Review - Perona-Malik Type Nonlinear Diffusion

- The Perona-Malik equation is:

\[
\frac{\partial u}{\partial t} = \nabla \cdot (g(|\nabla u|) \nabla u)
\]

with homogeneous Neumann boundary conditions and the initial condition \(u(0, x) = f(x)\), \(f\) denoting the input image.

- Constant diffusion coefficient of linear equation is replaced with a smooth non-increasing diffusivity function \(g\) satisfying
 - \(g(0) = 1\),
 - \(g(s) \geq 0\),
 - \(\lim_{s \to \infty} g(s) = 0\)

- The diffusivities become variable in both space and time.

Review – Nonlinear Diffusion

- use nonlinear PDEs to create a scale space representation
 - consists of gradually simplified images
 - some image features such as edges are maintained or even enhanced.

- Perona-Malik Type Nonlinear Diffusion (1990)
- Total Variation (TV) Regularization (1992)
- Weickert’s Edge Enhancing Diffusion (1994)
Review - Total Variation (TV) Regularization

- Rudin et al. (1992) formulated image restoration as minimization of the total variation (TV) of a given image under certain assumptions on the noise.
- The Total Variation (TV) regularization model is generally defined as:

\[
E_{TV}(u) = \int_{\Omega} \left(\frac{1}{2} (u - f)^2 + \alpha |\nabla u| \right) \, dx
\]

- \(\Omega \subset \mathbb{R}^2 \) is connected, bounded, open subset representing the image domain,
- \(f \) is an image defined on \(\Omega \),
- \(u \) is the smooth approximation of \(f \),
- \(\alpha > 0 \) is a scalar.

Review - TV Restoration results

- The value of \(\alpha \) specifies the relative importance of the fidelity term and thus the level of smoothing.

- Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding segmentations obtained with (b) \(T = 0 \), (c) \(T = 50 \), (d) \(T = 200 \).

Review - Total Variation (TV) Regularization

- The Total Variation (TV) regularization model:

\[
E_{TV}(u) = \int_{\Omega} \left(\frac{1}{2} (u - f)^2 + \alpha |\nabla u| \right) \, dx
\]

- The gradient descent equation for Equation (10) is defined by:

\[
\frac{\partial u}{\partial t} = \nabla \cdot \left(\frac{\nabla u}{|\nabla u|} \right) - \frac{1}{\alpha} (u - f); \quad \frac{\partial u}{\partial t} \big|_{\partial \Omega} = 0
\]

- The value of \(\alpha \) specifies the relative importance of the fidelity term.
- It can be interpreted as a scale parameter that determines the level of smoothing.

Review - TV Regularization and TV Flow

- TV regularization can be associated with a nonlinear diffusion filter, the so-called TV flow
- Ignoring the fidelity term in the TV regularization model leads to the PDE:

\[
\frac{\partial u}{\partial t} = \nabla \cdot (g(|\nabla u|) \nabla u)
\]

with \(u^0 = f \) and the diffusivity function \(g(|\nabla u|) = \frac{1}{|\nabla u|} \)

- Notice that this diffusivity function has no additional contrast parameter as compared with the Perona-Malik diffusivities.
Review - Sample TV Flow results

- Corresponding smoothing process yields segmentation-like, piecewise constant images.

![Image](image1.png)

Review - Edge Enhancing Diffusion

- Proposed by Weickert (1994)
- An anisotropic nonlinear diffusion model with better edge enhancing capabilities than the Perona-Malik model
- Can be described by the equation:
 \[
 \frac{\partial u}{\partial t} = \nabla \cdot (D(\nabla u) \nabla u)
 \]
 where
 - \(u \) is the smoothed image,
 - \(f \) is the input image (\(u^0(x) = f(x) \)),
 - \(D \) represents a matrix-valued diffusion tensor that describes the smoothing directions and the corresponding diffusivities

Review - Sample Results of Edge Enhancing Diffusion

- Smoothing process diminishes noise and fine image details while retaining and enhancing edges as in the Perona-Malik type nonlinear diffusion.

