen \(z \)); \(r, g, b \) color

- **Fragment stage** (output: color, \(z' \))
 - write to color planes only if interpolated \(z' < \) current \(z' \)
Result of Gouraud shading pipeline
Vertex normals

- Need normals at vertices to compute Gouraud shading
- Best to get vtx. normals from the underlying geometry
 - e.g. spheres example
- Otherwise have to infer vtx. normals from triangles
 - simple scheme: average surrounding face normals

\[N_v = \frac{\sum_i N_i}{\| \sum_i N_i \|} \]
Non-diffuse Gouraud shading

• Can apply Gouraud shading to any illumination model
 – it’s just an interpolation method
• Results are not so good with fast-varying models like specular ones
 – problems with any highlights smaller than a triangle
Phong shading

• Get higher quality by interpolating the normal
 – just as easy as interpolating the color
 – but now we are evaluating the illumination model per pixel rather than per vertex (and normalizing the normal first)
 – in pipeline, this means we are moving illumination from the vertex processing stage to the fragment processing stage
Phong shading

• Bottom line: produces much better highlights
Pipeline for Phong shading

• Vertex stage (input: position, color, and normal / vtx)
 – transform position and normal (object to eye space)
 – transform position (eye to screen space)
 – pass through color

• Rasterizer
 – interpolated parameters: z' (screen z); r, g, b color; x, y, z normal

• Fragment stage (output: color, z')
 – compute shading using interpolated color and normal
 – write to color planes only if interpolated $z' <$ current z'
Result of Phong shading pipeline