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Edge Detection	





Signals and Images	



•  A signal is composed of low and high frequency 
components	



low frequency components: smooth /���
	

 	

 	

  piecewise smooth	



high frequency components: oscillatory	



Neighboring pixels have similar brightness values	



Neighboring pixels have different brightness values	



You’re within a region	



You’re either at the edges or noise points	





Edge detection	



•  Goal:  Identify sudden changes 
(discontinuities) in an image	


–  Intuitively, most semantic and 

shape information from the image 
can be encoded in the edges	



–  More compact than pixels���
	



•  Ideal: artist’s line drawing (but 
artist is also using object-level 
knowledge)	



Slide credit: D. Lowe 



Why do we care about edges?	



•  Extract information, recognize 
objects	



•  Recover geometry and viewpoint	



Vanishing	


 point	



Vanishing	


 line	



Vanishing	


 point	



 Vertical vanishing	


 point	



(at infinity)	



Source: J. Hays 



Closeup of edges	



Slide credit: D. Hoiem 



Closeup of edges	



Slide credit: D. Hoiem 



Closeup of edges	



Slide credit: D. Hoiem 



Closeup of edges	



Slide credit: D. Hoiem 



What causes an edge?	



Depth discontinuity: 
object boundary	



Change in surface 
orientation: shape	



Cast shadows	



Reflectance change: 
appearance 
information, texture	



Slide credit: K. Grauman 



Characterizing edges	



•  An edge is a place of rapid change in the image intensity 
function	



image	


intensity function���

(along horizontal scanline)	

 first derivative	



edges correspond to���
extrema of derivative	



Slide credit: K. Grauman 



Derivatives with convolution	



For 2D function f(x,y), the partial derivative is:	



	



	



	


	



For discrete data, we can approximate using finite differences:	



To implement above as convolution, what would be the 
associated filter?	
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Slide credit: K. Grauman 



Partial derivatives of an image	



-1     
1 -1    1 

x
yxf

∂

∂ ),(
y
yxf

∂

∂ ),(

Which shows changes with respect to x?	


Slide credit: K. Grauman 



Assorted finite difference filters	



>> My = fspecial(‘sobel’); 
>> outim = imfilter(double(im), My);  
>> imagesc(outim); 
>> colormap gray; 

Slide credit: K. Grauman 



The gradient points in the direction of most rapid increase in 
intensity���
���
���
	



Image gradient	



•  The gradient of an image: 	



•   	



The gradient direction is given by	



Slide credit: S. Seitz 

The edge strength is given by the gradient magnitude	



•  How does this direction relate to the direction of the edge?	





Original Image	



Slide credit: K. Grauman 



Gradient magnitude image	



Slide credit: K. Grauman 



Thresholding gradient ���
with a lower threshold	



Slide credit: K. Grauman 



Thresholding gradient ���
with a higher threshold	



Slide credit: K. Grauman 



Intensity profile	



Slide credit: D. Hoiem 



With a little Gaussian noise	



Gradient	



Slide credit: D. Hoiem 



Effects of noise	


•  Consider a single row or column of the image	



–  Plotting intensity as a function of position gives a signal	



Where is the edge?	


Slide credit: S. Seitz 



Effects of noise	



•  Difference filters respond strongly to noise	


–  Image noise results in pixels that look very different from their neighbors	


–  Generally, the larger the noise the stronger the response	



•  What can we do about it?	



Slide credit: D. Forsyth 



Solution: smooth first	



•  To find edges, look for peaks in	
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Slide credit: S. Seitz 



Smoothing with a Gaussian	



Recall: parameter σ is the “scale” / “width” / “spread” of the 
Gaussian kernel, and controls the amount of smoothing.	



… 

Slide credit: K. Grauman 



Effect of σ on derivatives 	



The apparent structures differ depending on Gaussian’s 
scale parameter.	


	



Larger values: larger scale edges detected	


Smaller values: finer features detected	



σ = 1 pixel	

 σ = 3 pixels	



Slide credit: K. Grauman 



So, what scale to choose?	



It depends what we’re looking for.	



Slide credit: K. Grauman 



Smoothing and Edge Detection	



•  While eliminating noise via smoothing, we also lose some of the 
(important) image details.	


–  Fine details	


–  Image edges	


–  etc.	



•  What can we do to preserve such details?	


–  Use edge information during denoising!	


–  This requires a definition for image edges. 	


	


	



•  Edge preserving image smoothing (Next week’s topic!)	



Chicken-and-egg dilemma!	





