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1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Letf (x) denote a grayscale (noisy) input image andu(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1)
∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2)
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variablet denoting thediffusion timewhere the input image is smoothed at a constant
rate in all directions. Starting from the initial imageu0(x), the evolving imagesu(x, t)
under the governed equation represent the successively smoothed versions of the initial
input imagef (x), and thus create ascale spacerepresentation of the given imagef ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removesthe image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.
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1. LINEAR DIFFUSION
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Figure 1: Linear diffusion results for different diffusiontimes.

It is shown that the solution of the linear diffusion equation with the given initial
conditionu(x, 0) = f (x) for a specific diffusion timeT is equivalent to the convolu-
tion of the input imagef (x) with the Gaussian kernelGσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variablet and the standard deviationσ clearly
depicts the effect oft on the evolving images. The higher the value oft, the higher the
value ofσ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

−|x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy
− 2ui,j + ui,j−hy

h2
y

whereui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values ofhx andhy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we takehx = hy = 1. This leads to
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Figure 2: Linear diffusion results for different diffusiontimes.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where∆t is the time step, anduk represents the restored imageu at iterationk. Numer-
ical stability condition for the discrete scheme requires that∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-freeapproximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) andu(x) respectively denote the given noisy image and the desired de-
noised image, andn(x) represents the additive noise.
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1. LINEAR DIFFUSION

Consider the Tikhonov energy functional [5] as an illustrative example:

(8) E(u) =
∫

Ω

(

(u − f )2 + α|∇u|2
)

dx

where

• Ω ⊂ R
2 is connected, bounded, open subset representing the image domain,

• f is an image defined onΩ,

• u is the smooth approximation off ,

• α > 0 is the scale parameter.

The first term inE(u) is thedata fidelityterm that penalizes the deviations between
u and f , and thus forces the restored image to be close to the original image. The
second term is called theregularizationor smoothnessterm which penalizes the high
gradients, and gives preference to smooth approximations.The relative importance of
these two terms are defined by the scale parameterα.

The minimizing functionu formally satisfies the Euler-Lagrange equation

(9) (u − f )− α∇2u = 0

with the Neumann boundary condition∂u
∂n

∣

∣

∣

∂Ω

= 0.

It is possible to rewrite (9) as

(10)
u − u0

α
= ∇2u with u0 = f ,

which may be regarded as an implicit time discretization of the linear diffusion equation
(1) where a single time step (T = α) is used. Note that diffusion time (scale selection)
problem is not really eliminated by the variational regularization, it is replaced with a
new parameterα that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that the smoothing process does
not consider information regarding important image features such as edges. It follows
that same amount of smoothing to be applied at every image location. As a result, the
diffusion process does smooth not only noise, but also imageedges.
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2 APPENDIX - THE CALCULUS OF VARIATIONS

The calculus of variations1. aims at finding the extrema of expressions that depend on
functions rather than parameters, which is called functionals.

Consider a functional of the form:

(11) E( f ) =
∫

F(x, f , f ′)dx .

If F is differentiable, then the calculus of variations says that the minimizer ofE( f )
satisfies the following Euler-Langrange equation:

(12) Ff −
d

dx
Ff ′ = 0 .

Now, consider the integrand contains higher-order derivatives:

(13) E( f ) =
∫

F(x, f , f ′, f ′′, . . . )dx .

In this case, the Euler-Lagrange equation becomes:

(14) Ff −
d

dx
Ff ′ +

d2

dx2
Ff ′′ − · · · = 0 .

In more general terms, if the integrand depends on several functionsf1(x), f2(x),. . . :

(15) E( f ) =
∫

F(x, f1, f2, . . . , f ′1, f ′2, . . . )dx ,

then, the minimizer ofE( f1, f2, . . . ) satisfies the following set of PDEs:

(16) Ff i
− d

dx
Ff ′i

= 0 .

Next, consider that the functional is defined over two independent variablesx andy:

(17) E( f ) =
∫

F(x, y, f , fx, fy)dxdy .

Then, the minimizer ofE( f ) satisfies following PDE:

(18) Ff −
∂

∂x
Ffx

− ∂

∂y
Ffy

= 0 .

Consider, finally the case

(19) E( f ) =
∫

F(x, y, u, v, ux, vx)dx .

1This section is a brief summary of Appendix A.6 of Horn’s Robot Vision. Please refer to [1] for the
details.
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This leads to the following coupled PDEs:

Fu −
d

dx
Fux = 0 ,

Fv −
d

dx
Fvx = 0 .(20)

REFERENCES

[1] B. K. Horn. Robot Vision. The MIT Press, 1986.

[2] T. Iijima. Basic theory on normalization of a pattern (for the case of a typical one-
dimensional pattern).Bulletin of the Electrotechnical Laboratory, 26:368–388,
1962 (in Japanese).

[3] J. J. Koenderink. The structure of images.Biol. Cybernetics, 50:363–370, 1984.

[4] O. Scherzer and J. Weickert. Relations between regularization and diffusion filter-
ing. J. Math. Imaging Vis., 12(1):43–63, 2000.

[5] A. N. Tikhonov. Solutions of Ill-posed Problems.Winston and Sons, Washington
D.C., 1977.

[6] A. P. Witkin. Scale space filtering.Proc. Eighth Int. Joint Conf. on Artificial
Intelligence, 2:1019–1022, 1983.

6


	Linear Diffusion
	Appendix - The Calculus of Variations
	References

