BIL 717
Image Processing
Feb. 26, 2013

Erkut Erdem
Hacettepe University
Dept. of Computer Engineering

Introduction
Instructor and Course Schedule

• Dr. Erkut ERDEM
• erkut@cs.hacettepe.edu.tr
• Office: 114
• Tel: 297 7500 / 149

• Lectures: Tuesday, 09:30-12:25
• Office Hour: To be announced later
About BIL717

• This course provides a comprehensive overview of fundamental topics in image processing for graduate students.

• The goal of this course is to provide a deeper understanding of the state-of-the-art methods in image processing literature and to study their connections.

• The course makes the students gain knowledge and skills in key topics and provides them the ability to employ them in their advanced-level studies.
Communication

• The course webpage will be updated regularly throughout the semester with lecture notes, programming and reading assignments and important deadlines.
 http://web.cs.hacettepe.edu.tr/~erkut/bil717.s13

• All other communications will be carried out through Piazza. Please enroll it by following the link
 https://piazza.com/hacettepe.edu.tr/spring2013/bil717
Prerequisites

• Programming skills (C/C++, Matlab)

• Good math background (Calculus, Linear Algebra, Statistical Methods)

• A prior, introductory-level course in image processing is recommended.
Reading Material

- Lecture notes and handouts
- Papers and journal articles
Reference Books

Related Conferences

- International Conference on Scale Space and Variational Methods in Computer Vision (SSVM)
- Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR)
- IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
- Advances in Neural Information Processing Systems (NIPS)
- IEEE International Conference on Computer Vision (ICCV)
- European Conference on Computer Vision (ECCV)
- IEEE International Conference on Pattern Recognition (ICPR)
- IEEE International Conference on Image Processing (ICIP)
- British Machine Vision Conference (BMVC)
Related Journals

- IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAMI)
- IEEE Transactions on Image Processing (IEEE TIP)
- Journal of Mathematical Imaging and Vision (JMIV)
- International Journal of Computer Vision (IJCV)
- Computer Vision and Image Understanding (CVIU)
- Image and Vision Computing (IMA VIS)
- Pattern Recognition (PR)
Grading Policy

• Class participation, 5%
• Reading Assignments, 12%
• Programming Assignments, 18%
• Project, 30%
• Final Exam, 35%
Reading Assignments

• Each week a number of research papers will be assigned as reading assignments.

• Students are expected to write a brief (less than a page) summary/review of any of the assigned papers for half of the papers.

• The review should clearly identify the main contribution of the paper and describe the strengths and weaknesses of the paper.
Reading Assignments

• The reviews should be emailed to the instructor before class (by 09:00 on Tuesdays).
• The reviews should be prepared using LaTeX.
• Each student has 3 late days for the entire semester, but beyond that limit his/her submission will not be accepted.
Programming Assignments

• There will be three assignments related to the topics covered in the class.

• Each assignment will involve implementing an algorithm, carrying out a set of experiments to evaluate it, and writing up a report on the experimental results.

• All assignments have to be done individually, unless stated otherwise.
Project

- The aim of the project is to give the students some experience on conducting research.
- Students should work in groups of at most 2 people.
- This project may involve
 - design of a novel approach and its experimental analysis,
 - an extension to a recent study (published after 2007) of non-trivial complexity and its experimental analysis,
 - an in-depth empirical evaluation and analysis of two or more related methods not covered in the class.
Project – Important Dates

- Project proposals: 19th of March
- Project progress reports: 30th of April
- Project presentations: 28th of May
- Project final reports: 11th of June

- Late submissions will be penalized!
Tentative Outline

• (1 week) Introduction, Review of Basic Concepts
• (1 week) Edge Detection, Linear Filtering
• (1 week) Nonlinear Filtering
• (1 week) Variational Segmentation Models
• (2 weeks) Modern Image Filtering
• (1 week) Markov Random Fields
• (1 week) Clustering-based Segmentation Models
Tentative Outline

• (1 week) Sparse Coding
• (1 week) Low-rank Matrix Approximations
• (1 week) Visual Saliency
• (1 week) Semantic Segmentation
• (1 week) Project Presentations
Image Processing
Image Processing

- Signal Processing
- Computer Vision
- Graphics
- Machine Learning
- Statistics
- Applied Math
- Comp. Photography

Credit: P. Milanfar
What does it mean, to see?