•  Differentiation is convolution, and convolution is associative: ���
	



•  This saves us one operation:	
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Derivative theorem of convolution	
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Slide credit: S. Seitz 



Derivative of Gaussian filter	



x-direction	

 y-direction	



Slide credit: S. Lazebnik 

* [1 -1] =  



Derivative of Gaussian filter	



•  Which one finds horizontal/vertical edges?	



x-direction	

 y-direction	



Slide credit: S. Lazebnik 



Smoothing vs. derivative filters	



•  Smoothing filters	


–  Gaussian: remove “high-frequency” components; ���

“low-pass” filter	


–  Can the values of a smoothing filter be negative?	


–  What should the values sum to?	



•  One: constant regions are not affected by the filter	


	



���
	



•  Derivative filters	


–  Derivatives of Gaussian	


–  Can the values of a derivative filter be negative?	


–  What should the values sum to? 	



•  Zero: no response in constant regions	


–  High absolute value at points of high contrast	



	

 Slide credit: S. Lazebnik 



Laplacian of Gaussian	


Consider  	



Laplacian of Gaussian 
operator 

Where is the edge?  	

 Zero-crossings of bottom graph	


Slide credit: K. Grauman 



2D edge detection filters	



•   The Laplacian operator:	



Laplacian of Gaussian	



Gaussian	

 derivative of Gaussian	



Slide credit: K. Grauman 



Laplacian of Gaussian	



 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

original image	



Source: D. Marr and E. Hildreth (1980) 



Laplacian of Gaussian	



 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with	



Source: D. Marr and E. Hildreth (1980) 



Laplacian of Gaussian	



 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with	



(pos. values – white, neg. values – black)	



Source: D. Marr and E. Hildreth (1980) 



Laplacian of Gaussian	



 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

zero-crossings	



Source: D. Marr and E. Hildreth (1980) 



Designing an edge detector	



•  Criteria for a good edge detector:	


–  Good detection: the optimal detector should find all real edges, 

ignoring noise or other artifacts	


–  Good localization	



•  the edges detected must be as close as possible to the true edges	


•  the detector must return one point only for each true edge point	



•  Cues of edge detection	


–  Differences in color, intensity, or texture across the boundary	


–  Continuity and closure	


–  High-level knowledge	



Slide credit: L. Fei-Fei 



The Canny edge detector	



original image (Lena)	



Slide credit: K. Grauman 



The Canny edge detector	



norm of the gradient	

thresholding	



Slide credit: K. Grauman 



The Canny edge detector	



thresholding	



How to turn 
these thick 
regions of the 
gradient into 
curves?	



Slide credit: K. Grauman 



Non-maximum suppression	



Check if pixel is local maximum along gradient direction, 	


select single max across width of the edge	



–  requires checking interpolated pixels p and r	



Slide credit: K. Grauman 



The Canny Edge Detector	



thinning	


(non-maximum suppression)	



Problem: pixels along 
this edge didn’t survive ���
the thresholding	



Slide credit: K. Grauman 



Hysteresis thresholding	



•  Threshold at low/high levels to get weak/strong edge pixels	



•  Do connected components, starting from strong edge pixels	



Slide credit: J. Hays 



Hysteresis thresholding	



•  Check that maximum value of gradient value is 
sufficiently large	


–  drop-outs?  use hysteresis	



•  use a high threshold to start edge curves and a low threshold to 
continue them.	



Slide credit: S. Seitz 



Hysteresis thresholding	



original image	



high threshold	


(strong edges)	



low threshold	


(weak edges)	



hysteresis threshold	



Slide credit: L. Fei-Fei 



original image 

high threshold	


(strong edges)	



low threshold	


(weak edges)	



hysteresis threshold	



Slide credit: L. Fei-Fei 

Hysteresis thresholding	





Recap: Canny edge detector	



1.  Filter image with derivative of Gaussian 	


2.  Find magnitude and orientation of gradient	


3.  Non-maximum suppression:	



–  Thin wide “ridges” down to single pixel width	


4.  Linking and thresholding (hysteresis):	



–  Define two thresholds: low and high	


–  Use the high threshold to start edge curves and the 

low threshold to continue them���
	



•  MATLAB:   edge(image, ‘canny’); 

Slide credit: D. Lowe, L. Fei-Fei 



Effect of σ (Gaussian kernel spread/size)	



Canny with 	

 Canny with 	

original 	



The choice of σ depends on desired behavior	


•  large σ detects large scale edges	



•  small σ detects fine features	



Slide credit: S. Seitz 



Background	

 Texture	

 Shadows	



Low-level edges vs. perceived contours	



Slide credit: K. Grauman 



Edge detection is just the 
beginning…	



•  Berkeley segmentation database: ���
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/	



image	

 human segmentation	

 gradient magnitude	



Source: S. Lazebnik	





[D. Martin et al. 
PAMI 2004]	



Human-marked segment boundaries	



Learn from 
humans which 
combination of 
features is most 
indicative of a 
“good” contour?	



Slide credit: K. Grauman 


