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Nonlinear Filtering

Review - Signals

* A signal is composed of low and high frequency
components

low frequency components: smooth /
piecewise smooth

Neighboring pixels have similar brightness values
You're within a region

high frequency components: oscillatory
Neighboring pixels have different brightness values

You're either at the edges or noise points

Review - Linear Diffusion

* The linear diffusion (heat) equation is the oldest and best
investigated PDE method in image processing.

* Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x,0) = u%(x) = f(x).

* The linear diffusion process can be defined by the equation:

ou w2
g—V(VH)—VH

where V - denotes the divergence operator. Thus,
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Review - Linear Diffusion (cont’d.)

¢ As we move to coarser scales,

— the evolving images become more and more simplified since the diffusion
process removes the image structures at finer scales.

=0 T=5 T =10




Review - Linear Diffusion and Gaussian
Filtering

* The solution of the linear diffusion can be explicitly estimated as:

u(x, T) = (G\/ﬁ*f> (x)
|2
with Gg(x) = 27rlazexp (—%)

* Solution of the linear diffusion equation is equivalent to a proper
convolution of the input image with the Gaussian kernel G ,(x)
with standard deviation ¢ = /2T

* The higher the value of T, the higher the value of O, and the
more smooth the image becomes.

Review - Numerical Implementation

* Original model:
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* Space discrete version:
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* Space-time discrete version:
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homogeneous Neumann boundary condition At < 0.25 is required for
along the image boundary numerical stability

Variational interpretation of heat

diffusion
* Cost functional: Elu] = // V|| 2dzdy
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* Heat diffusion: modifies temperature to decrease E quickly

Slide credit: 1. Kokkinos

Today - Nonlinear Diffusion

* Median filter

* use nonlinear PDEs to create a scale space
representation
— consists of gradually simplified images

— some image features such as edges are maintained or even
enhanced.

* Perona-Malik Type Nonlinear Diffusion (1990)
* Total Variation (TV) Regularization (1992)
* Weickert’s Edge Enhancing Diffusion (1994)




Median filters

* A Maedian Filter operates over a window by selecting the
median intensity in the window.

* What advantage does a median filter have over a mean filter?

* |s a median filter a kind of convolution?

adapted from: S. Seitz

Median filter

10]15]20 * No new pixel values
239027 introduced
313113 l Sort

Median value I EAEL * Removes spikes: good for

10 15“ 30 3133 90 impulse, salt & pepper

10[15[20] | Replace  MOBE
23127127 * Non-linear filter
3313130

Slide credit: K. Grauman

Median filter

Salt and
Pepper g
noise

Plots of a row of the image
Matlab: output im = medfilt2 (im, [h w]);
Slide credit: M. Hebert

Median filter

* What advantage does median filtering have over Gaussian
filtering?

— Robustness to outliers
— Median filter is edge preserving

filters have width 5 :

B0000 00C N INPUT
o MEDIAN
A MEAN

Slide credit: K. Grauman




Perona-Malik Type Nonlinear Diffusion

* The earliest nonlinear diffusion model proposed in image
processing.

* called anisotropic diffusion by Perona and Malik.
* It uses a scalar-valued diffusivity.

* In fact, it is an isotropic nonhomogeneous equation.

— A true example of anisotropic diffusion model: Weickert’s Edge-enhancing
diffusion (more later on)

Perona-Malik Type Nonlinear Diffusion

* The Perona-Malik equation is:

W~V (3(IVul) V)

with homogeneous Neumann boundary conditions and the initial
condition u0(x) = f (x), f denoting the input image.

* Constant diffusion coefficient of linear equation is replaced
with a smooth non-increasing diffusivity function g satisfying

- g(0) =1,
- g(s) =0,
— lim_,, g(s) =0

* The diffusivities become variable in both space and time
(image dependent).

Perona-Malik Type Nonlinear Diffusion

* The Perona-Malik equation: ?;; =V (8(‘VM|)V”)

* Two different choices for the diffusivity function:

o

« A corresponds to a contrast parameter.