![Image](image2.png)
Variational Segmentation Models

- Segmentation is formalized as a functional minimization.
- Ambrosio-Tortorelli Model (1990)
- Shah’s Model (1996)
- Chan-Vese Model (2001)

Mumford-Shah (MS) Segmentation Model

\[E_{MS}(u, \Gamma) = \beta \int_{\Omega} (u - f)^2 dx + \alpha \int_{\Omega \setminus \Gamma} |\nabla u|^2 dx + \text{length}(\Gamma) \]

- Smoothing and edge detection processes work jointly to partition an image into segments.
- Unknown edge set \(\Gamma \) of a lower dimension makes the minimization of the MS model very difficult.
- In literature several approaches for approximating the MS model are suggested.

Mumford-Shah (MS) Functional

\[E_{MS}(u, \Gamma) = \beta \int_{\Omega} (u - f)^2 dx + \alpha \int_{\Omega \setminus \Gamma} |\nabla u|^2 dx + \text{length}(\Gamma) \]

- \(\Omega \subset \mathbb{R}^2 \) is connected, bounded, open subset representing the image domain.
- \(f \) is an image defined on \(\Omega \).
- \(\Gamma \subset \Omega \) is the edge segmenting \(\Omega \).
- \(u \) is the piecewise smooth approximation of \(f \).
- \(\alpha, \beta > 0 \) are the scale space parameters.

Ambrosio-Tortorelli (AT) Approximation

\[E_{AT}(u, v) = \int_{\Omega} \left(\beta (u - f)^2 + \alpha (v^2 |\nabla u|^2) + \frac{1}{2} \left(\rho |\nabla v|^2 + \frac{(1 - v)^2}{\rho^2} \right) \right) dx \]

- Unknown edge set \(\Gamma \) is replaced with a continuous function \(v(x) \)
 - \(v \approx 0 \) along image edges
 - \(v \) grows rapidly towards 1 away from edges
- The function \(v \) can be interpreted as a blurred version of the edge set.
- The parameter \(\rho \) specifies the level of blurring.
Ambrosio-Tortorelli (AT) Approximation: u and v processes

- Piecewise smooth image u and the edge strength function v are simultaneously computed via the solution of the following system of coupled PDEs:

\[
\frac{\partial u}{\partial t} = \nabla \cdot (v^2 \nabla u) - \frac{\beta}{\alpha} (u - f); \quad \frac{\partial u}{\partial n}\bigg|_{\partial \Omega} = 0
\]

\[
\frac{\partial v}{\partial t} = \Delta v - 2 \alpha |\nabla u|^2 v - \frac{(v - 1)}{\rho} - \frac{(v - 1)}{\rho^2}; \quad \frac{\partial v}{\partial n}\bigg|_{\partial \Omega} = 0
\]

- PDE for each variable can be interpreted as a biased diffusion equation that minimizes a convex quadratic functional in which the other variable is kept fixed.

Ambrosio-Tortorelli (AT) Approximation: u process

- Keeping v fixed, PDE for the process u minimizes the following convex quadratic functional:

\[
\int_{\Omega} \left(\alpha v^2 |\nabla u|^2 + \beta (u - f)^2 \right) dx
\]

- The data fidelity term provides a bias that forces u to be close to the original image f.
- In the regularization term, the edge strength function v specifies the boundary points and guides the smoothing accordingly.
- Since $v \approx 0$ along the boundaries, no smoothing is carried out at the boundary points, thus the edges are preserved.
Ambrosio-Tortorelli (AT) Approximation: v process

- Keeping \(u \) fixed, PDE for the process \(v \) minimizes the following convex quadratic functional:
 \[
 \frac{\rho}{2} \int_{\Omega} \left(|\nabla v|^2 + \frac{1 + 2\alpha \rho |\nabla u|^2}{\rho^2} \left(v - \frac{1}{1 + 2\alpha \rho |\nabla u|^2} \right)^2 \right) \, dx
 \]
 - The function \(v \) is nothing but a smoothing of \(\frac{1}{1 + 2\alpha \rho |\nabla u|^2} \)
 - The smoothness term forces some spatial organization by requiring the edges to be smooth.
 - Ignoring the smoothness term and letting \(\rho \) go to 0, we have \(v \approx \frac{1}{1 + 2\alpha \rho |\nabla u|^2} \)

Sample Results of the AT model

\(a = 1, \beta = 0.01, \rho = 0.01 \)

\(a = 1, \beta = 0.001, \rho = 0.01 \)

\(a = 4, \beta = 0.04, \rho = 0.01 \)

