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Signals and Images

* A ssignal is composed of low and high frequency
components

low frequency components: smooth /
piecewise smooth

Neighboring pixels have similar brightness values

You’re within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values

You're either at the edges or noise points




Edge detection

* Goal: l|dentify sudden changes
(discontinuities) in an image
— Intuitively, most semantic and

shape information from the image
can be encoded in the edges

— More compact than pixels

 ldeal: artist’s line drawing (but
artist is also using object-level
knowledge)

Slide credit; D. Lowe



Why do we care about edges?

* Extract information, recognize
objects

* Recover geometry and viewpoint # Vertical vanishing
oint
Vanishing oo e o (at rnfinity)

\

Vanishing . . » Vanishing
point point

Source: J. Hays



Closeup of edges

Slide credit: D. Hoiem



Closeup of edges

Slide credit: D. Hoiem



Closeup of edges
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Slide credit: D. Hoiem



Closeup of edges

Slide credit: D. Hoiem



What causes an edge?

Depth discontinuity:
Reflectance change: object boundary
appearance

information, texture

Cast shadows

Change in surface
orientation: shape

Shide credit: K. Grauman



Characterizing edges

* An edge is a place of rapid change in the image intensity

function
intensity function

image (along horizontal scanline) first derivative

\ |

edges correspond to
extrema of derivative
Shide credit: K. Grauman



Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

Yoy o S+ey) - f(x,)

o0x £—0 £

For discrete data, we can approximate using finite differences:

af(xay) ~ f(X+1,y)—f(X,y)
0x 1

To implement above as convolution, what would be the
associated filter!?

Slide credit;: K. Grauman



Partial derivatives of an image

Which shows changes with respect to x?

Shlide credit: K. Grauman



Assorted finite difference filters

-110]1 I 1] 1
Prewitt: M, = |-1]0]1 ; My = 0
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Sobel: M, = [-2]0]2 | M, = 0] 0
101 -1 [-2]-1

01 . 1[0

Roberts: M, = 151 My = 513

>> My = fspecial(‘sobel’) ;

>> outim = imfilter (double(im), My);
>> imagesc (outim) ;

>> colormap gray;

Shlide credit: K. Grauman



Image gradient

e The gradlent of an |mage vf — [g:]; ?95

J -

The gradient points in the direction of most rapid increase in
intensity

How does this direction relate to the direction of the edge!?

The gradient direction is given by 6 = tan—1 (gi/%)

The edge strength is given by the gradient magnitude

VA= /D% + (3’

Shlide credit: S. Seitz



Original Image

Shide credit: K. Grauman



Gradient magnitude image

Shide credit: K. Grauman



Thresholding gradient
with a lower threshold

Shide credit: K. Grauman



Thresholding gradient
with a higher threshold

Shide credit: K. Grauman



Intensity profile

Shide credit: D. Hoiem
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Effects of noise

* Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

f(x)
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Where is the edge!?

Slide credit: S. Seitz



Effects of noise

* Difference filters respond strongly to noise
— Image noise results in pixels that look very different from their neighbors
— Generally, the larger the noise the stronger the response

* What can we do about it?

Slide credit: D. Forsyth



Solution: smooth first

Sigma = 50
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oQ
Kernel
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f*g

Convolution
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d
a(f*g)

Differentiation
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To find edges, look for peaks in —(f*g)

Slide credit: S. Seitz



Smoothing with a Gaussian

Recall: parameter O is the “scale” / “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.
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Shide credit: K. Grauman



Effect of O on derivatives

o = 3 pixels

The apparent structures differ depending on Gaussian’ s
scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

Shide credit: K. Grauman



So, what scale to choose?

It depends what we’re looking for.

Shide credit: K. Grauman



Smoothing and Edge Detection

* While eliminating noise via smoothing, we also lose some of the
(important) image details.

— Fine details
— Image edges
— etc.

* What can we do to preserve such details?
— Use edge information during denoising!
— This requires a definition for image edges.

Chicken-and-egg dilemma

* Edge preserving image smoothing (Next week’s topic!)