What is the effect of the parameter A?

I D Analysis of Perona-Malik Diffusion

* |D version to demonstrate the role of the contrast parameter
* For ID case, the Perona-Malik equation is as follows:
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with g([ux]) = W or &(lux|) =e




I D Analysis of Perona-Malik Diffusion I D Analysis of Perona-Malik Diffusion

diffusivity functions flux functions
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* For Perona-Malik, the diffusivity is variable and decreases ot

as |u,| increases. . .
lud * For the points where |uy| < A, ®'(uy) > 0 we have lost in the

* The decay in diffusivity is particularly rapid after the contrast material.

arameter A. .
P * For the points where [uy| > A, on the contrary, @®'(uy) < 0

» This leads to two different behaviors in the diffusion process. which generates an enhancement in the material.




I D Analysis of Perona-Malik Diffusion

diffusivity functions flux functions

8() = m2/m
A=3

G0 2 lambda 4 s 6 8 10 00 2 lambda 4 6 8 10
M — P (uy)u
of x )Uxx
» Although the diffusivity is always nonnegative, one can observe
both forward and backward diffusions during the smoothing.

» The contrast parameter A separates the regions of forward
diffusion from the regions of backward diffusion.

Perona-Malik Type Nonlinear Diffusion

* In 2D case, the diffusivities are reduced at the image locations

where |Vu|? is large.

* As |Vul? can be interpreted as a measure of edge likelihood, this

means that the amount of smoothing is low along image edges.

* The contrast parameter A specifies a2 measure that determines

which edge points are to be preserved or blurred during the
diffusion process.

* Even edges can be sharpened due to the local backward
diffusion behavior as discussed for the |1D case.

* Since the backward diffusion is a well-known ill-posed process,
this may cause an instability, the so-called staircasing effect.

Staircasing Effect

* Due to backward diffusion, a piece-wise smooth region in the
original image evolves into many unintuitive piecewise constant
regions.

Original noisy image Perona-Malik Diffusion

* A possible solution to this drawback is to use regularized
gradients in diffusivity computations.

Regularized Perona-Malik Model

* Replacing the diffusivities g(|Vul) with the regularized ones
g(IVu|) leads to the following equation:

= = V- (@(|Vue[)Vu)

where iy = Gy * U represents a Gaussian-smoothed version
of the image.

Regularized Perona-Malik
Diffusion

Original noisy image Perona-Malik Diffusion




Regularized Perona-Malik Model

* Smoothing process diminishes noise while retaining or enhancing

edges since it considers a kind of a priori edge knowledge
T=0 T

Regularized Perona-Malik Model

* Smoothing process diminishes noise while retaining or enhancing

edges since it considers a kind of a priori edge knowledge
T=0 ] T =100 T =200

A=10=1

Numerical Implementation

» Central differences is used to approximate the gradient
magnitude at a pixel (i, j) in the diffusivity estimation,

gij = 8(|Vuyj|)

N Uit1,j — Ui-1, 2+ Ujj+1 — Ujj-1 2
2 2

Numerical Implementation

* Original model:
ou
&=V (s()Vul) V)

* Space discrete version:

ou d 0
3t = oy @YD)+ 5 (3(Vubuy)
du. .
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Numerical Implementation

* Space discrete version:

du; i
T = &y (i i) =gy (i~ i)

T &l (”i,j+1 - ui,j) ~8ij-1- (i — uij-1)

* This discretization scheme requires the diffusivities to be
estimated at mid-pixel points.

