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Nonlinear Filtering!

Review - Signals"

•  A signal is composed of low and high frequency 
components!

low frequency components: smooth /"
! ! !  piecewise smooth!

high frequency components: oscillatory!

Neighboring pixels have similar brightness values!

Neighboring pixels have different brightness values!

You’re within a region!

You’re either at the edges or noise points!

Review - Linear Diffusion"
•  The linear diffusion (heat) equation is the oldest and best 

investigated PDE method in image processing. !

•  Let f (x) denote a grayscale (noisy) input image and u(x, t) be 
initialized with u(x,0) = u0(x) = f(x). !

•  The linear diffusion process can be defined by the equation: "
"

!
    where ∇· denotes the divergence operator. Thus, !
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1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1) ∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2) ∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.
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Review - Linear Diffusion (cont’d.)"
•  As we move to coarser scales, !

–  the evolving images become more and more simplified since the diffusion 
process removes the image structures at finer scales. !

T = 0 T = 5 T = 10

T = 20 T = 40 T = 80

Figure 2: Linear diffusion results for different diffusion times.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) and u(x) respectively denote the given noisy image and the desired de-
noised image, and n(x) represents the additive noise.
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Review - Linear Diffusion and Gaussian 
Filtering"
•  The solution of the linear diffusion can be explicitly estimated as:!

!

!

    with!

•  Solution of the linear diffusion equation is equivalent to a proper 
convolution of the input image with the Gaussian kernel Gσ(x) 
with standard deviation!

•  The higher the value of T, the higher the value of σ, and the 
more smooth the image becomes. !

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2

Review - Numerical Implementation"
•  Original model:!

•  Space discrete version:!

•  Space-time discrete version:!
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1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1) ∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2) ∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.
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the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) and u(x) respectively denote the given noisy image and the desired de-
noised image, and n(x) represents the additive noise.
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homogeneous Neumann boundary condition "
along the image boundary !

∆t ≤ 0.25 is required for "
numerical stability!

Variational interpretation of heat 
diffusion"
•  Cost functional: !

•  Euler-Lagrange:!

!

!

•  Heat diffusion: modifies temperature to decrease E quickly !

 ! Slide credit: I. Kokkinos 
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Variational interpretation of heat diffusion Today – Nonlinear Diffusion"

•  Median filter!

•  use nonlinear PDEs to create a scale space 
representation !
–  consists of gradually simplified images!
–  some image features such as edges are maintained or even 

enhanced. !

•  Perona-Malik Type Nonlinear Diffusion (1990)!

•  Total Variation (TV) Regularization (1992)!

•  Weickert’s Edge Enhancing Diffusion (1994)!



Median filters"

•  A Median Filter operates over a window by selecting the 
median intensity in the window.!

•  What advantage does a median filter have over a mean filter?!

•  Is a median filter a kind of convolution?!

adapted from: S. Seitz 

Median filter"

•  No new pixel values 
introduced!

•  Removes spikes: good for 
impulse, salt & pepper 
noise!

•   Non-linear filter!

Slide credit: K. Grauman 

Median filter"

Salt and 
pepper 
noise!

Median 
filtered!

Slide credit: M. Hebert 

Plots of a row of the image!
Matlab: output im = medfilt2(im, [h w]); 

Median filter"
•  What advantage does median filtering have over Gaussian 

filtering?!
–  Robustness to outliers!
–  Median filter is edge preserving!

Slide credit: K. Grauman 



Perona-Malik Type Nonlinear Diffusion"
•  The earliest nonlinear diffusion model proposed in image 

processing. !

•  called anisotropic diffusion by Perona and Malik.!

•  It uses a scalar-valued diffusivity.!

•  In fact, it is an isotropic nonhomogeneous equation. !
–  A true example of anisotropic diffusion model: Weickert’s Edge-enhancing 

diffusion (more later on) !

Perona-Malik Type Nonlinear Diffusion"
•  The Perona-Malik equation is: "
"
"
"
"
with homogeneous Neumann boundary conditions and the initial 
condition u0(x) = f (x), f denoting the input image. !

•  Constant diffusion coefficient of linear equation is replaced "
with a smooth non-increasing diffusivity function g satisfying!
–  g(0) = 1, !
–  g(s) ≥ 0, !
–  lims→∞ g(s) = 0 !