Derivative theorem of convolution

Differentiation is convolution, and convolution is associative:

 This saves us one operation: i(f*g) =f*ig
dx dx

Sigma = 50
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Slide credit: S. Seitz



Derivative of Gaussian filter
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Shlide credit: S. Lazebnik



Derivative of Gaussian filter

2 2 2 2

x-direction y-direction

* Which one finds horizontal/vertical edges!?

Shlide credit: S. Lazebnik



Smoothing vs. derivative filters

* Smoothing filters

— Gaussian: remove “high-frequency” components;
“low-pass” filter

— Can the values of a smoothing filter be negative?

— What should the values sum to?
* One: constant regions are not affected by the filter

* Derivative filters
— Derivatives of Gaussian
— Can the values of a derivative filter be negative!?
— What should the values sum to?
» Zero: no response in constant regions
— High absolute value at points of high contrast

Shlide credit: S. Lazebnik



Laplacian of Gaussian
Consider %(h * f)

Sigma = 50
T
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Where is the edge!? Zero-crossings of bottom graph

Shide credit: K. Grauman



2D edge detection filters
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* The Laplacian operator:

Shide credit: K. Grauman
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Laplacian of Gaussian

original image

Source: D. Marr and E. Hildreth (1980)



Laplacian of Gaussian

convolution with
VZhe(u,v)

Source: D. Marr and E. Hildreth (1980)



Laplacian of Gaussian

convolution with
VZhe(u,v)

(pos. values — white, neg. values — black)

Source: D. Marr and E. Hildreth (1980)



Laplacian of Gaussian
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Source: D. Marr and E. Hildreth (1980)



Desighing an edge detector

Criteria for a good edge detector:

— Good detection: the optimal detector should find all real edges,
ignoring noise or other artifacts

— Good localization
* the edges detected must be as close as possible to the true edges
* the detector must return one point only for each true edge point

Cues of edge detection
— Differences in color, intensity, or texture across the boundary

— Continuity and closure
— High-level knowledge

Slide credit: L. Fei-Fei



The Canny edge detector

original image (Lena)

Shide credit: K. Grauman



The Canny edge detector

thresholding

Shide credit: K. Grauman



The Canny edge detector
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Shide credit: K. Grauman

How to turn
these thick
regions of the
gradient into
curves!?



Non-maximum suppression
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Check if pixel is local maximum along gradient direction,
select single max across width of the edge
— requires checking interpolated pixels p and r

Shide credit: K. Grauman



The Canny Edge Detector

Problem: pixels along
this edge didn’t survive
the thresholding

thinning

(non-maximum suppression)
Shide credit: K. Grauman



Hysteresis thresholding

* Threshold at low/high levels to get weak/strong edge pixels

* Do connected components, starting from strong edge pixels

Shide credit: J. Hays



Hysteresis thresholding

* Check that maximum value of gradient value is
sufficiently large

— drop-outs! use hysteresis

* use a high threshold to start edge curves and a low threshold to
continue them.

Shide credit: S. Seitz



Hysteresis thresholding

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)
Shlide credit: L. Fei-Fe1



Hysteresis thresholding

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Shlide credit: L. Fei-Fei



Recap: Canny edge detector

|. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
— Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
— Define two thresholds: low and high

— Use the high threshold to start edge curves and the
low threshold to continue them

 MATLAB: edge(image, ‘canny’);

Shide credit: D. Lowe, L. Fei-Fei



Effect of ¢ (Gaussian kernel spread/size)

Canny with 0 = 2

original Canny with 0o =

The choice of 0 depends on desired behavior
* large o detects large scale edges

 small o detects fine features

Shide credit: S. Seitz



Low-level edges vs. perceived contours

Background Shadows

Shide credit: K. Grauman



Edge detection is just the
beginning...

image human segmentation gradient magnitude

* Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Source: S. Lazebnik



Learn from
humans which
combination of
features is most
indicative of a
“good” contour?

-

[D. Martin et al.
PAMI 2004]

Slide credit: K. Grauman Human-marked segment boundaries



