Texture Mapping

Week 9

Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University
Texture mapping

- Objects have properties that vary across the surface

![Texture Mapping Example](image_url)
Texture Mapping

- So we make the shading parameters vary across the surface
Texture mapping

• Adds visual complexity; makes appealing images
Texture mapping

- Color is not the same everywhere on a surface
 - one solution: multiple primitives

- Want a function that assigns a color to each point
 - the surface is a 2D domain, so that is essentially an image
 - can represent using any image representation
 - raster texture images are very popular
A definition

Texture mapping: a technique of defining surface properties (especially shading parameters) in such a way that they vary as a function of position on the surface.

- This is very simple!
 - but it produces complex-looking effects
Examples

• Wood gym floor with smooth finish
 – diffuse color k_D varies with position
 – specular properties k_S, n are constant

• Glazed pot with finger prints
 – diffuse and specular colors k_D, k_S are constant
 – specular exponent n varies with position

• Adding dirt to painted surfaces

• Simulating stone, fabric, …
 – to approximate effects of small-scale geometry
 • they look flat but are a lot better than nothing
Mapping textures to surfaces

• Usually the texture is an image (function of u, v)
 – the big question of texture mapping: where on the surface does the image go?
 – obvious only for a flat rectangle the same shape as the image
 – otherwise more interesting

• Note that 3D textures also exist
 – texture is a function of (u, v, w)
 – can just evaluate texture at 3D surface point
 – good for solid materials
 – often defined procedurally
Mapping textures to surfaces

• “Putting the image on the surface”
 – this means we need a function f that tells where each point on the image goes
 – this looks a lot like a parametric surface function
 – for parametric surfaces you get f for free
Texture coordinate functions

- Non-parametrically defined surfaces: more to do
 - can’t assign texture coordinates as we generate the surface
 - need to have the inverse of the function f

- Texture coordinate fn.
 - for a vtx. at p
 - get texture at $\phi(p)$
Texture coordinate functions

- Mapping from S to D can be many-to-one
 - that is, every surface point gets only one color assigned
 - but it is OK (and in fact useful) for multiple surface points to be mapped to the same texture point
 - e.g. repeating tiles
Texture coordinate functions

- Define texture image as a function
 \[T : D \rightarrow C \]
 - where \(C \) is the set of colors for the diffuse component
- Diffuse color (for example) at point \(p \) is then
 \[k_D(p) = T(\phi(p)) \]
Examples of coordinate functions

• A rectangle
 – image can be mapped directly, unchanged
Examples of coordinate functions

- For a sphere: latitude-longitude coordinates
 - ϕ maps point to its latitude and longitude

[map: Peter H. Dana]
Examples of coordinate functions

- A parametric surface (e.g. spline patch)
 - surface parameterization gives mapping function directly
 (well, the inverse of the parameterization)
Examples of coordinate functions

• For non-parametric surfaces it is trickier
 – directly use world coordinates
 • need to project one out
Examples of coordinate functions

- For non-parametric surfaces it is trickier
 - directly use world coordinates
- need to project one out
Examples of coordinate functions

- Non-parametric surfaces: project to parametric surface
Examples of coordinate functions

• Triangles
 – specify \((u,v)\) for each vertex
 – define \((u,v)\) for interior by linear interpolation
Texture coordinates on meshes

• Texture coordinates become per-vertex data like vertex positions
 – can think of them as a second position: each vertex has a position in 3D space and in 2D texture space

• How to come up with vertex \((u,v)\)s?
 – use any or all of the methods just discussed
 • in practice this is how you implement those for curved surfaces approximated with triangles
 – use some kind of optimization
 • try to choose vertex \((u,v)\)s to result in a smooth, low distortion map
Reflection mapping

- Early (earliest?) non-decal use of textures
- Appearance of shiny objects
 - Phong highlights produce blurry highlights for glossy surfaces.
 - A polished (shiny) object reflects a sharp image of its environment.
- The whole key to a shiny-looking material is providing something for it to reflect.

Figure 2. (a). A shiny sphere rendered under photographically acquired real-world illumination. (b). The same sphere rendered under illumination by a point light source.
Reflection mapping

• From ray tracing we know what we’d like to compute
 – trace a recursive ray into the scene—too expensive
• If scene is infinitely far away, depends only on direction
 – a two-dimensional function
Environment map

- A function from the sphere to colors, stored as a texture.

[Blinn & Newell 1976]
Spherical environment map

Hand with Reflecting Sphere. M. C. Escher, 1935. lithograph
Environment Maps

[Paul Debevec]
Cube environment map

[Ned Greene]
Normal mapping

original mesh
4M triangles

simplified mesh
500 triangles

simplified mesh and normal mapping
500 triangles

[Paolo Cignoni]
base subdivision surface

hand-painted displacement map (detail)

displaced surface

Paweł Filip
tolas.wordpress.com
Bump mapping
Displacement mapping

Geometry

Bump mapping

Displacement mapping
Another definition

Texture mapping: a general technique for storing and evaluating functions.

- They’re not just for shading parameters any more!