•  The diffusivities become variable in both space and time "
(image dependent). !
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1 PERONA-MALIK TYPE NONLINEAR DIFFUSION

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create
a scale space representation that consists of gradually simplified images where some
image features such as edges are maintained or even enhanced. The earliest nonlinear
diffusion model proposed in image processing is the so-called anisotropic diffusion1

by Perona and Malik [4].
In their formulation, they replaced the constant diffusion coefficient of linear equa-

tion by a smooth nonincreasing diffusivity function g with g(0) = 1, g(s) � 0, and
lim

s!• g(s) = 0. As a consequence, the diffusivities become variable in both space
and time. The Perona-Malik equation is

(1)
∂u

∂t

= r · (g(|ru|)ru)

with homogeneous Neumann boundary conditions and the initial condition u

0(x) =
f (x), f denoting the input image.

Perona and Malik suggested two different choices for the diffusivity function:

g(s) =
1

1 + s

2/l2 ,(2)

g(s) = e

� s

2
l2(3)

⇤erkut@cs.hacettepe.edu.tr
1In fact, Perona-Malik equation is an isotropic nonhomogeneous equation as it uses a scalar-valued dif-

fusivity. A true example of anisotropic diffusion model, edge-enhancing diffusion [6], will be summarized
in Section 3.

1

Perona-Malik Type Nonlinear Diffusion"
•  The Perona-Malik equation:!

•  Two different choices for the diffusivity function: "
!

!(1)!

!

!(2) "
!

•  λ corresponds to a contrast parameter.!

•  What is the effect of the parameter λ? !
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1D Analysis of Perona-Malik Diffusion"
•  1D version to demonstrate the role of the contrast parameter!

•  For 1D case, the Perona-Malik equation is as follows: !

with ! ! ! !or !

!

1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

where l corresponds to a contrast parameter. These functions share similar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it
clearly demonstrates the role of the contrast parameter l and the main behavior of the
equation [7]. For 1D case, the Perona-Malik equation is as follows:

(4)
∂u

∂t

=
∂

∂x

(g(|u
x

|)u
x

)| {z }
F(u

x

)

= F0(u
x

)u
xx

with g(|u
x

|) = 1
1+|u

x

|2/l2 or g(|u
x

|) = e

� |u
x

|2
l2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |u

x

|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u

∂t

= F0(u
x

)u
xx

, for the points where |u
x

| < l, F0(u
x

) > 0 which corresponds
to lost in the material. For the points where |u

x

| > l, on the contrary, F0(u
x

) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.
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Figure 1: Diffusivities and the corresponding flux functions for linear diffusion (plotted
in dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For
Perona-Malik diffusivity g(s) = 1

1+s

2/l2 is used with l = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called
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Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |u
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increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
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which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.
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smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |u

x

|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u
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= F0(u
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xx

, for the points where |u
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| < l, F0(u
x

) > 0 which corresponds
to lost in the material. For the points where |u
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| > l, on the contrary, F0(u
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) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.
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If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called
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linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
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1D Analysis of Perona-Malik Diffusion"

•  Although the diffusivity is always nonnegative, one can observe 
both forward and backward diffusions during the smoothing.!

•  The contrast parameter λseparates the regions of forward "
diffusion from the regions of backward diffusion.!

1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

where l corresponds to a contrast parameter. These functions share similar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it
clearly demonstrates the role of the contrast parameter l and the main behavior of the
equation [7]. For 1D case, the Perona-Malik equation is as follows:

(4)
∂u

∂t

=
∂

∂x

(g(|u
x

|)u
x

)| {z }
F(u

x

)

= F0(u
x

)u
xx

with g(|u
x

|) = 1
1+|u

x

|2/l2 or g(|u
x

|) = e

� |u
x

|2
l2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |u

x

|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u

∂t

= F0(u
x

)u
xx

, for the points where |u
x

| < l, F0(u
x

) > 0 which corresponds
to lost in the material. For the points where |u

x

| > l, on the contrary, F0(u
x

) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

s

g
(s

)

diffusivity functions

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s

Φ
(s

)

flux functions

Figure 1: Diffusivities and the corresponding flux functions for linear diffusion (plotted
in dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For
Perona-Malik diffusivity g(s) = 1

