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|mage Processing * use nonlinear PDEs to create a scale space

representation
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— consists of gradually simplified images

— some image features such as edges are maintained or even

enhanced.
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* Weickert’s Edge Enhancing Diffusion (1994)

Variational Segmentation Models

Review - Perona-Malik Type Nonlinear Review - Perona-Malik Type
Diffusion Nonlinear Diffusion

* The Perona-Malik equation is: * Smoothing process diminishes noise while retaining or enhancing
edges since it considers a kind of a priori edge knowledge
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with homogeneous Neumann boundary conditions and the initial

condition u0(x) = f (x), f denoting the input image.

* Constant diffusion coefficient of linear equation is replaced
with a smooth non-increasing diffusivity function g satisfying

-g0)=1,
g9 20,
— limg,,, g(s) =0

* The diffusivities become variable in both space and time.
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Review - Total Variation (TV)
Regularization

* Rudin et al. (1992) formulated image restoration as minimization
of the total variation (TV) of a given image under certain
assumptions on the noise.

* The Total Variation (TV) regularization model is generally
defined as:

Epy (1) :! (;(u e +0c|Vu|> dx

— Q c RZis connected, bounded, open subset representing the image
domain,

— fis an image defined on Q,
— u is the smooth approximation of f,
— a >0is ascalar.

Review - Total Variation (TV)
Regularization

* The Total Variation (TV) regularization model:

Erv(u) = | <;(u 52 +oc]Vu\> dx

Q
* The gradient descent equation for Equation (10) is defined by:
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* The value of a specifies the relative importance of the fidelity
term.
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* It can be interpreted as a scale parameter that determines the
level of smoothing.

Review - TV Restoration results

x =50 x =100 a =200

* The value of a specifies the relative importance of the fidelity
term and thus the level of smoothing.

Review - TV Regularization and
TV Flow

* TV regularization can be associated with a nonlinear diffusion
filter, the so-called TV flow

* lIgnoring the fidelity term in the TV regularization model
leads to the PDE:
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with u% = f and the diffusivity function g¢(|Vu|) =

* Notice that this diffusivity function has no additional contrast
parameter as compared with the Perona-Malik diffusivities.




Review - Sample TV Flow results

* Corresponding smoothing process yields segmentation-like,

piecewise constant images.
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Review - Edge Enhancing Diffusion

* Proposed by Weickert (1994)

* an anisotropic nonlinear diffusion model with better edge
enhancing capabilities than the Perona-Malik model

* can be described by the equation:

du _ V- (D(Vu)Vu)
ot
where
— u is the smoothed image,
— fis the input image (u°(x) = f(x)),
— D represents a matrix-valued diffusion tensor that describes the
smoothing directions and the corresponding diffusivities

Review - Edge Enhancing Diffusion

» Suggested eigenvalues are

{ 1 if [Vug| =0

314 -
1—exp (—%) otherwise,

M([Viuel) =
M(|Vig|) = 1

where A denotes the contrast parameter.

* preserves and enhances image edges by reducing the diffusivity
A | perpendicular to edges for sufficiently large values of |Vu,|.

+ Specifically, the diffusion tensor is given by the formula:
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Review - Sample Results of Edge
Enhancing Diffusion

* Smoothing process diminishes noise and fine image details while
retaining and enhancing edges as in the Perona-Malik type
nonlinear diffusion.
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Variational Segmentation Models

* Segmentation is formalized as a functional minimization.

* Mumford-Shah Model (1989)

* Ambrosio-Tortorelli Model (1990)

* Shah’s Model (1996)

+ Context-guided Mumford-Shah Model (2009)
* Chan-Vese Model (2001)

Mumford-Shah (MS) Segmentation
Model

* Mumford & Shah, Comm. Pure Appl. Math., 1989

* Segmentation is formalized as a functional minimization:
Given an image f, compute a piecewise smooth image U and an
edge set [

Ems(u,T) = ﬁ/(u — f)2dx+a / |Vu|?dx + length(T)
Q O\l

— Q c RZis connected, bounded, open subset representing the image
domain,

— fis an image defined on Q,

— [ c Q is the edge set segmenting Q,

— u is the piecewise smooth approximation of f,
— @, B > 0 are the scale space parameters.