• “The plain man’s answer (and Aristotle’s, too) would be, to know what is where by looking. In other words, vision is the process of discovering from images what is present in the world, and where it is.” David Marr, Vision, 1982

• Our brain is able to use an image as an input, and interpret it in terms of objects and scene structures.
What does Salvador Dali’s *Study for the Dream Sequence in Spellbound* (1945) say about our visual perception?

We see a two dimensional image

But, we perceive depth information

light reflected on the retina

converging lines shadows of the eye
Why does vision appear easy to humans?

- Our brains are specialized to do vision.
- Nearly half of the cortex in a human brain is devoted to doing vision (cf. motor control ~20-30%, language ~10-20%)

- “Vision has evolved to convert the ill-posed problems into solvable ones by adding premises: assumptions about how the world we evolved in is, on average, put together”
 Steven Pinker, How the Mind Works, 1997

- Gestalt Theory (Laws of Visual Perception), Max Wertheimer, 1912

Figures: Steven Pinker, How the Mind Works, 1997
Computer Vision

• “Vision is a process that produces from images of the external world a description that is useful to the viewer and not cluttered with irrelevant information”
 ~David Marr

• The goal of Computer Vision:
 To develop artificial machine vision systems that make inferences related to the scene being viewed through the images acquired with digital cameras.
Marr’s observation: Studying vision at 3 levels

- Vision as an information processing task [David Marr, 1982]

- Three levels of understanding:
 1. Computational theory
 - What is computed? Why it is computed?
 2. Representation and Algorithm
 - How it is computed?
 - Input, Output, Transformation
 3. Physical Realization
 - Hardware
Visual Modules and the Information Flow

- Visual perception as a data-driven, bottom-up process (traditional view since D. Marr)
- Unidirectional information flow
- Simple low-level cues \Rightarrow Complex abstract perceptual units
Visual Modules and the Information Flow

• Vision modules can be categorized into three groups according to their functionality:
 – Low-level vision: filtering out irrelevant image data
 – Mid-level vision: grouping pixels or boundary fragments together
 – High-level vision: complex cognitive processes
Visual Modules and the Information Flow

- Vision modules can be categorized into three groups according to their functionality:
 - Low-level vision: filtering out irrelevant image data
 - Mid-level vision: grouping pixels or boundary fragments together
 - High-level vision: complex cognitive processes

Segmentation

Subject matter of this course
Fundamentals of Image Processing

- What is a digital image, how it is formed?
- How images are represented in computers?
- Why we process images?
- How we process images?
Image Formation

• What is measured in an image location?
 – brightness
 – color

Figures: Francis Crick, The Astonishing Hypothesis, 1995
• **Discretization**
 - in image space - sampling
 - In image brightness - quantization

Image Representation

- **Digital image:** 2D discrete function f
- **Pixel:** Smallest element of an image $f(x,y)$

Figure: M. J. Black
Image Representation

- **Digital image**: 2D discrete function \(f(x,y) \)
- **Pixel**: Smallest element of an image \(f(x,y) \)

![Image representation with pixel values](image.png)

Figure: M. J. Black
Sample Problems and Techniques

- Edge Detection
- Image Denoising
- Image Smoothing
- Image Segmentation
- Image Registration
- Image Inpainting
- Image Retargeting
- Visual Saliency
- Semantic Segmentation

- PDEs
- Variational models
- MRFs
- Graph Theory
- Sparse Coding
- Low-rank Matrix Approximation
Image Filtering

• Filtering out the irrelevant information

\[f(x) = u(x) + n(x) \]

\[\downarrow \quad \downarrow \quad \downarrow \]

observed image desired image irrelevant data

• Image denoising, image sharpening, image smoothing, image deblurring, etc.

• Edge detection
Edge Detection

- Edges: abrupt changes in the intensity
 - Uniformity of intensity or color
- Edges to object boundaries
Image Filtering

• **Difficulty:** Some of the irrelevant image information have characteristics similar to those of important image features
Image Smoothing - A Little Bit of History

- Gaussian Filtering / linear diffusion
 - the most widely used method

\[\frac{\partial u}{\partial t} = \nabla \cdot (\nabla u) = \nabla^2 u \]

- mid 80’s – unified formulations
 - methods that combine smoothing and edge detection
 - Geman & Geman’84, Blake & Zisserman’87, Mumford & Shah’89, Perona & Malik’90
Image Denoising

- Images are corrupted with 70% salt-and-pepper noise

R. H. Chan, C.-W. Ho, and M. Nikolova, Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail-Preserving Regularization. IEEE TIP 2005
Non-local Means Denoising

Figure 1. Scheme of NL-means strategy. Similar pixel neighborhoods give a large weight, $w(p,q1)$ and $w(p,q2)$, while much different neighborhoods give a small weight $w(p,q3)$.