1+s

2/l2 is used with l = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called

2

1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

where l corresponds to a contrast parameter. These functions share similar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it
clearly demonstrates the role of the contrast parameter l and the main behavior of the
equation [7]. For 1D case, the Perona-Malik equation is as follows:

(4)
∂u

∂t

=
∂

∂x

(g(|u
x

|)u
x

)| {z }
F(u

x

)

= F0(u
x

)u
xx

with g(|u
x

|) = 1
1+|u

x

|2/l2 or g(|u
x

|) = e

� |u
x

|2
l2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |u

x

|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u

∂t

= F0(u
x

)u
xx

, for the points where |u
x

| < l, F0(u
x

) > 0 which corresponds
to lost in the material. For the points where |u

x

| > l, on the contrary, F0(u
x

) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

s

g
(s

)

diffusivity functions

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s

Φ
(s

)

flux functions

Figure 1: Diffusivities and the corresponding flux functions for linear diffusion (plotted
in dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For
Perona-Malik diffusivity g(s) = 1

1+s

2/l2 is used with l = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called

2

1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

where l corresponds to a contrast parameter. These functions share similar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it
clearly demonstrates the role of the contrast parameter l and the main behavior of the
equation [7]. For 1D case, the Perona-Malik equation is as follows:

(4)
∂u

∂t

=
∂

∂x

(g(|u
x

|)u
x

)| {z }
F(u

x

)

= F0(u
x

)u
xx

with g(|u
x

|) = 1
1+|u

x

|2/l2 or g(|u
x

|) = e

� |u
x

|2
l2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |u

x

|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u

∂t

= F0(u
x

)u
xx

, for the points where |u
x

| < l, F0(u
x

) > 0 which corresponds
to lost in the material. For the points where |u

x

| > l, on the contrary, F0(u
x

) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

s

g
(s

)

diffusivity functions

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s

Φ
(s

)

flux functions

Figure 1: Diffusivities and the corresponding flux functions for linear diffusion (plotted
in dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For
Perona-Malik diffusivity g(s) = 1

1+s

2/l2 is used with l = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called

2

1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

where l corresponds to a contrast parameter. These functions share similar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it
clearly demonstrates the role of the contrast parameter l and the main behavior of the
equation [7]. For 1D case, the Perona-Malik equation is as follows:

(4)
∂u

∂t

=
∂

∂x

(g(|u
x

|)u
x

)| {z }
F(u

x

)

= F0(u
x

)u
xx

with g(|u
x

|) = 1
1+|u

x

|2/l2 or g(|u
x

|) = e

� |u
x

|2
l2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |u

x

|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u

∂t

= F0(u
x

)u
xx

, for the points where |u
x

| < l, F0(u
x

) > 0 which corresponds
to lost in the material. For the points where |u

x

| > l, on the contrary, F0(u
x

) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

s

g
(s

)

diffusivity functions

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s

Φ
(s

)

flux functions

Figure 1: Diffusivities and the corresponding flux functions for linear diffusion (plotted
in dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For
Perona-Malik diffusivity g(s) = 1

1+s

2/l2 is used with l = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called

2

1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

where l corresponds to a contrast parameter. These functions share similar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it
clearly demonstrates the role of the contrast parameter l and the main behavior of the
equation [7]. For 1D case, the Perona-Malik equation is as follows:

(4)
∂u

∂t

=
∂

∂x

(g(|u
x

|)u
x

)| {z }
F(u

x

)

= F0(u
x

)u
xx

with g(|u
x

|) = 1
1+|u

x

|2/l2 or g(|u
x

|) = e

� |u
x

|2
l2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |u

x

|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u

∂t

= F0(u
x

)u
xx

, for the points where |u
x

| < l, F0(u
x

) > 0 which corresponds
to lost in the material. For the points where |u

x

| > l, on the contrary, F0(u
x

) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

s

g
(s

)

diffusivity functions

0 2 4 6 8 10lambda
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s

Φ
(s

)

flux functions

Figure 1: Diffusivities and the corresponding flux functions for linear diffusion (plotted
in dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For
Perona-Malik diffusivity g(s) = 1

1+s

2/l2 is used with l = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called

2

Perona-Malik Type Nonlinear Diffusion"
•  In 2D case, the diffusivities are reduced at the image locations 

where |∇u|2 is large. !

