Triangle meshes

Week 9

Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University
Notation

- \(n_T = \text{#tris} \); \(n_V = \text{#verts} \); \(n_E = \text{#edges} \)

- Euler: \(n_V - n_E + n_T = 2 \) for a simple closed surface
 - and in general sums to small integer
 - argument for implication that \(n_T:n_E:n_V \) is about 2:3:1
Validity of triangle meshes

• in many cases we care about the mesh being able to bound a region of space nicely
• in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
• two completely separate issues:
 – topology: how the triangles are connected (ignoring the positions entirely)
 – geometry: where the triangles are in 3D space
Topology/geometry examples

• same geometry, different mesh topology:

• same mesh topology, different geometry:
Topological validity

- strongest property, and most simple: be a manifold
 - this means that no points should be "special"
 - interior points are fine
 - edge points: each edge should have exactly 2 triangles
 - vertex points: each vertex should have one loop of triangles

 - not too hard to weaken this to allow boundaries
Geometric validity

- generally want non-self-intersecting surface
- hard to guarantee in general
 - because far-apart parts of mesh might intersect
Representation of triangle meshes

• Compactness
• Efficiency for rendering
 – enumerate all triangles as triples of 3D points
• Efficiency of queries
 – all vertices of a triangle
 – all triangles around a vertex
 – neighboring triangles of a triangle
 – (need depends on application)
 • finding triangle strips
 • computing subdivision surfaces
 • mesh editing
Representations for triangle meshes

- Separate triangles
- Indexed triangle set
 - shared vertices
- Triangle strips and triangle fans
 - compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes
Separate triangles

<table>
<thead>
<tr>
<th>tris[0]</th>
<th>tris[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>x_0, y_0, z_0</td>
<td>x_0, y_0, z_0</td>
</tr>
<tr>
<td>x_2, y_2, z_2</td>
<td>x_3, y_3, z_3</td>
</tr>
<tr>
<td>x_1, y_1, z_1</td>
<td>x_2, y_2, z_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Separate triangles

• array of triples of points
 – float[n_T][3][3]: about 72 bytes per vertex
 • 2 triangles per vertex (on average)
 • 3 vertices per triangle
 • 3 coordinates per vertex
 • 4 bytes per coordinate (float)

• various problems
 – wastes space (each vertex stored 6 times)
 – cracks due to roundoff
 – difficulty of finding neighbors at all
Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

```cpp
Triangle {
    Vertex vertex[3];
}

Vertex {
    float position[3];  // or other data
}

// ... or ...

Mesh {
    float verts[nv][3];  // vertex positions (or other data)
    int tInd[nt][3];  // vertex indices
}
```
Indexed triangle set

• Store each vertex once
• Each triangle points to its three vertices

Triangle {
 Vertex vertex[3];
}

Vertex {
 float position[3]; // or other data
}

// ... or ...

Mesh {
 float verts[nv][3]; // vertex positions (or other data)
 int tInd[nt][3]; // vertex indices
}
Indexed triangle set

\[
\begin{align*}
\text{verts[0]} & : x_0, y_0, z_0 \\
& : x_1, y_1, z_1 \\
& : x_2, y_2, z_2 \\
& : x_3, y_3, z_3 \\
& : \\
\text{verts[1]} & : \\
\text{tInd[0]} & : 0, 2, 1 \\
\text{tInd[1]} & : 0, 3, 2 \\
& : \\
\end{align*}
\]
Indexed triangle set

- array of vertex positions
 - float\([n_V][3]\): 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - int\([n_T][3]\): about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined
Triangle strips