Preserve fine image details and texture during denoising

A. Buades, B. Coll, J. M. Morel, A non-local algorithm for image denoising, CVPR, 2005
Context-Guided Filtering

• Use local image context to steer filtering

Preserve main image structures during filtering

E. Erdem and S. Tari, Mumford-Shah Regularizer with Contextual Feedback, JMIIV, 2009
Image Smoothing

L. Xu, C. Lu, Y. Xu, J. Jia, Image Smoothing via L0 Gradient Minimization, SIGGRAPH ASIA 2011
Image Smoothing

L. Karacan, E. Erdem, A. Erdem, work in progress
Image Segmentation

• Partition an image into meaningful regions that are likely to correspond to objects exist in the image

Grouping of pixels according to what criteria?

high-level object specific knowledge matters!

Figures: A. Erdem
Image Segmentation

• Boundary-based segmentation
• Region-based segmentation
• Unified formulations
Snakes

- Curve Evolution - parametric curve formulation

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Contour Models, IJCV, 1988
Snakes

- Curve Evolution - parametric curve formulation

Non-rigid, deformable objects can change their shape over time, e.g. lips, hands…

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Contour Models, IJCV, 1988
Active Contours Without Edges

- Curve Evolution – a level-set based curve formulation
Normalized Cuts

• A graph-theoretic formulation for segmentation

Normalized Cuts
From contours to regions

- **State-of-the-art**: gPb-owt-ucm segmentation algorithm

From contours to regions

- **State-of-the-art**: gPb-owt-ucm segmentation algorithm

Prior-Shape Guided Segmentation

• Incorporate prior shape information into the segmentation process

E. Erdem, S. Tari, and L. Vese, Segmentation Using The Edge Strength Function as a Shape Prior within a Local Deformation Model, ICIP 2009
Semantic Segmentation

- The problem of joint recognition and segmentation
Visual Saliency

- The problem of prediction where people look at images

Erdem and Erdem, JoV, in press
Image Retargetting

• automatically resize an image to arbitrary aspect ratios while preserving important image features

How we define the importance?

S. Avidan and A. Shamir, Seam Carving for Content-Aware Image Resizing, SIGGRAPH, 2007
Image retargeting by Seam Carving with different importance maps

Input Seam Carving GBVS sigLab sigRGB our map

Fig. S.6: Some example results from the ReTargetMe data set. [Figure 5]
Sparse Coding

• The problem of finding a small number of representative atoms from a dictionary which when combined with right weights represent a given signal.

\[y = Lx + e \]

Credit: Yi Ma
Low-Rank Matrix Approximations

\[D \rightarrow \text{Low-rank Texture } A \rightarrow \text{Sparse Corruptions } E \]

Credit: Yi Ma

Liang, Ren, Zhang, and Ma, Repairing Sparse Low-Rank Texture, in ECCV 2012.
Registration

• Estimate a transformation function between
 – two images
 – two point sets
 – two shapes
 – …
Registration

Fig. 5. Experiments on deformation. Each column represent one example. From left to right, increasing degree of deformation. Top row: warped template. Second row: template and target (same as the warped template). Third row: ICP results. Bottom row: RPM results.

H. Chui and A. Rangarajan, A new point matching algorithm for non-rigid registration, CVIU, 2003
Image Registration

Fig. 2. An example of a geodesic between images (original images taken from the Olivetti face database). The three intermediate images are generated by the optimization algorithm.

A tumor progressively appearing on a brain

Tumor: Reference image, registered target and deformation

Image Inpainting

- Reconstructing lost or deteriorated parts of images

Since 1682, when French explorers landed at the great bend of the Mississippi River and celebrated the first Mardi Gras in North America, New Orleans has brewed a fascinating melange of cultures. It was French, then Spanish, then French again, then sold to the United States. Through all these years, and even into the 1900s, others arrived from everywhere: Acadians (Cajuns), Africans, indige-

What do these examples demonstrate?