•  As |∇u|2 can be interpreted as a measure of edge likelihood, this 
means that the amount of smoothing is low along image edges. !

•  The contrast parameter λspecifies a measure that determines 
which edge points are to be preserved or blurred during the 
diffusion process. !

•  Even edges can be sharpened due to the local backward 
diffusion behavior as discussed for the 1D case. !

•  Since the backward diffusion is a well-known ill-posed process, 
this may cause an instability, the so-called staircasing effect.!

Staircasing Effect"
•  Due to backward diffusion, a piece-wise smooth region in the 

original image evolves into many unintuitive piecewise constant 
regions.!

•  A possible solution to this drawback is to use regularized 
gradients in diffusivity computations.!

(a) (b) (c)

Figure 2: The staircasing effect. (a) Original noisy image. (b) Perona-Malik diffusion.
(c) Regularized Perona-Malik diffusion.

staircasing effect, where a piece-wise smooth region in the original image evolves into
many unintuitive piecewise constant regions. Figure 2 shows an example where this
instability occurs. The unintuitive regions such as the one at the woman’s face and
shoulder are clearly visible in Figure 2(b). A possible solution to this drawback is to
use regularized gradients in diffusivity computations [2] (Figure 2(c)).

Replacing the diffusivities g(|ru|) with the regularized ones g(|rus|) leads to
the following equation:

(5)
∂u

∂t

= r · (g(|rus|)ru)

where us = Gs ⇤ u represents a Gaussian-smoothed version of the image. Taking the
equivalence of the Gaussian smoothing and the linear scale space into account, rus

can also be considered as the gradient computed at a specific scale s > 0.

Some example results of regularized Perona-Malik filtering with different diffusion
times are shown in Figure3 and Figure 4. It is evident from these images that the corre-
sponding smoothing process diminishes noise while retaining or even enhancing edges
since it considers a kind of a priori edge knowledge.

Numerical Implementation

For numerical implementation, we use central differences to approximate the gradient
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Regularized Perona-Malik Model"
•  Smoothing process diminishes noise while retaining or enhancing 

edges since it considers a kind of a priori edge knowledge !
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staircasing effect, where a piece-wise smooth region in the original image evolves into
many unintuitive piecewise constant regions. Figure 2 shows an example where this
instability occurs. The unintuitive regions such as the one at the woman’s face and
shoulder are clearly visible in Figure 2(b). A possible solution to this drawback is to
use regularized gradients in diffusivity computations [2] (Figure 2(c)).

Replacing the diffusivities g(|ru|) with the regularized ones g(|rus|) leads to
the following equation:
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where us = Gs ⇤ u represents a Gaussian-smoothed version of the image. Taking the
equivalence of the Gaussian smoothing and the linear scale space into account, rus

can also be considered as the gradient computed at a specific scale s > 0.

Some example results of regularized Perona-Malik filtering with different diffusion
times are shown in Figure3 and Figure 4. It is evident from these images that the corre-
sponding smoothing process diminishes noise while retaining or even enhancing edges
since it considers a kind of a priori edge knowledge.
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1 PERONA-MALIK TYPE NONLINEAR DIFFUSION

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create
a scale space representation that consists of gradually simplified images where some
image features such as edges are maintained or even enhanced. The earliest nonlinear
diffusion model proposed in image processing is the so-called anisotropic diffusion1

by Perona and Malik [4].
In their formulation, they replaced the constant diffusion coefficient of linear equa-

tion by a smooth nonincreasing diffusivity function g with g(0) = 1, g(s) � 0, and
lim

s!• g(s) = 0. As a consequence, the diffusivities become variable in both space
and time. The Perona-Malik equation is

(1)
∂u

∂t

= r · (g(|ru|)ru)

with homogeneous Neumann boundary conditions and the initial condition u

0(x) =
f (x), f denoting the input image.

Perona and Malik suggested two different choices for the diffusivity function:

g(s) =
1

1 + s

2/l2 ,(2)

g(s) = e

� s

2
l2(3)

⇤erkut@cs.hacettepe.edu.tr
1In fact, Perona-Malik equation is an isotropic nonhomogeneous equation as it uses a scalar-valued dif-

fusivity. A true example of anisotropic diffusion model, edge-enhancing diffusion [6], will be summarized
in Section 3.
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Numerical Implementation"
•  Space discrete version:!