- Take advantage of the mesh property
 - each triangle is usually adjacent to the previous
 - let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 - every sequence of three vertices produces a triangle (but not in the same order)
 - e.g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to
 (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …
 - for long strips, this requires about one index per triangle
Triangle strips

\[
\begin{array}{|c|c|}
\hline
\text{verts[0]} & x_0, y_0, z_0 \\
\text{verts[1]} & x_1, y_1, z_1 \\
& x_2, y_2, z_2 \\
& x_3, y_3, z_3 \\
& \vdots \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{tStrip[0]} & 4, 0, 1, 2, 5, 8 \\
\text{tStrip[1]} & 6, 9, 0, 3, 2, 10, 7 \\
& \vdots \\
\hline
\end{array}
\]
Triangle strips

verts[0] = \begin{bmatrix} x_0, y_0, z_0 \\ x_1, y_1, z_1 \\ x_2, y_2, z_2 \\ x_3, y_3, z_3 \\ \vdots \end{bmatrix}

verts[1] = \begin{bmatrix} x_0, y_0, z_0 \\ x_1, y_1, z_1 \\ x_2, y_2, z_2 \\ x_3, y_3, z_3 \\ \vdots \end{bmatrix}

tStrip[0] = \{4, 0, 1, 2, 5, 8\}

tStrip[1] = \{6, 9, 0, 3, 2, 10, 7\}

Triangle strips

- array of vertex positions
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of index lists
 - int[n_S][variable]: $2 + n$ indices per strip
 - on average, $(1 + \epsilon)$ indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- total is 20 bytes per vertex (limiting best case)
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh
Triangle fans

• Same idea as triangle strips, but keep oldest rather than newest
 – every sequence of three vertices produces a triangle
 – e.g., 0, 1, 2, 3, 4, 5, … leads to
 (0 1 2), (0 2 3), (0 3 4), (0 3 5).
 – for long fans, this requires about one index per triangle
• Memory considerations exactly the same as triangle strip
Triangle neighbor structure

- Extension to indexed triangle set
- Triangle points to its three neighboring triangles
- Vertex points to a single neighboring triangle
- Can now enumerate triangles around a vertex
Triangle neighbor structure

- Extension to indexed triangle set
- Triangle points to its three neighboring triangles
- Vertex points to a single neighboring triangle
- Can now enumerate triangles around a vertex
Triangle neighbor structure

- Extension to indexed triangle set
- Triangle points to its three neighboring triangles
- Vertex points to a single neighboring triangle
- Can now enumerate triangles around a vertex
Triangle neighbor structure

Triangle {
 Triangle nbr[3];
 Vertex vertex[3];
}

// t.neighbor[i] is adjacent
// across the edge from i to i+1

Vertex {
 // ... per-vertex data ...
 Triangle t; // any adjacent tri
}

// ... or ...

Mesh {
 // ... per-vertex data ...
 int tInd[nt][3]; // vertex indices
 int tNbr[nt][3]; // indices of neighbor triangles
 int vTri[nv]; // index of any adjacent triangle
}
Triangle neighbor structure

vTri[0]	0
vTri[1]	6
vTri[2]	1
vTri[3]	1

tNbr[0]	1, 6, 7
tNbr[1]	10, 2, 0
tNbr[2]	3, 1, 12
tNbr[3]	2, 13, 4

tInd[0]	0, 2, 1
tInd[1]	0, 3, 2
tInd[2]	10, 2, 3
tInd[3]	2, 10, 7
Triangle neighbor structure

<table>
<thead>
<tr>
<th>tNbr[0]</th>
<th>1, 6, 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>tNbr[1]</td>
<td>10, 2, 0</td>
</tr>
<tr>
<td>tNbr[2]</td>
<td>3, 1, 12</td>
</tr>
<tr>
<td>tNbr[3]</td>
<td>2, 13, 4</td>
</tr>
<tr>
<td>vTri[0]</td>
<td>0</td>
</tr>
<tr>
<td>vTri[1]</td>
<td>6</td>
</tr>
<tr>
<td>vTri[2]</td>
<td>1</td>
</tr>
<tr>
<td>vTri[3]</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tInd[0]</th>
<th>0, 2, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>tInd[1]</td>
<td>0, 3, 2</td>
</tr>
<tr>
<td>tInd[2]</td>
<td>10, 2, 3</td>
</tr>
<tr>
<td>tInd[3]</td>
<td>2, 10, 7</td>
</tr>
</tbody>
</table>

