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Energy Minimization	



•  Many vision tasks are naturally posed as energy minimization 
problems on a rectangular grid of pixels:	



•  The data term Edata(u) expresses our goal that the optimal 
model u be consistent with the measurements. 	



•  The smoothness energy Esmoothness(u) is derived from our prior 
knowledge about plausible solutions.	



•  Recall Mumford-Shah functional 	



Energy Minimization and MRFs

Many vision tasks are naturally posed as energy minimization problems
on a rectangular grid of pixels, where the energy comprises a data term
and a smoothness term:

E(u) = Edata(u) + Esmoothness(u) .

The data term Edata(u) expresses our goal that the optimal model u be
consistent with the measurements. The smoothness energyEsmoothness(u)

is derived from our prior knowledge about plausible solutions.

Denoising: Given a noisy image Î(x, y), where some measurements
may be missing, recover the original image I(x, y), which is typi-
cally assumed to be smooth.

Stereo Disparity: Given two images of a scene, find the binocular dis-
parity at each pixel, d(x, y). The disparities are expected to be
piecewise smooth since most surfaces are smooth.

Surface Reconstruction: Given a sparse set of depth measurements
and/or normals, recover a smooth surface z(x, y) consistent with
the measurements.

Segmentation: Assign labels to pixels in an image, e.g., to segment
foreground from background.
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Sample Vision Tasks	



•  Denoising: Given a noisy image I(x,y), where some 
measurements may be missing, recover the original image ���
I(x, y), which is typically assumed to be smooth. 	



•  Segmentation: Assign labels to pixels in an image, e.g., to 
segment foreground from background. 	



•  Stereo Disparity	


•  Surface Reconstruction	



•  …	
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Markov Random Fields	



•  A Markov Random Field (MRF) is a graph                   .	


•                          is the set of nodes, each of which is 

associated with a random variable (RV),      ,   for	



•  The neighborhood of node   , denoted      is the set of nodes 
to which   is adjacent; i.e.              if and only if                .	



•  The Markov Random field satisfies 	



	


	



	

      is often called the Markov blanket of node   . ���
	



Markov Random Fields

A Markov Random Field (MRF) is a graph G = (V , E).

• V = {1, 2, ..., N} is the set of nodes, each of which is associated
with a random variable (RV), uj, for j = 1...N .

• The neighbourhood of node i, denoted Ni, is the set of nodes to
which i is adjacent; i.e., j ∈ Ni if and only if (i, j) ∈ E .

• The Markov Random field satisfies

p(ui | {uj}j∈V\i) = p(ui | {uj}j∈Ni
) . (1)

Ni is often called the Markov blanket of node i.

Bayesian filtering (see the tracking notes) used a special class of MRFs
for which the graph was a chain. The joint distribution over the RVs
of a first-order Markov chain can be factored into a product of con-
ditional distributions. This permits efficient inference (remember the
recursive form of the filtering distribution). Similar properties hold for
tree-structured MRFs, but not for graphs with cycles.

The key to MRFs is that, through local connections, information can
propagate a long way through the graph. This communication is im-
portant if we want to express models in which knowing the value of
one node tells us something important about the values of other, possi-
bly distant, nodes in the graph.
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Markov Random Fields (cont’d)	



•  The distribution over an MRF (i.e., over RVs                          ) 
that satisfies (1) can be expressed as the product of (positive) 
potential functions defined on maximal cliques of  ���
[Hammersley-Clifford Thm]. 	



•  Such distributions are often expressed in terms of an energy 
function    , and clique potentials     : 	



Markov Random Fields (cont)

The distribution over an MRF (i.e., over RVs u = (u1, ..., uN)) that sat-
isfies (1) can be expressed as the product of (positive) potential func-
tions defined on maximal cliques of G [Hammersley-Clifford Thm].

Such distributions are often expressed in terms of an energy function
E, and clique potentials Ψc:

p(u) =
1

Z
exp(−E(u, θ)) , where E(u, θ) =

∑

c∈C
Ψc(ūc, θc) . (2)

Here,

• C is the set of maximal cliques of the graph (i.e., maximal sub-
graphs of G that are fully connected),

• The clique potential Ψc, c ∈ C, is a non-negative function defined
on the RVs in clique ūc, parameterized by θc.