!

•  This discretization scheme requires the diffusivities to be 
estimated at mid-pixel points.!

•  They are computed by taking averages"
of the diffusivities over neighboring "
pixels:!
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This discretization scheme requires the diffusivities to be estimated at mid-pixel
points (Figure 5). They are simply computed by taking averages of the diffusivities
over neighboring pixels:
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The time derivative in (Equation 7) can be discretized using forward difference.
This yields an iterative scheme with an explicit time discretization, where homoge-
neous Neumann boundary condition is imposed along the image boundary
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with Dt denoting the time step. For the Perona-Malik diffusion, the stability require-
ment is again Dt  0.25.
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Numerical Implementation"
•  Space discrete version:!

!

•  Space-time discrete version:!

homogeneous Neumann boundary condition "
along the image boundary !

∆t ≤ 0.25 is required for "
numerical stability!
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Total Variation (TV) Regularization"
•  Rudin et al. (1992) formulated image restoration as minimization 

of the total variation (TV) of a given image.!

•  The Total Variation (TV) regularization model is generally 
defined as:!

–  Ω ⊂ R2 is connected, bounded, open subset representing the image 
domain, !

–  f is an image defined on Ω,!
–  u is the smooth approximation of f ,!
–  α > 0 is a scalar. !
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This discretization scheme requires the diffusivities to be estimated at mid-pixel
points (Figure 5). They are simply computed by taking averages of the diffusivities
over neighboring pixels:
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Total Variation (TV) Regularization"
•  The Total Variation (TV) regularization model:!

!
•  The gradient descent equation for Equation (10) is defined by: !

•  The value of α specifies the relative importance of the fidelity 
term.!

•  It can be interpreted as a scale parameter that determines the 
level of smoothing. !
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2. TOTAL VARIATION (TV) REGULARIZATION

• a > 0 is a scalar.

The gradient descent equation for Equation (10) is defined by
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Since the value of a specifies the relative importance of the fidelity term, it can be
interpreted as a scale parameter that determines the level of smoothing. In Figure 6, the
role of this parameter is illustrated. The restored images are given in Figure 6(b)-(d).
As it can be clearly seen, level of smoothing increases with increasing a.

In the original formulation of Rudin et al., the observed image f was assumed to be
degraded by additive Gaussian noise with zero mean and known variance s2. Hence,
in order to restore a given image, they propose to solve the constrained optimization
problem

(12) min
u

Z

W

|ru|dx

subject to

(13)
Z

W

(u � f )2
dx = s2 .

When TV regularization is defined as a constrained optimization problem, 1
a can be

considered as a Lagrange multiplier, which has to be determined by taking the given
constraint into account.

TV regularization can be associated with a nonlinear diffusion filter, the so-called
TV flow [1, 3]. Ignoring the fidelity term in Equation (11) leads to the PDE

(14)
∂u

∂t

= r · (g(|ru|)ru)

with u

0 = f and the diffusivity function g(|ru|) = 1
|ru| . Notice that this diffusiv-

ity function has no additional contrast parameter as compared with the Perona-Malik
diffusivities. Figure 7 and Figure 8 depict TV scale space examples sampled at dif-
ferent diffusion times for two different images. It is evident from these images that the
corresponding smoothing process yields segmentation-like, piecewise constant images.

Numerical Implementation

The evolution equation of u (11) can be discretized by using standard finite differences.
An important point is that the solution of TV regularization or equivalently TV flow
leads to singular diffusivities as shown in Equation (14). In numerical implementations
based on standard discretization, this leads to stability problems as the image gradient
tends to zero. A common solution to this problem is to add a small positive constant e
to image gradients.

After e-regularization, the space-discrete version of Equation (11) can be written
as:

6

Sample TV Restoration results"
3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.
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Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],

8

3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],

8

3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],

8

3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],

8

3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],

8

3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],

8

3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],

8

•  The value of α specifies the relative importance of the fidelity 
term and thus the level of smoothing. !