The diagram illustrates the triangle neighbor structure with nodes labeled p0 to p8 and triangles labeled T0 to T19.
Triangle neighbor structure
Triangle neighbor structure
Triangle neighbor structure
Triangle neighbor structure

TrianglesOfVertex(v) {
 t = v.t;
 do {
 find t.vertex[i] == v;
 t = t.nbr[pred(i)];
 } while (t != v.t);
}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;
Triangle neighbor structure

- Indexed mesh was 36 bytes per vertex
- Add an array of triples of indices (per triangle)
 - int[n_T][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices \times 4 bytes) per triangle
- Add an array of representative triangle per vertex
 - int[n_V]: 4 bytes per vertex
- Total storage: 64 bytes per vertex
 - Still not as much as separate triangles
Triangle neighbor structure—refined

Triangle {
 Edge nbr[3];
 Vertex vertex[3];
}

// if t.nbr[i].i == j
// then t.nbr[i].t.nbr[j] == t

Edge {
 // the i-th edge of triangle t
 Triangle t;
 int i; // in {0,1,2}
 // in practice t and i share 32 bits
}

Vertex {
 // ... per-vertex data ...
 Edge e; // any edge leaving vertex
}

T_0.nbr[0] = { T_1, 2 }
T_1.nbr[2] = { T_0, 0 }
V_0.e = { T_1, 0 }
Triangle neighbor structure—refined

Triangle {
 Edge nbr[3];
 Vertex vertex[3];
}

// if t.nbr[i].i == j
// then t.nbr[i].t.nbr[j] == t

Edge {
 // the i-th edge of triangle t
 Triangle t;
 int i; // in {0,1,2}
 // in practice t and i share 32 bits
}

Vertex {
 // ... per-vertex data ...
 Edge e; // any edge leaving vertex
}

T0.nbr[0] = { T1, 2 }
T1.nbr[2] = { T0, 0 }
V0.e = { T1, 0 }
Triangle neighbor structure

```
TrianglesOfVertex(v) {
    {t, i} = v.e;
    do {
        {t, i} = t.nbr[pred(i)];
    } while (t != v.t);
}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;
```

```
T0.nbr[0] = { T1, 2 }
T1.nbr[2] = { T0, 0 }
V0.e = { T1, 0 }
```
Winged-edge mesh

• Edge-centric rather than face-centric
 – therefore also works for polygon meshes

• Each (oriented) edge points to:
 – left and right forward edges
 – left and right backward edges
 – front and back vertices
 – left and right faces

• Each face or vertex points to one edge
Winged-edge mesh

- Edge-centric rather than face-centric
 - therefore also works for polygon meshes
- Each (oriented) edge points to:
 - left and right forward edges
 - left and right backward edges
 - front and back vertices
 - left and right faces
- Each face or vertex points to one edge
Winged-edge mesh

- Edge-centric rather than face-centric
 - therefore also works for polygon meshes
- Each (oriented) edge points to:
 - left and right forward edges
 - left and right backward edges
 - front and back vertices
 - left and right faces
- Each face or vertex points to one edge
Winged-edge mesh

Edge {
 Edge hl, hr, tl, tr;
 Vertex h, t;
 Face l, r;
}

Face {
 // per-face data
 Edge e; // any adjacent edge
}

Vertex {
 // per-vertex data
 Edge e; // any incident edge
}
Winged-edge structure
Winged-edge structure

\[
\text{EdgesOfFace}(f) \{ \\
 e = f.e; \\
 \text{do} \{ \\
 \text{if } (e.l == f) \\
 e = e.hl; \\
 \text{else} \\
 e = e.tr; \\
 \} \text{ while } (e \neq f.e); \\
\}
\]
Winged-edge structure