Relating with the Perona-Malik Diffusion

- Replacing \(v \) with \(1/(1 + 2\alpha \rho |\nabla u|^2) \), PDE for the process \(u \) can be interpreted as a biased Perona-Malik type nonlinear diffusion:
 \[
 \frac{\partial u}{\partial t} = \nabla \cdot \left(g(|\nabla u|) \nabla u \right) - \beta(u - f)
 \]
 with
 \[
 g(|\nabla u|) = \left(\frac{1}{1 + \lambda |\nabla u|^2} \right)^2
 \]
 \[\lambda^2 = 1/(2\alpha \rho) \]
 - \(\sqrt{1/(2\alpha \rho)} \) as a contrast parameter
 - Relative importance of the regularization term (scale) depends on the ratio between \(\alpha \) and \(\beta \).

Numerical Implementation

- Original model:
 \[
 \frac{\partial u}{\partial t} = \nabla \cdot (v^2 \nabla u) - \frac{\beta}{\alpha} (u - f); \quad \frac{\partial u}{\partial n} \bigg|_{\partial \Omega} = 0
 \]
 - Space discrete version:
 \[
 \frac{du_{i,j}}{dt} = v_{i+1/2,j}^2 \cdot (u_{i+1,j} - u_{i,j}) - v_{i-1/2,j}^2 \cdot (u_{i,j} - u_{i-1,j})
 + v_{i,j+1/2}^2 \cdot (u_{i,j+1} - u_{i,j}) - v_{i,j-1/2}^2 \cdot (u_{i,j} - u_{i,j-1})
 - \frac{\beta}{\alpha} (u_{i,j} - f_{i,j}) ,
 \]
 with \(v_{i+1/2,j} = \frac{v_{i+1,j} + v_{i,j}}{2} \) and \(v_{i-1/2,j} = \frac{v_{i+1,j} + v_{i,j}}{2} \)
Numerical Implementation

- Original model:

\[
\frac{\partial v}{\partial t} = \nabla^2 v - \frac{2\alpha |\nabla u|^2 v}{\rho} - (v - 1) \quad \frac{\partial v}{\partial n} \bigg|_{\partial \Omega} = 0
\]

- Space discrete version:

\[
\frac{d v_{i,j}}{d t} = v_{i+1,j} + v_{i-1,j} + v_{i,j+1} + v_{i,j-1} - 4 v_{i,j} - 2\alpha |\nabla u_{i,j}|^2 v_{i,j} - \frac{(v_{i,j} - 1)}{\rho^2}
\]

A Common Framework for Curve Evolution, Segmentation and Anisotropic Diffusion

- Quadratic cost functions in the data fidelity and the smoothing terms are replaced with L1-functions (Shah, CVPR 1996):

\[
E_S(u, v) = \int_{\Omega} \left(\beta |u - f| + \alpha v^2 |\nabla u| + \frac{1}{2} \left(\rho |\nabla v|^2 + \frac{(1 - v)^2}{\rho} \right) \right) dx
\]

- As \(\rho \to 0\), this energy functional converges to the following functional:

\[
E_{S2}(u, \Gamma) = \frac{\beta}{\alpha} \int_{\Omega} |u - f| dx + \int_{\Omega \setminus \Gamma} |\nabla u| dx + \int_{\Gamma} \frac{J_u}{1 + \alpha |u|} ds
\]

with \(J_u = |u^+ - u^-|\) indicating the jump in \(u\) across \(\Gamma\), and \(u^+\) and \(u^-\) denote intensity values on two sides of \(\Gamma\)

Numerical Implementation

- Space-time discrete versions:

\[
\frac{u_{i,j}^{k+1} - u_{i,j}^k}{\Delta t} = \left(\frac{u_{i,j}^k}{2} \right)^2 \cdot u_{i+1,j}^k + \left(\frac{u_{i,j}^k}{2} \right)^2 \cdot u_{i-1,j}^k + \left(\frac{u_{i,j}^k}{2} \right)^2 \cdot u_{i,j+1}^k + \left(\frac{u_{i,j}^k}{2} \right)^2 \cdot u_{i,j-1}^k - \frac{\beta}{\alpha} \left(\frac{u_{i,j}^{k+1} - f_{i,j}}{u_{i,j}^k} \right)
\]