• Z, the partition function, ensures the distribution sums to 1:

Z =
∑

u1...uN

∏

c∈C
exp(−Ψc(ūc, θc))

The partition function is important for learning as it’s a function of
the parameters θ = {θc}c∈C. But often it’s not critical for inference.

Inference with MRFs is challenging as useful factorizations of the joint
distribution, like those for chains and trees are not available. For all but
a few special cases, MAP estimation is NP-hard.
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Image Denoising	



•  Given a noisy image    perhaps with missing pixels, 
recover an image    that is both smooth and close to  	



•  Classical techniques:	


–  Linear filtering (e.g. Gaussian filtering)	



–  Median filtering	



–  Wiener filtering	



•  Modern techniques	


–  PDE-based techniques	


–  Non-local methods	



–  Wavelet techniques	



–  MRF-based techniques	



Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).
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Denoising/smoothing 
techniques that preserve 
edges in images	





Denoising as a Probabilistic 
Inference	



•  Perform maximum a posteriori (MAP) estimation by 
maximizing the a posteriori distribution:	



•  By Bayes theorem:	



•  If we take logarithm:	



•  MAP estimation corresponds to minimizing the encoding cost	



	



p(true image | noisy image) = p(u | v)

p(u | v) = p(v | u)p(u)
p(v) normalization ���

term	



image prior	


likelihood of noisy 
image given true image	



log p(u | v) = log p(v | u)+ log p(u)− log p(v)

E(u) = − log p(v | u)− log p(u)



Modeling the Likelihood	



•  We assume that the noise at one pixel is 
independent of the others.	



	


•  We assume that the noise at each pixel is additive 

and Gaussian distributed:	



•  Thus, we can write the likelihood:	



p(v | u) = p(vij | uij
i, j
∏ )

p(vij | uij ) =Gσ (vij −uij )

p(v | u) = Gσ (vij −uij )
i, j
∏



Modeling the Prior	



•  How do we model the prior distribution of true images? 	


•  What does that even mean? 	



–  We want the prior to describe how probable it is (a-priori) to have a 
particular true image among the set of all possible images. 	
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Natural Images	



•  What distinguishes “natural” images from “fake” ones?	
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Natural Images
■ What distinguishes “natural” images from “fake” ones?

• We can take a large database of natural images and study them.
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Simple Observation	



•  Nearby pixels often have a similar intensity:	



•  But sometimes there are large intensity changes.	
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MRF-based Image Denoising	



•  Let each pixel be a node in a graph                       ���
with 4-connected neighborhoods. 	



Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).
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MRF Model of the Posterior
■ We can now put the likelihood and the prior together in 

a single MRF model:
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Image Denoising	



•  The energy function is given by���
	



•  Unary (clique) potentials     stem from the measurement 
model, penalizing the discrepancy between the data     
and the solution     . ���
	



•  Interaction (clique) potentials      provide a definition of 
smoothness, penalizing changes in     between pixels and 
their neighbors. ���
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Denoising as Inference	



•  Goal: Find the image     that minimizes         ���
	



•  Several options for MAP estimation process:	


–  Gradient techniques	


–  Gibbs sampling	



–  Simulated annealing	



–  Belief propagation	


–  Graph cut	



–  …	
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Quadratic Potentials in 1D	



•  Let    be the sum of a smooth 1D signal    and IID 
Gaussian noise   : ���
where                                                       and ���

	


•  With Gaussian IID noise, the negative log likelihood 

provides a quadratic data term. If we let the smoothness 
term be quadratic as well, then up to a constant, the log 
posterior is 	



	



Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN
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Missing Measurements	



•  Suppose our measurements exist at a subset of positions, 
denoted    . Then we can write the energy function as 	



•  At locations n where no measurement exists, we have:	



•  The Jacobi update equation in this case becomes:	



Missing Measurements

The solution is easily extended to missing measurements (i.e., to handle
interpolation and smoothing).

Suppose our measurements exist at a subset of positions, denoted P .
Then we can write the energy function as

E(u) =
∑

n∈P
(un − vn)

2 + λ
∑

alln

(un+1 − un)
2 , (17)

At locations n where no measurement exists, the derivative of E w.r.t.
u yields the condition

−un−1 + 2 un − un+1 = 0 . (18)

The solution is still a large matrix equation, as in (7). Rows of the
matrix with measurements are unchanged. But those for which mea-
surements are missing, have the form

(

0 . . . −1 2 −1 . . . 0
)

, with
zeros substituted for the corresponding vn on the right-hand side.