TV Regularization"
•  In the original formulation, the observed image f was assumed to 

be degraded by additive Gaussian noise with zero mean and 
known variance σ2. !

•  In order to restore a given image, Rudin et al. proposed to solve 
the following constrained optimization problem: "
"
"
"
subject to!

•       can be considered as a Lagrange multiplier. !
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Sample TV Flow results"
•  Corresponding smoothing process yields segmentation-like, 

piecewise constant images. !

3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],

8

1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

T = 0 T = 50 T = 100

T = 200 T = 400 T = 800

Figure 3: Reg. Perona-Malik results for different diffusion time (l = 1, s = 1).

T = 0 T = 100 T = 200

T = 400 T = 800 T = 1600

Figure 4: Reg. Perona-Malik results for different diffusion times (l = 1, s = 1).

This results in the following space-discrete equation:
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Sample TV Flow results"
•  Corresponding smoothing process yields segmentation-like, 

piecewise constant images. !
T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 8: TV flow results for different diffusion times.

Weickert suggested an alternative approach that additionally takes direction of the im-
age gradients into account. The suggested model is an anisotropic nonlinear diffusion
model with better edge enhancing capabilities.

In general, any anisotropic nonlinear diffusion can be described by the equation

(18)
∂u

∂t

= r · (D(ru)ru)

where u is the smoothed image that is initialized with the input image f (that is
u

0(x) = f (x)), and D represents a matrix-valued diffusion tensor that describes the
smoothing directions and the corresponding diffusivities. One can easily observe that
for linear diffusion the diffusion tensor can be defined as D(ru) = I, which results
in a constant diffusion coefficient for all image points in all directions. Similarly, for
Perona-Malik type nonlinear diffusion, D(ru) = g(|rus|)I. Such a choice reduces
the amount of smoothing at image edges, but in an equal amount in all directions. In
actual anisotropic setting, the diffusion tensor D is defined as a function of the structure
tensor given by

(19) J(ru) = ruru

T =


u

2
x

u

x

u

y

u

x

u

y

u

2
y

�
.

The structure tensor J(ru) can be interpreted as an image feature describing the
local orientation information. It has an orthonormal basis of eigenvectors v1 and v2
with v1 k ru and v2 ? ru, and the corresponding eigenvalues l1 = |ru|2 and
l2 = 0. It is important to note that noise significantly affects the tensor estimation.

9

Numerical Implementation"
•  The evolution equation can be discretized by using standard 

finite differences. !

•  The solution of TV regularization or equivalently TV flow leads 
to singular diffusivities. !

•  In numerical implementations based on standard discretization, 
this leads to stability problems as the image gradient tends to 
zero. !

•  A common solution to this problem is to add a small positive 
constant ε to image gradients.!

•  More accurate numerical implementations are suggested. !

!
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When explicit time discretization is employed, numerical solution to Equation (15)
can be computed by the following iterative scheme, where homogeneous Neumann
boundary condition is imposed along the image boundary:
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where Dt denotes the time step. e-regularization requires the stability condition Dt 
0.25e, and thus a sufficiently large number of iterations is needed for small values of e.
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where Dt denotes the time step. e-regularization requires the stability condition Dt 
0.25e, and thus a sufficiently large number of iterations is needed for small values of e.
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Numerical Implementation"
•  Space-time discrete version:!
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where Dt denotes the time step. e-regularization requires the stability condition Dt 
0.25e, and thus a sufficiently large number of iterations is needed for small values of e.
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Structure Tensor"
•  The structure tensor J(∇u) is described by:!

•  The structure tensor J(∇u) can be interpreted as an image 
feature describing the local orientation information. !

•  It has !
–  an orthonormal basis of eigenvectors v1 and v2 with "

v1 || ∇u and v2 ⊥ ∇u, and !
–  the corresponding eigenvalues λ1 = |∇u|2 and λ2 = 0. !
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Figure 8: TV flow results for different diffusion times.

Weickert suggested an alternative approach that additionally takes direction of the im-
age gradients into account. The suggested model is an anisotropic nonlinear diffusion
model with better edge enhancing capabilities.