A Common Framework for Curve Evolution, Segmentation and Anisotropic Diffusion

- Minimizing the energy functional results in the following system of coupled PDEs:

\[
\frac{\partial u}{\partial t} = 2 \nabla \cdot \nabla u + \nabla |\nabla u| \text{curv}(u) - \frac{\beta}{\alpha v} |\nabla u| \frac{(u - f)}{|u - f|} \quad \frac{\partial u}{\partial n} \bigg|_{\partial \Omega} = 0
\]

\[
\frac{\partial v}{\partial t} = \nabla^2 v - \frac{2\alpha |\nabla u|^2 v}{\rho} - (v - 1) \quad \frac{\partial v}{\partial n} \bigg|_{\partial \Omega} = 0
\]

with \text{curv}(u) = \nabla \cdot \left(\frac{\nabla u}{|\nabla u|} \right)

- Replacing L2-norms in both the data fidelity and the smoothness terms by their L1-norms generates shocks in \(u\) and thus object boundaries are recovered as actual discontinuities.
Sample Results of Shah (CVPR96)

- Smoothing process of \(u \) gives rise to more cartoon-like, piecewise constant images but with some unintuitive regions.

\[a = 1, \beta = 0.001, \rho = 0.01 \]

\[a = 1, \beta = 0.001, \rho = 0.01 \]

\[a = 4, \beta = 0.04, \rho = 0.01 \]

Context-Guided Image Smoothing

- Contextual knowledge extracted from local image regions guides the regularization process.

Challenging Cases

Context-Guided Image Smoothing

- Local context
- Local neighborhood
- Pixel level

contextual measure
Context-Guided Image Smoothing

- 2 coupled processes (u and v modules)

\[
\frac{\partial v}{\partial t} = \nabla^2 v - \frac{2\alpha}{\rho} |\nabla u|^2 v - \frac{(v - 1)}{\rho^2}; \quad \frac{\partial v}{\partial n}\bigg|_{\partial \Omega} = 0 \\
\frac{\partial u}{\partial t} = \nabla \cdot ((cv)^2 \nabla u) - \frac{\beta}{\alpha} (u - f); \quad \frac{\partial u}{\partial n}\bigg|_{\partial \Omega} = 0 \\
cv = \phi v + (1 - \phi)V \\
\phi \in [0,1] \quad V \in \{0,1\}
\]

The Roles of ϕ and V

1. Eliminating an accidentally occurring event
 - e.g., a high gradient due to noise
 - $V=1$, ϕ is low for accidental occurrences
 \[(cv)^2_i = (\phi_i v_i + (1 - \phi_i) 1)^2\]

2. Preventing an accidental elimination of a feature of interest
 - e.g., encourage edge formation
 - $V=0$, ϕ is low for meaningful occurrences
 \[(cv)^2_i = (\phi_i v_i + (1 - \phi_i) 0)^2\]

Experimental Results

- Suggested contextual measures:
 1. Directional consistency of edges
 - shapes have smooth boundaries
 2. Edge Continuity
 - gap filling
 3. Texture Edges
 - boundary between different textured regions
 4. Local Scale
 - Resolution varies throughout the image

Directional Consistency

Approximate MS

Our result
Directional Consistency

Approximate MS

Our result

Edge Continuity

Approximate MS

Our result

Coalition of Directional Consistency and Texture Edges

\(\phi_{10} \)

Coalition of Directional Consistency, Edge Continuity and Texture Edges
Local Scale

Active Contours Without Edges

- Level sets provide an implicit contour representation where an evolving curve is represented with the zero-level line of a level set function.

Active Contours Without Edges

- **Basic idea:** Fitting term
 \[
 \int_{\text{inside}(C)} |u_0 - c_1|^2 \, dx \, dy + \int_{\text{outside}(C)} |u_0 - c_2|^2 \, dx \, dy
 \]
 where
 \[
 \begin{align*}
 c_1 &= \text{average of } u_0 \text{ inside } C \\
 c_2 &= \text{average of } u_0 \text{ outside } C
 \end{align*}
 \]

 - **Fit** > 0
 - **Fit** > 0
 - **Fit** > 0
 - **Fit** ≈ 0

 - **Minimize:** the Fitting term + Length(C)

Active Contours Without Edges (continued)

- The length parameter \(\mu \) can be interpreted as a scale parameter. It determines the relative importance of the length term.
- The possibility of detecting smaller objects/regions increases with decreasing \(\mu \).
Active Contours Without Edges

\[
E_{CV}(c_1, c_2, \phi) = \lambda_1 \int_\Omega (f - c_1)^2 H(\phi) dx + \lambda_2 \int_\Omega (f - c_2)^2 (1 - H(\phi)) dx \\
+ \mu \int_\Omega |\nabla H(\phi)| dx
\]