Ui—=T 8% ! T -1
* They are computed by taking averages
of the diffusivities over neighboring Siff
ixels: Ny
P = M Ui 8o+ 8=+
gzi%,] 2 2 2
g. 41
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Numerical Implementation

* Space discrete version:

du: :
S = &y (i i) =gy (i~ i)

+ &y (e — i) = &1 (i —wija)

* Space-time discrete version:
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homogeneous Neumann boundary condition At < 0.25 is required for
along the image boundary numerical stability

Extension to vectorial images

* Extension of nonlinear diffusion to vectorial images:
w = (Ug, Uy ..., UN)

ou .
5 = div (g([[Vul[)Vu)

generalization

v

N

> Ivul®
i=1

Slide credit: I. Kokkinos

Perona-Malik results for color image

-~

Slide credit: I. Kokkinos




Total Variation (TV) Regularization

* Rudin et al. (1992) formulated image restoration as minimization
of the total variation (TV) of a given image.

» The Total Variation (TV) regularization model is generally
defined as:

Ery () =({ (30097 +alVul )

— Q c R%is connected, bounded, open subset representing the image
domain,

— fis an image defined on Q,
— u is the smooth approximation of f,
— a > 0isascalar.

Total Variation (TV) Regularization

The Total Variation (TV) regularization model:

1
Ery(u) = / <2(u —f)? +uc]Vu\> dx
Q
* The gradient descent equation for Equation (10) is defined by:

ou Vu 1 ou
at_v.<|Vu|>_zx(u_f)’ n

* The value of a specifies the relative importance of the fidelity
term.

=0
Cle)

* It can be interpreted as a scale parameter that determines the
level of smoothing.

Sample TV Restoration results

x =50 x =100 a =200

* The value of a specifies the relative importance of the fidelity
term and thus the level of smoothing.

TV Regularization

* In the original formulation, the observed image f was assumed to
be degraded by additive Gaussian noise with zero mean and
known variance o2

* In order to restore a given image, Rudin et al. proposed to solve
the following constrained optimization problem:

min/ |Vu|dx
u

Q
subject to

/(u — )%dx = o?

O

1 . .
* , can be considered as a Lagrange multiplier.




TV Regularization and TV Flow

* TV regularization can be associated with a nonlinear diffusion
filter, the so-called TV flow

* Ignoring the fidelity term in the TV regularization model
leads to the PDE:

M = V(31 Vu)) V)

with u’ = f and the diffusivity function g(|Vu|) = R

* Notice that this diffusivity function has no additional contrast
parameter as compared with the Perona-Malik diffusivities.

Sample TV Flow results

* Corresponding smoothing process yields segmentation-like,
piecewise constant images.

Sample TV Flow results

» Corresponding smoothing process yields segmentation-like,

piecewise constant images.
T=0

T =50

Numerical Implementation

* The evolution equation can be discretized by using standard
finite differences.

* The solution of TV regularization or equivalently TV flow leads
to singular diffusivities.

* In numerical implementations based on standard discretization,
this leads to stability problems as the image gradient tends to
zero.

* A common solution to this problem is to add a small positive
constant € to image gradients.

* More accurate numerical implementations are suggested.




Numerical Implementation

* Space discrete version:

ou 9 Uux _+ji M __l(u_f)
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Numerical Implementation

* Space discrete version:
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Numerical Implementation

* Space-time discrete version:
k1 _

k ko k 2 ko k 2
Mij T Hiprj — Wi n Wijpr — Uija L
At 2 2
k k 2
uc. . —ut.
k k k ij+1 ij—1 2
{ (sheay =2y ) ((2 e

17k k k k
-3 (”H—l,j - ”i—l,j) (”i,j-H - ui,j—l)

k k k k
(”i+1,j+1 —Uiyyj1 — Uicpa t '41'71/1‘71)

K ko ok Ui~ Ui, ’ 2
+ (”i,j+1 - 2111-,]- + ”z‘,j—l) B E— + €

1k
- i)
homogeneous Neumann boundary
condition along the image boundary
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At < 0.25 € is required for
numerical stability

Structure Tensor

* The structure tensor J(Vu) is described by:

Uxly u?

2
J(Vu) = VuvuT = { Wx Uity }
y

* The structure tensor J(Vu) can be interpreted as an image
feature describing the local orientation information.
* It has

— an orthonormal basis of eigenvectors v, and v, with
v, || Vuand v, L Vu, and

— the corresponding eigenvalues A, = |[Vu|?and A, =0.