The Jacobi update equation in this case becomes

u(t+1)n =

{

1
1+2λ (vn + λu(t)n−1 + λu(t)n+1) forn ∈ P ,
1
2 (u

(t)
n−1 + u(t)n+1) otherwise

(19)

The equations that govern the endpoints can be expressed in an analo-
gous manner.
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2D Image Smoothing	



•  For 2D images, the analogous energy we want to 
minimize becomes:	



where     is a subset of pixels where the measurements ���
are available. 	



2D Image Smoothing

For 2D images, the analogous energy we want to minimize becomes

E(u) =
∑

n,m∈P
(u[n,m]− v[n,m])2

+ λ
∑

alln,m

(u[n+1,m]− u[n,m])2 + (u[n,m+1]− u[n,m])2 (20)

where P is a subset of pixels where the measurements v are available.

Taking derivatives with respect to u[n,m] and setting them equal to
zero yields a linear system of equations that has the same form as (9).
The only difference is that the linear filter g is now 2D: e.g.,

g =









0 −1 0

−1 4 −1

0 −1 0









.

One can again solve for u iteratively, where, ignoring the edge pixels
for simplicity, we have

u(t+1)[n,m] =

{

1
1+4λ(v[n,m] + λ s(t)[n,m]) forn,m ∈ P ,
1
4 s

(t)[n,m] otherwise ,
(21)

where s[n,m] is the sum of the 4 neighbors of pixel [n,m], i.e., u[n −
1,m] + u[n + 1,m] + u[n,m− 1] + u[n,m + 1].

Problem: Linear filters are sensitive to outliers, and will not preserve
image edges. They tend to oversmooth images at boundaries.
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Robust Potentials	



•  Quadratic potentials are not robust to outliers and hence 
they over-smooth edges. These effects will propagate 
throughout the graph. 	



•  Instead of quadratic potentials, we could use a robust 
error function���
���
���
���
���
where       and      are scale parameters. 	



Robust Potentials

Quadratic potentials are not robust to outliers and hence they over-
smooth edges. These effects will propagate throughout the graph.

Instead of quadratic potentials, we could use a robust error function ρ:

E(u) =
N
∑

n=1

ρ(un − vn, σd) + λ
N−1
∑

n=1

ρ(un+1 − un, σs) , (22)

where σd and σs are scale parameters. For example, the Lorentzian
error function is given by

ρ(z, σ) = log

(

1 +
1

2

(z

σ

)2
)

, ρ′(z, σ) =
2z

2σ2 + z2
. (23)
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Unfortunately, the problem is no longer convex. Optimization is tough.
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Robust Image Smoothing	



•  A Lorentzian smoothness potential encourages an 
approximately piecewise constant result: 	



	



Robust Image Smoothing

This smoother uses a quadratic data potential, and a Lorentzian smooth-
ness potential to encourage an approximately piecewise constant result:

Original image Output of robust smoothing

We can use the Lorentzian error function to detect spatial outliers.

Edges

Problem: Computational expense, local minima, and sensitivity to the
initial guess.
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Higher-Order MRFs	



•  Typical MRFs use unary and/or pairwise potentials:	



•  Employing higher-order potentials results in more 
expressive MRFs.	


–  It enriches the interactions between nodes/pixels.	
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E(x) =
∑

i∈V
ψi (xi) +

∑

(i,j)∈E
ψij(xi, xj ) +

∑

c∈S
ψc(xc), (20.5)

where S refers to a set of image segments (or superpixels), and ψc are higher-order poten-
tials defined on them. In the experiments the set S consisted of all segments of multiple
segmentations of an image obtained using an unsupervised image segmentation algorithm
such as mean-shift [100] (see the end of section 20.3 for more details). The higher-order
potentials are described in detail below.

20.3.1 Region-Based Consistency Potential
The region consistency potential is similar to the smoothness prior present in pairwise
CRFs [66]. It favors all pixels belonging to a segment taking the same label and, as will be
shown later, is particularly useful in obtaining object segmentations with fine boundaries.
It takes the form of a Pn Potts model [240]:

ψp
c (xc) =

{
0 if xi = lk, ∀i ∈ c,

θh
p |c|θα otherwise,

(20.6)

where |c| is the cardinality of the pixel set c, which in this case is the number of pixels
constituting superpixel c. The expression θh

p |c|θα gives the label inconsistency cost, that
is, the cost added to the energy of a labeling in which different labels have been assigned
to the pixels constituting the segment. The parameters θh

p and θα are learned from the
training data by cross validation, as described in section 20.7. Note that this potential takes
multiple variables as argument and thus cannot be expressed in the conventional pairwise
CRF model.