In general, any anisotropic nonlinear diffusion can be described by the equation

(18)
∂u

∂t

= r · (D(ru)ru)

where u is the smoothed image that is initialized with the input image f (that is
u

0(x) = f (x)), and D represents a matrix-valued diffusion tensor that describes the
smoothing directions and the corresponding diffusivities. One can easily observe that
for linear diffusion the diffusion tensor can be defined as D(ru) = I, which results
in a constant diffusion coefficient for all image points in all directions. Similarly, for
Perona-Malik type nonlinear diffusion, D(ru) = g(|rus|)I. Such a choice reduces
the amount of smoothing at image edges, but in an equal amount in all directions. In
actual anisotropic setting, the diffusion tensor D is defined as a function of the structure
tensor given by

(19) J(ru) = ruru
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The structure tensor J(ru) can be interpreted as an image feature describing the
local orientation information. It has an orthonormal basis of eigenvectors v1 and v2
with v1 k ru and v2 ? ru, and the corresponding eigenvalues l1 = |ru|2 and
l2 = 0. It is important to note that noise significantly affects the tensor estimation.
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Structure Tensor"

Figure 1: Left: (a) Synthetic image with Gaussian noise. Center: (b)
J0 = rhrh

>. Right: (c) Linear structure tensor J

⇢

with ⇢ = 3.

• Noise removal
Most of the noise present in the initial matrix field has been removed
due to the smoothing.

• Propagation of orientation information
In most applications of the structure tensor it is desirable that there is
a filling-in e↵ect of orientation information from structured areas into
areas without structure as far as these areas are small in respect of a
certain scale. By means of the structures in the lower left of Fig. 1
it can be seen that the linear structure tensor fulfills this requirement
appropriately. This subsequent simplification results in a scale-space
property with the scale parameter ⇢.

• Dislocation of discontinuities and blurring e↵ects
Fig. 1c reveals a blurring e↵ect that is typical for Gaussian smoothing.
Edges disappear with increasing ⇢ and the remaining edges dislocate.
A smoothing method based on nonlinear di↵usion should be able to
preserve these discontinuities. This shall be discussed next.
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The structure tensor J(ru) can be interpreted as an image feature describing the
local orientation information. It has an orthonormal basis of eigenvectors v1 and v2
with v1 k ru and v2 ? ru, and the corresponding eigenvalues l1 = |ru|2 and
l2 = 0. It is important to note that noise significantly affects the tensor estimation.
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Figure 1: Left: (a) Synthetic image with Gaussian noise. Center: (b)
J0 = rhrh

>. Right: (c) Linear structure tensor J

⇢

with ⇢ = 3.

• Noise removal
Most of the noise present in the initial matrix field has been removed
due to the smoothing.

• Propagation of orientation information
In most applications of the structure tensor it is desirable that there is
a filling-in e↵ect of orientation information from structured areas into
areas without structure as far as these areas are small in respect of a
certain scale. By means of the structures in the lower left of Fig. 1
it can be seen that the linear structure tensor fulfills this requirement
appropriately. This subsequent simplification results in a scale-space
property with the scale parameter ⇢.

• Dislocation of discontinuities and blurring e↵ects
Fig. 1c reveals a blurring e↵ect that is typical for Gaussian smoothing.
Edges disappear with increasing ⇢ and the remaining edges dislocate.
A smoothing method based on nonlinear di↵usion should be able to
preserve these discontinuities. This shall be discussed next.
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Edge Enhancing Diffusion"
•  Proposed by Weickert (1994)!

•  an anisotropic nonlinear diffusion model with better edge 
enhancing capabilities than the Perona-Malik model!

•  can be described by the equation: !

!

!

where !
–  u is the smoothed image, !
–  f is the input image (u0(x) = f(x)), !
–  D represents a matrix-valued diffusion tensor that describes the 

smoothing directions and the corresponding diffusivities !

!
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Figure 8: TV flow results for different diffusion times.

Weickert suggested an alternative approach that additionally takes direction of the im-
age gradients into account. The suggested model is an anisotropic nonlinear diffusion
model with better edge enhancing capabilities.

