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1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and besstigated PDE method
in image processing. Let(x) denote a grayscale (noisy) input image ard, ¢) be
initialized with u(x,0) = u%(x) = f(x). Then, the linear diffusion process can be
defined by the equation
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whereV - denotes the divergence operator. Thus, the equation is:
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The diffusion process can be seen as an evolution processawiatrtificial time
variablet denoting thaliffusion timewhere the input image is smoothed at a constant
rate in all directions. Starting from the initial imag&(x), the evolving images (x, t)
under the governed equation represent the successivebtisatbversions of the initial
input imagef (x), and thus create scale spaceepresentation of the given image
with t > 0 being the scale. As we move to coarser scales, the evolviagésmbecome
more and more simplified since the diffusion process remtivesmage structures
at finer scales. Figures 1 and 2 show example scale spacseaptons sampled at
different diffusion times for two different images. In fadche notion of scale is an
essential part of early visual processing, where the makitato separate the image
into relevant and irrelevant parts.
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1. LINEAR DIFFUSION

Figure 1: Linear diffusion results for different diffusidimes.

It is shown that the solution of the linear diffusion equatisith the given initial
conditionu(x,0) = f(x) for a specific diffusion timel" is equivalent to the convolu-
tion of the input imagef (x) with the Gaussian kernél, (x) with standard deviation
o = /2T [2, 3, 6]. Thus, linear diffusion can be regarded as a lowsfitter. The cor-
respondence between the diffusion time variatded the standard deviationclearly
depicts the effect of on the evolving images. The higher the value,dhe higher the
value ofc, and the more smooth the image becomes. This relation atsades the
following explicit solution to (1):
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Numerical Implementation

Since we deal with digital images, solving the linear diffusequation requires dis-
cretization in both spatial and time coordinates. Centifiérences are the typical
choices for the spatial derivatives:

2 2 R
A uij  Uip,j = 2Ujj+ Uiy, duij  Uijen, = 2Uij+ Uijp,

@ 2~ 12 Tody? T 2

whereu; ; denotes the gray value or the brightness of the evolving éaagixel loca-
tion (i, j).

The values ofi; andh,, are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we tiake= i, = 1. This leads to
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Figure 2: Linear diffusion results for different diffusidimes.

the following space-discrete equation for (1):

du,',]'
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The straightforward approach to solve (5) is to considertarative scheme with
an explicit time discretization, where homogeneous Neuntaundary condition is

imposed along the image boundary
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whereAt is the time step, and" represents the restored imagat iterationk. Numer-
ical stability condition for the discrete scheme requitet it < 0.25.

Relation Between Variational Regularization and Diffustequations

Interestingly, there is a strong relation between vanstioegularization methods and
diffusion equations [4]. The variational regularizatiortimods formulate smoothing
process as a functional minimization via which a noise-figproximation of a given
image is to be estimated. Most of these formulations assumaglditive noise model

(™) f(x) = u(x) +n(x)

where f(x) andu(x) respectively denote the given noisy image and the desired de
noised image, and(x) represents the additive noise.
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Consider the Tikhonov energy functional [5] as an illust@aexample:
©8) E(u)= / (= )2 +a|Vul) dx
0
where
« O C R?is connected, bounded, open subset representing the inoaugn
 fisanimage defined af?,
* u is the smooth approximation ¢f
e « > Qs the scale parameter.

The first term inE (1) is thedata fidelityterm that penalizes the deviations between
u and f, and thus forces the restored image to be close to the ofrigirzge. The
second term is called thregularizationor smoothnesgerm which penalizes the high
gradients, and gives preference to smooth approximatidresrelative importance of
these two terms are defined by the scale parameter

The minimizing function: formally satisfies the Euler-Lagrange equation

9 (u—f)—aVu=0

with the Neumann boundary conditicg&;g
It is possible to rewrite (9) as
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which may be regarded as an implicit time discretizatiomeflinear diffusion equation
(1) where a single time steff’(= «) is used. Note that diffusion time (scale selection)
problem is not really eliminated by the variational regidation, it is replaced with a
new parameter that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that theathing process does
not consider information regarding important image feagisuch as edges. It follows
that same amount of smoothing to be applied at every imaggitoc As a result, the
diffusion process does smooth not only noise, but also ineages.



2 APPENDIX - THE CALCULUS OF VARIATIONS

The calculus of variatiorts aims at finding the extrema of expressions that depend on
functions rather than parameters, which is called funetign

Consider a functional of the form:
AV E(f) = [ F(xf,f)dx.

If F is differentiable, then the calculus of variations says$ theminimizer ofE ( f)
satisfies the following Euler-Langrange equation:

d
(12) Fy——Fp=0.
Now, consider the integrand contains higher-order devieat
(13) E(f) = /F(x,f,f’,f”, L )dx

In this case, the Euler-Lagrange equation becomes:
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In more general terms, if the integrand depends on severetitinsf; (x),f>(x).. . .:

(15) E(f) :/P(x,fl,fz,...,f{,fg,...)dx,

then, the minimizer oE(f1, f, . .. ) satisfies the following set of PDEs:
16 dp, -
(16) Ffl.—ﬁl—"f{_o.

Next, consider that the functional is defined over two inaejest variables andy:
A7) E(f) = [ Gy, £, fof)dxdy.

Then, the minimizer oE( f) satisfies following PDE:

]
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Consider, finally the case

(19) E(f) = /P(x,y,u,v,ux,vx)dx.

1This section is a brief summary of Appendix A.6 of Horn'’s RoMision. Please refer to [1] for the
details.
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This leads to the following coupled PDEs:

d
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