20.3.2 Quality Sensitive Consistency Potential
Not all segments obtained using unsupervised segmentation are equally good; for instance,
some segments may contain multiple object classes. A region consistency potential defined
over such a segment will encourage an incorrect labeling of the image. This is because the
potential (20.6) does not take the quality or goodness of the segment into account. It assigns
the same penalty for breaking “good” segments that it assigns for “bad” ones. This problem
of the consistency potential can be overcome by defining a quality sensitive higher-order
potential (see figure 20.2). This new potential works by modulating the label inconsistency
cost with a function of the quality of the segment (which is denoted by G(c)). Any method
for estimating the segment quality can be used in the framework being discussed. A good
example is the method of [389], which uses interregion and intraregion similarity to measure
the quality or goodness of a segment. Formally, the potential function is written as

ψv
c (xc) =

{
0 if xi = lk, ∀i ∈ c,

|c|θα (θh
p + θh

v G(c)) otherwise.
(20.7)

higher-order term	
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Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et

Higher-Order MRFs	



Original 
 
 
                         Mean-shift segmentation results


Unary 
 
 
     Pairwise                       Higher-order                 Ground truth

potentials
 
 
     potentials 
 
 
 potentials


Kohli	
  et	
  al.,	
  Int	
  J	
  Comput	
  Vis	
  (2009)	
  	
  



Higher-Order MRFs	



higher-order potential	



320 Int J Comput Vis (2009) 82: 302–324

Fig. 14 Accurate hand labelled segmentations which were used as
ground truth. The figure shows some images from the MSRC data set
(column 1), the hand labelled segmentations that came with the data

set (column 2), and the new segmentations hand labelled by us which
were used as ground truth (column 3)

Fig. 15 Qualitative results of our method. (a) Original images. (b) Segmentation result obtained using the pairwise CRF (explained in Sect. 2).
(c) Results obtained by incorporating the robust P n higher order potential (13) defined on segments. (d) Hand labelled result used as ground truth

efficient. They can handle potentials defined over cliques of
thousands of random variables.

We tested this approach on the problem of multi-class ob-
ject segmentation and recognition. Our experiments showed

that incorporation of P n Potts and robust P n model type
potential functions (defined on segments) in the conditional
random field model for object segmentation improved re-
sults. We believe this method is generic and can be used to
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Modeling the Potentials	



•  Could the potentials (image priors) be learned from 
natural images?	
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Natural Images
■ What distinguishes “natural” images from “fake” ones?

• We can take a large database of natural images and study them.

21

Field of Experts (FoE), 
S. Roth & M. J. Black, 
CVPR 2005	





Statistics of Natural Images	



•  Compute the image derivative of all images in an image 
database and plot a histogram: 	
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Statistics of Natural Images	



•  Sharp peak at zero: Neighboring pixels most often have 
identical intensities. 	



•  Heavy tails: Sometimes, there are strong intensity differences 
due to discontinuities in the image. 	
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Statistics of Natural Images	


•  Gaussian distributions are inappropriate: 	



–  They do not match the statistics of natural images well. 	



–  They would lead to blurred discontinuities. 	



•  Discontinuity-preserving potentials are needed: 	


•  One possibility: Student-t distribution. 	
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Modeling the Potentials
■ We face a similar challenge in modeling the potentials 

(or compatibility functions), e.g.:
■ Gaussian distributions are inappropriate:
• They do not match the statistics of natural images well.
• They would lead to blurred discontinuities.

■ We need discontinuity-preserving potentials:
• One possibility: Student-t distribution.
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Fields of Experts (FoE) ���
denoising results	



•  Very sharp discontinuities. No blurring across boundaries.	


•  Noise is removed quite well nonetheless.	
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Denoising Results

29

original image noisy image,
σ=20

PSNR 22.49dB
SSIM 0.528

denoised using
gradient ascent

PSNR 27.60dB
SSIM 0.810
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