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Energy Minimization

Many vision tasks are naturally posed as energy minimization
problems on a rectangular grid of pixels:

E<u) — Edam(u) + ESmOOthnes,s(u)

The data term E_, (u) expresses our goal that the optimal
model u be consistent with the measurements.

The smoothness energy E_  .mhess(U) is derived from our prior
knowledge about plausible solutions.

Recall Mumford-Shah functional
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Sample Vision Tasks

Denoising: Given a noisy image I(x,y), where some
measurements may be missing, recover the original image
I(x, y), which is typically assumed to be smooth.

Segmentation: Assign labels to pixels in an image, e.g., to
segment foreground from background.

Stereo Disparity
Surface Reconstruction
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Markov Random Fields

A Markov Random Field (MRF) is a graph G = (V, &) .

V = {1,2,..., N} is the set of nodes, each of which is
associated with a random variable (RV), u;, forj =1...V.

The neighborhood of node 7, denoted N;, is the set of nodes
to which i is adjacent;i.e. 7 € N; ifand only if (7, 7) € £.

The Markov Random field satisfies

p(u; | {Uj}jev\z'> = plu;| {Uj}jeM) (1)

N is often called the Markov blanket of node i .
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Markov Random Fields (cont’d)

 The distribution over an MRF (i.e., over RVs u = (u1, ..., uy))
that satisfies (1) can be expressed as the product of (positive)

potential functions defined on maximal cliques of G
[Hammersley-Clifford Thm].

* Such distributions are often expressed in terms of an energy
function Iv , and clique potentials .

|

plu) = Eexp(—E(u, #)), where E(u,0) Z\If U, 0
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Markov Random Fields (cont’d)

1
plu) = Eexp(—E(u,@)), where F(u, 0) Z\If U, 0

C is the set of maximal cliques of the graph (i.e., maximal
subgraphs of ¢ that are fully connected),

The clique potential V., c € C, is a non-negative function
defined on the RVs in clique u., parameterized by 6. .

Z ,the partition function, ensures the distribution sums to |:

7 = Z Hexp (U, 6.))

uy...upy ceC
The partition function is important for learning as it’s a

function of the parameters 6 = {0.}.c¢ . But often it’s not
critical for inference.
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Image Denoising

* Given a noisy image v,perhaps with missing pixels,
recover an image wu.that is both smooth and close to v.

* Classical techniques:
— Linear filtering (e.g. Gaussian filtering)
— Median filtering
— Wiener filtering

* Modern techniques

— PDE-based techniques Denoising/smoothing

techniques that preserve

— MRF-based techniques

— Non-local methods



Denoising as a Probabilistic
Inference

Perform maximum a posteriori (MAP) estimation by
maximizing the a posteriori distribution:

p(true image I noisy image) = p(ulv)
By Bayes theorem: likelihood of noisy

image given true image ‘i/mage prior
ol vy = PP
V) < normalization
p( ) term

If we take logarithm:

log p(ulv)=1log p(vIu)+log p(u) —M

MAP estimation corresponds to minimizing the encoding cost

E(u)=-log p(vIu)-log p(u)



Modeling the Likelihood

We assume that the noise at one pixel is
independent of the others.

p(vlu)= HP(VU lu;)

We assume that the noise at each pixel is additive
and Gaussian distributed:

pv; lu,)=G,(v; —u;)

Thus, we can write the likelihood:

p(vlu)= l_IG(7 (v, —u;)



Modeling the Prior

* How do we model the prior distribution of true images!?
* What does that even mean!

— We want the prior to describe how probable it is (a-priori) to have a
particular true image among the set of all possible images.
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Natural Images

* What distinguishes “natural” images from “fake” ones!?
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Simple Observation

* Nearby pixels often have a similar intensity:

* But sometimes there are large intensity changes.
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MRF-based Image Denoising

* Let each pixel beanodeinagraph G = (V,¢)
with 4-connected neighborhoods.

pixels of the

O U, trueimage
(hidden)

pixels of the

o Vij noisy image
(observed)

Edges representing
the likelihood

Edges representing
the prior
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Image Denoising

* The energy function is given by

ZD u;) + Z V(u;, u,)

1€V (1,7)€€&

* Unary (clique) potentials D stem from the measurement
model, penalizing the discrepancy between the data v
and the solution ..