In general, any anisotropic nonlinear diffusion can be described by the equation

(18)
∂u

∂t

= r · (D(ru)ru)

where u is the smoothed image that is initialized with the input image f (that is
u

0(x) = f (x)), and D represents a matrix-valued diffusion tensor that describes the
smoothing directions and the corresponding diffusivities. One can easily observe that
for linear diffusion the diffusion tensor can be defined as D(ru) = I, which results
in a constant diffusion coefficient for all image points in all directions. Similarly, for
Perona-Malik type nonlinear diffusion, D(ru) = g(|rus|)I. Such a choice reduces
the amount of smoothing at image edges, but in an equal amount in all directions. In
actual anisotropic setting, the diffusion tensor D is defined as a function of the structure
tensor given by

(19) J(ru) = ruru
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The structure tensor J(ru) can be interpreted as an image feature describing the
local orientation information. It has an orthonormal basis of eigenvectors v1 and v2
with v1 k ru and v2 ? ru, and the corresponding eigenvalues l1 = |ru|2 and
l2 = 0. It is important to note that noise significantly affects the tensor estimation.
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Edge Enhancing Diffusion"

•  For linear diffusion the diffusion tensor can be defined as "
D(∇u) = I with I denoting the identity matrix.!
–  This results in a constant diffusion coefficient for all image points in all 

directions. !

•  For Perona-Malik type nonlinear diffusion, D(∇u) = g(|∇uσ|)I. !
–  Such a choice reduces the amount of smoothing at image edges, "

but in an equal amount in all directions.!

•  In actual anisotropic setting, the diffusion tensor D is defined as 
a function of the structure tensor J(∇u). !
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Edge Enhancing Diffusion"
•  use the structure tensor as an image/edge descriptor to 

construct a diffusion tensor that !
–  reduces the amount of smoothing across the edges !
–  while smoothing is still carried out along the edges !

•  Weickert proposed to utilize same orthonormal basis of 
eigenvectors v1 || ∇uσ and v2 ⊥ ∇uσ estimated from the 
structure tensor J(∇uσ) with the following choice of eigenvalues 
satisfying"
!
–                                   for   !

3. EDGE ENHANCING DIFFUSION
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Figure 9: Edge enhancing diffusion results for different diffusion times (l = 2, s = 1).

Thus the given image u is usually convolved with a Gaussian kernel Gs with a relatively
small standard deviation s as a presmoothing step and the structure tensor is computed
accordingly by using rus = r(Gs ⇤ u) instead of ru.

The main idea behind edge enhancing diffusion is to use the structure tensor as
an image/edge descriptor to construct a diffusion tensor that reduces the amount of
smoothing across the edges while smoothing is still carried out along the edges. In
order to perform this, Weickert proposed to utilize same orthonormal basis of eigen-
vectors v1 k rus and v2 ? rus estimated from the structure tensor J(rus) with the
following choice of eigenvalues satisfying l1(|rus |)

l2(|rus |) ! 0 for |rus| ! •

l1(|rus|) =

(
1 if |rus| = 0
1 � exp

⇣
� 3.31488

(|rus |/l)8

⌘
otherwise,(20)

l2(|rus|) = 1(21)

where l denotes the contrast parameter.
Such a choice preserves and enhances image edges by reducing the diffusivity l1

perpendicular to edges for sufficiently large values of |rus|. Specifically, the diffusion
tensor is given by the formula

(22)
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Figure 9 and Figure 10 illustrate example results of edge enhancing diffusion filter
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Edge Enhancing Diffusion"
•  Suggested eigenvalues are"
"
"
"
"
"
"
where λ denotes the contrast parameter.!

•  preserves and enhances image edges by reducing the diffusivity 
λ1 perpendicular to edges for sufficiently large values of |∇uσ|.!

•  Specifically, the diffusion tensor is given by the formula: "
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Figure 10: Edge enhancing diffusion results for different diffusion times (l = 1.8,
s = 1).

for different diffusion times. As it can be clearly seen from these images, the corre-
sponding smoothing process diminishes noise and fine image details while retaining
and even enhancing edges as in the Perona-Malik type nonlinear diffusion. On the
other hand, the corners become more rounded in the anisotropic model compared to
the Perona-Malik filter (cf. Figure 3 and Figure 4) since edge enhancing diffusion al-
lows smoothing along edges while preventing smoothing across them. As discussed
in [7], this causes a slight shrinking effect in the image structures, which eliminates
fine or thin structures better than the Perona-Malik model. Thus, through this process
one can capture semantically more correct image regions.
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