Structure Tensor

uz Uylly ]

_ T _
J(Vu) =VuVu' = [ wety 12

J(Vu) = VuvuT

Images are taken from Brox et al., 2004

Structure Tensor

¢ aka second moment matrix

Distribution of gradients Lincar Edge

Slide credit: I. Kokkinos

Structure Tensor

¢ aka second moment matrix

Distribution of gradients  Lincar Edge 8 Corner
- 7G5, e ol

Slide credit: 1. Kokkinos

Linear Structure Tensor

* Noise significantly affects the tensor estimation.

* The given image u is usually convolved with a Gaussian kernel
G, with a relatively small standard deviation o

* The (linear) structure tensor is computed accordingly by using
Vu, = V(G, * u) instead of Vu.

J(Vu) = VuVuT J, with p=3

Images are taken from Brox et al., 2004




Structure Tensor

Distribution of gradients  Lincar Edge

oy
i S

J= (VGyxu)" (VGy *u)

7ot
x5,y

Slide credit: I. Kokkinos

Structure Tensor

J=Y (VGyxu)" (VG, xu)
I'/ y/

» Eigenvectors w,, w:
directions of maximal and
minimal variation of u

» Eigenvalues: amounts of
minimal and maximal
variation u

Slide credit: I. Kokkinos

Edge Enhancing Diffusion

* Proposed by Weickert (1994)

* an anisotropic nonlinear diffusion model with better edge
enhancing capabilities than the Perona-Malik model

* can be described by the equation:

M _ . (D(Vu)Vu)
ot
where
— uis the smoothed image,
— fis the input image (u(x) = f(x)),
— D represents a matrix-valued diffusion tensor that describes the
smoothing directions and the corresponding diffusivities

Edge Enhancing Diffusion

d
MV (D(Vu)Vu)
ot
* For linear diffusion the diffusion tensor can be defined as
D(Vu) = I with | denoting the identity matrix.

— This results in a constant diffusion coefficient for all image points in all
directions.

* For Perona-Malik type nonlinear diffusion, D(Vu) = g(|Vu ,|)L.

— Such a choice reduces the amount of smoothing at image edges,
but in an equal amount in all directions.

* In actual anisotropic setting, the diffusion tensor D is defined as
a function of the structure tensor J(Vu).




Edge Enhancing Diffusion

* use the structure tensor as an image/edge descriptor to
construct a diffusion tensor that
— reduces the amount of smoothing across the edges
— while smoothing is still carried out along the edges

* Weickert proposed to utilize same orthonormal basis of
eigenvectors v, || Vu, and v, L Vu estimated from the
structure tensor J(Vu,) with the following choice of eigenvalues
satisfying

M (| Viug|)

Ad IR AV for |Vug| — o

Edge Enhancing Diffusion

* Suggested eigenvalues are

1 if [Vugs| =0
= 3.31488 >

M([Viel) 1—exp (—W

otherwise,

M(|[Vug|) = 1

where A denotes the contrast parameter.

* preserves and enhances image edges by reducing the diffusivity
A | perpendicular to edges for sufficiently large values of |Vu_|.

 Specifically, the diffusion tensor is given by the formula:

(o) —(uayHAl(wm 0 H<w>x —<uv>y}_1

P we), (o), 0 (Vi) || (), (o),

Sample Results of Edge Enhancing
Diffusion

» Smoothing process diminishes noise and fine image details while
retaining and enhancing edges as in the Perona-Malik type

nonlinear diffusion.

T=0 T =50

Sample Results of Edge Enhancing
Diffusion

* Corners become more rounded in the anisotropic model
compared to the Perona-Malik filter.

* Smoothing along
edges and not ;
across them causes @&
a slight shrinking
effect in the image
structures,
eliminating fine or
thin structures

A=18 0c=1)