- The model represents the segmented image with the variables \(c_1\), \(c_2\) and \(H(\phi)\), where \(H(\phi)\) denotes the Heaviside function of the level set function \(\phi\):

\[
H(z) = \begin{cases}
1 & \text{if } z \geq 0 \\
0 & \text{if } z < 0
\end{cases}
\]

Active Contours Without Edges

\[
E_{CV}(c_1, c_2, \phi) = \lambda_1 \int_\Omega (f - c_1)^2 H(\phi) dx + \lambda_2 \int_\Omega (f - c_2)^2 (1 - H(\phi)) dx \\
+ \mu \int_\Omega |\nabla H(\phi)| dx
\]

- \(c_1\) and \(c_2\) denote the average gray values of object and background regions indicated by \(\phi \geq 0\) and \(\phi < 0\), respectively.

- Chan-Vese model can be seen as a two-phase piecewise constant approximation of the MS model.

Active Contours Without Edges

- Segmentation involves minimizing the energy functional with respect to \(c_1\), \(c_2\), and \(\phi\).

- Keeping \(\phi\) fixed, the average gray values \(c_1\) and \(c_2\) can be estimated as follows:

\[
c_1 = \frac{\int_\Omega f(x) H(\phi(x)) dx}{\int_\Omega H(\phi(x)) dx},
\]

\[
c_2 = \frac{\int_\Omega f(x)(1 - H(\phi(x))) dx}{\int_\Omega (1 - H(\phi(x))) dx}
\]
Active Contours Without Edges

- Segmentation involves minimizing the energy functional with respect to c_1, c_2, and ϕ.
- Keeping c_1 and c_2 fixed and using the calculus of variations for the given functional, the gradient descent equation for the evolution of ϕ is derived as:

$$\frac{\partial \phi}{\partial t} = \delta(\phi) \left[\mu \nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|} \right) - \lambda_1 (f - c_1)^2 + \lambda_2 (f - c_2)^2 \right]$$

Sample result of the Chan-Vese Model

- As the zero-level line of the evolving level set function ϕ is attracted to object boundaries, a more accurate piecewise constant approximations of the original image f is recovered.

Sample result of the Chan-Vese Model

- As the zero-level line of the evolving level set function ϕ is attracted to object boundaries, a more accurate piecewise constant approximations of the original image f is recovered.
Numerical Implementation

- In the numerical approximation, regularized form of the Heaviside function is used:

\[
H_\varepsilon(z) = \frac{1}{2} \left(1 + \frac{2}{\pi} \arctan \left(\frac{z}{\varepsilon} \right) \right)
\]

\[
\delta_\varepsilon(z) = \frac{dH_\varepsilon(z)}{dz} = \frac{1}{\pi} \frac{\varepsilon}{\varepsilon^2 + z^2}
\]

Numerical Implementation

- Space-time discrete version:

\[
\frac{\phi_{ij}^{k+1} - \phi_{ij}^k}{\Delta t} = \delta(\phi_{ij}^k) \left[\mu \Delta_y \alpha \left(\frac{\Delta_x \phi_{ij}^{k+1}}{\sqrt{(\Delta_x \phi_{ij}^k)^2 + (\phi_{ij+1} - \phi_{ij-1})^2 / 4}} \right) \right.
\]

\[
+ \mu \Delta_y \alpha \left(\frac{\Delta_y \phi_{ij}^{k+1}}{\sqrt{(\phi_{i+1,ij} - \phi_{i-1,ij})^2 / 4 + (\Delta_y \phi_{ij}^k)^2}} \right)
\]

\[
- \lambda_1 (f_{ij} - c_1(\phi^k))^2 + \lambda_2 (f_{ij} - c_2(\phi^k))^2
\]

with

\[
\Delta_x \phi_{ij} = \phi_{i,j} - \phi_{i-1,j}, \quad \Delta_x \phi_{ij} = \phi_{i+1,j} - \phi_{ij},
\]

\[
\Delta_y \phi_{ij} = \phi_{i,j} - \phi_{i,j-1}, \quad \Delta_y \phi_{ij} = \phi_{i,j+1} - \phi_{ij}.
\]