* Interaction (clique) potentials |V provide a definition of
smoothness, penalizing changes in u. between pixels and
their neighbors.
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Denoising as Inference

» Goal: Find the image u. that minimizes F/(u)

* Several options for MAP estimation process:
— Gradient techniques
— Gibbs sampling
— Simulated annealing
— Belief propagation
— Graph cut



Quadratic Potentials in ID

* Let v be the sum of a smooth |ID signal + and lID
Gaussian noise e:
where y = (ula ...,UN), U= (Ula "'7UN)’ and
e=(e1,....,en).

* With Gaussian IID noise, the negative log likelihood
provides a quadratic data term. If we let the smoothness
term be quadratic as well, then up to a constant, the log
posterior is

E(“) — Z(un Un)Q + A i:(un+1 un)2
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Quadratic Potentials in ID

* To find the optimal u*, we take derivatives of F(u)
with respect to u,, :

0 FE(u)
0 u,

and therefore the necessary condition for the
critical point is

= 2 (un — ?Jn> + 2) (_Un—l + 2u, — un+1)

Up T A (_un—l + 2u, — un—H) — Un
* For endpoints we obtain different equations:
ur + A(up — ug) = v

N linear equations

uy + A (uy —un_1) = vy 0 the N unknowns
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Missing Measurements

* Suppose our measurements exist at a subset of positions,
denoted P°.Then we can write the energy function as

E(u) — Z(un — Un)z + A Z(um—l — un)2

neP alln
At locations n where no measurement exists, we have:
—Up—1 + 2Up — Un+1 — 0

* The Jacobi update equation in this case becomes:

(H1) <f1+12A (vn )\UU | )‘Uq(;)q) forn € P,
uy =
\%( q(zt)—1 + Uq(fil) otherwise
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2D Image Smoothing

* For 2D images, the analogous energy we want to
minimize becomes:

E(u) = Z (u[n, m] — v[n, m])?

n,mepr

+ A Z uln+1,m] — uln, m))* + (uln, m+1] — uln, m))

alln,m

2

where P is a subset of pixels where the measurements v
are available.

Looks familiar??
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Robust Potentials

* Quadratic potentials are not robust to outliers and hence
they over-smooth edges. These effects will propagate
throughout the graph.

* Instead of quadratic potentials, we could use a robust
error function p:

N N—-1
E(u) = Z Py — Uy, 04) + A Z P(Up i1 — Uy, Og),
n=1 n=1

where o, and o, are scale parameters.
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Robust Potentials

 Example: the Lorentzian error function

o=t (143 (2)), o) = 5

o 202 + 72

Error function Influence function
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Robust Potentials

 Example: the Lorentzian error function

* Smoothing a noisy step edge

Noisy step LS smoother Lorentzian smoother
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Robust Image Smoothing

* A Lorentzian smoothness potential encourages an
approximately piecewise constant result:

Original image Output of robust smoothing
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Robust Image Smoothing

* A Lorentzian smoothness potential encourages an
approximately piecewise constant result:

Original image
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Higher-Order MRFs

* Typical MRFs use unary and/or pairwise potentials:

E(x) = Zwi(xiﬂ- Z Eﬁij(xiaxj)-l-ZE”c(Xc)

ey (i,j)e& ceS

higher-order term

* Employing higher-order potentials results in more
expressive MRFs.

— It enriches the interactions between nodes/pixels.



Higher-Order MRFs
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Original Mean-shift segmentation results

Building
Grass
Unary Pairwise Higher-order Ground truth
potentials potentials potentials

Kohli et al., Int ] Comput Vis (2009)



Higher-Order MRFs

Grass

(a) Original (b) Pairwise CRF (c) Robust Pn Model (dy Ground Truth
higher-order potential

Kohli et al., Int ] Comput Vis (2009)



Modeling the Potentials

Could the potentials (image priors) be learned from
natural images!?

Field of Experts (FoE),
S.Roth & M. ]. Black,
% CVPR 2005




Statistics of Natural Images

* Compute the image derivative of all images in an image
database and plot a histogram:
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Statistics of Natural Images
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Sharp peak at zero: Neighboring pixels most often have
identical intensities.

Heavy tails: Sometimes, there are strong intensity differences

due to discontinuities in the image. S Roth



Statistics of Natural Images

* Gaussian distributions are inappropriate:
— They do not match the statistics of natural images well.

— They would lead to blurred discontinuities.
* Discontinuity-preserving potentials are needed:

* One possibility: Student-t distribution.
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Fields of Experts (FoE)
denmsmg r'esults
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original image noisy image, denoised using
0=20 gradient ascent
PSNR 22.49dB PSNR 27.60dB

SSIM 0.528 SSIM 0.810

* Very sharp discontinuities. No blurring across boundaries.

* Noise is removed quite well nonetheless.
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