\[
\text{EdgesOfVertex}(v)\
\begin{array}{l}
e = v.e; \\
do \\
\quad \text{if } (e.t == v) \\
\quad \quad e = e.tl; \\
\quad \text{else} \\
\quad \quad e = e.hr; \\
\quad \} \text{ while } (e != v.e); \\
\end{array}
\]

\begin{align*}
\text{edge[0]} & \begin{bmatrix} 1 & 4 & 2 & 3 \\
\text{edge[1]} & \begin{bmatrix} 18 & 0 & 16 & 2 \\
\text{edge[2]} & \begin{bmatrix} 12 & 1 & 3 & 0 \\
\end{align*}
\]
\]
Winged-edge structure

• array of vertex positions: 12 bytes/vert
• array of 8-tuples of indices (per edge)
 – head/tail left/right edges + head/tail verts + left/right tris
 – $\text{int}[n_E][8]$: about 96 bytes per vertex
 • 3 edges per vertex (on average)
 • (8 indices x 4 bytes) per edge
• add a representative edge per vertex
 – $\text{int}[n_V]$: 4 bytes per vertex
• total storage: 112 bytes per vertex
 – but it is cleaner and generalizes to polygon meshes
Winged-edge optimizations

- Omit faces if not needed
- Omit one edge pointer on each side
 - results in one-way traversal
Half-edge structure

- Simplifies, cleans up winged edge
 - still works for polygon meshes
- Each half-edge points to:
 - next edge (left forward)
 - next vertex (front)
 - the face (left)
 - the opposite half-edge
- Each face or vertex points to one half-edge
Half-edge structure

- Simplifies, cleans up winged edge
 - still works for polygon meshes
- Each half-edge points to:
 - next edge (left forward)
 - next vertex (front)
 - the face (left)
 - the opposite half-edge
- Each face or vertex points to one half-edge
Half-edge structure

- Simplifies, cleans up winged edge
 - still works for polygon meshes
- Each half-edge points to:
 - next edge (left forward)
 - next vertex (front)
 - the face (left)
 - the opposite half-edge
- Each face or vertex points to one half-edge
Half-edge structure

HEdge {
 HEdge pair, next;
 Vertex v;
 Face f;
}

Face {
 // per-face data
 HEdge h; // any adjacent h-edge
}

Vertex {
 // per-vertex data
 HEdge h; // any incident h-edge
}
Half-edge structure
Half-edge structure

<table>
<thead>
<tr>
<th>pair</th>
<th>next</th>
</tr>
</thead>
<tbody>
<tr>
<td>hedge[0]</td>
<td>1 2</td>
</tr>
<tr>
<td>hedge[1]</td>
<td>0 10</td>
</tr>
<tr>
<td>hedge[2]</td>
<td>3 4</td>
</tr>
<tr>
<td>hedge[3]</td>
<td>2 9</td>
</tr>
<tr>
<td>hedge[4]</td>
<td>5 0</td>
</tr>
<tr>
<td>hedge[5]</td>
<td>4 6</td>
</tr>
</tbody>
</table>

...
Half-edge structure
Half-edge structure

```c
EdgesOfFace(f) {
    h = f.h;
    do {
        h = h.next;
    } while (h != f.h);
}
```
Half-edge structure

EdgesOfVertex(v) {
 h = v.h;
 do {
 h = h.pair.next;
 } while (h != v.h);
}
Half-edge structure

- array of vertex positions: 12 bytes/vert
- array of 4-tuples of indices (per h-edge)
 - next, pair h-edges + head vert + left tri
 - int[2n_E][4]: about 96 bytes per vertex
 - 6 h-edges per vertex (on average)
 - (4 indices x 4 bytes) per h-edge
- add a representative h-edge per vertex
 - int[n_V]: 4 bytes per vertex
- total storage: 112 bytes per vertex
Half-edge optimizations

• Omit faces if not needed
• Use implicit pair pointers
 – they are allocated in pairs
 – they are even and odd in an array