Mumford-Shah (MS) Segmentation
Model

Eis (1, T) = ﬁ/(u ~ )2dx+a / \Vu2dx + length(T)
o) O\l

data fidelity term regularization or smoothness term

* Smoothing and edge detection processes work jointly to
partition an image into segments.

* Unknown edge set [ of a lower dimension makes the
minimization of the MS model very difficult.

* In literature several approaches for approximating
the MS model are suggested.

Ambrosio-Tortorelli (AT)
Approximation

Ear(u,0) = / (ﬁ(u — )2+ a(o?|Vul?) +% (p|VZ)2 + (1_;})2>> dx
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» Unknown edge set [ is engeh(1)

replaced with a continuous

function v(x)

— v = 0 along image edges

— v grows rapidly towards |
away from edges

* The function v can be interpreted
as a blurred version of the edge set.

* The parameter O specifies
the level of blurring.

edge point




Ambrosio-Tortorelli (AT)
Approximation: u and v processes

* Piecewise smooth image u and the edge strength function v
are simultaneously computed via the solution of the following
system of coupled PDEs:
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Ambrosio-Tortorelli (AT)
Approximation: u and v processes

f: raw image u: smooth image v: edge strength function

Ambrosio-Tortorelli (AT)
Approximation: u and v processes

* Piecewise smooth image u and the edge strength function v
are simultaneously computed via the solution of the following
system of coupled PDEs:
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* PDE for each variable can be interpreted as a biased diffusion
equation that minimizes a convex quadratic functional in which
the other variable is kept fixed.

Ambrosio-Tortorelli (AT)
Approximation: u process

* Keeping v fixed, PDE for the process u minimizes the following
convex quadratic functional:

/(owz\Vu\z + B(u —f)2>dx

O

* The data fidelity term provides a bias that forces u to be close
to the original image f .

* In the regularization term, the edge strength function v specifies
the boundary points and guides the smoothing accordingly.

* Since v = 0 along the boundaries, no smoothing is carried out
at the boundary points, thus the edges are preserved.




Ambrosio-Tortorelli (AT)
Approximation: v process

* Keeping u fixed, PDE for the process v minimizes the following
convex quadratic functional:

P 5 14 2ap|Vul? B 1 2
2/(|VU| * p? ¢ 1+ 2ap|Vul? ax
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* The function v is nothing but a smoothing of W

* The smoothness term forces some spatial organization by
requiring the edges to be smooth.

* lIgnoring the smoothness term and letting O go to 0, we have

~ 1
v 1+2ap0|Vu|?

Relating with the Perona-Malik Diffusion

* Replacing v with 1/(1+ 2ap|Vu|?), PDE for the process u
can be interpreted as a biased Perona-Malik type nonlinear
diffusion:

d
W =9 (Vi) - B p)
with ”

8(|Vul) = (m)

A% =1/ (2ap)

* /1/(2xp) as a contrast parameter

* Relative importance of the regularization term (scale) depends
on the ratio between and 8.
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Numerical Implementation

* Original model:
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* Space discrete version:
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Numerical Implementation

* Original model:

2 _
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* Space discrete version:
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Numerical Implementation

* Space-time discrete versions:
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A Common Framework for Curve Evolution,
Segmentation and Anisotropic Diffusion

* Quadratic cost functions in the data fidelity and the smoothing
terms are replaced with Ll-functions (Shah, CVPR 1996):

Es(u,v) = / (ﬁ lu— f| +a v*|Vul +% <p|Vsz+ W)) dx

QO

* As 0 — 0, this energy functional converges to the following
functional:

Eoy(u,T) = §/|u—f|dx+ [ vulax+ [
Q T
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with J, = |u" — u~|indicating the jump in u across [, and
u+ and u— denote inten-sity values on two sides of [

A Common Framework for Curve Evolution,
Segmentation and Anisotropic Diffusion

* Minimizing the energy functional results in the following system
of coupled PDEs:
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with curv(u) =V - (%)

* Replacing [2-norms in both the data fidelity and the smoothness
terms by their LI-norms generates shocks in u and thus object
boundaries are recovered as actual discontinuities.




Challenging Cases

* Smoothing process
of u gives rise to
more cartoon-like,
piecewise constant
images

== — 1,5 =0001,p =001

but with some
unintuitive regions

local
context

local
neighborhood

pixel level

» Contextual knowledge extracted from local image
regions guides the regularization process.




Context-Guided Image Smoothing

* 2 coupled processes (u and v modules)
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The Roles of ® and V

I. Eliminating an accidentally occurring event
— e.0., a high gradient due to noise
— V=1, ¢ is low for accidental occurrences

(cv)? = (¢svi + (1 — ¢;) 1)?

2. Preventing an accidental elimination of a feature
of interest
— e.d., encourage edge formation
— V=0, ¢ is low for meaningful occurrences

(cv)? = (¢svi + (1 — ¢;) 0)?

Experimental Results

* Suggested contextual measures:
1. Directional consistency of edges
*  shapes have smooth boundaries
2. Edge Continuity
e gap filling
3. Texture Edges
*  boundary between different textured regions
4. Local Scale
*  Resolution varies throughout the image

Directional Consistency

App rolximate MS
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Directional Consistency

Our result

Approximate MS

Edge Continuity

Coalition of Directional Consistency
and Texture Edges
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Coalition of Directional Consistency,
Edge Continuity and Texture Edges




Local Scale
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Active Contours Without Edges

* A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001).

* Level sets provide an implicit contour representation where an
evolving curve is represented with the zero-level line of a level
set function.

N Ou?é%e
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Image credit: Chan & Vese, 2001

Active Contours Without Edges

» Basic idea: Fitting term

lug — c1[2dady + / lug — co|2dwdy

/inside(C) outside(C')

c1 = average of ug inside C
where :
co = average of ug outside C

Fit >0 Fit >0 Fit >0 Fit =0
@« & & §

* Minimize: the Fitting term + Length(C)

Slide credit: L.Vese

Active Contours Without Edges

* A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001):

Ecvlevead) = M [(f = cH@)dx+ 2 [ (f - (1~ H(p))dx

Q Q
+ u [ IVH(g)lax
Q

where 4,, A,>0and u = 0 are fixed parameters.

* The length parameter [ can be interpreted as a scale

parameter. It determines the relative importance of the length
term.

* The possibility of detecting smaller objects/regions increases
with decreasing 4.




Active Contours Without Edges

* A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001):

Ecv(ercad) = A [(f=er) H@)dx+ Az [ (f = c2)*(1— H(g))dx

(@] (@]
+ n [ IVH(@)dx
(@)

* The model represents the segmented image with the variables
¢, ¢, and H( @), where H(®) denotes the Heaviside function
of the level set function ¢@:

H(z):{(l)

ifz>0
ifz<0

Active Contours Without Edges

* A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001):

Ecvievea ) = A [(f =) H@dx + A [ (f - e2’(1 ~ H(g))dx

Q Q
+ u [ IVH(g)lax
Q

* ¢, and ¢, denote the average gray values of object and
background regions indicated by @ > 0 and @ <0,
respectively.

* Chan-Vese model can be seen as a two-phase piecewise
constant approximation of the MS model.

Active Contours Without Edges

* A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001):

Ecvlevea ) = A [(f = cH@)x + Mz [ (f - (1~ H(p))dx
Q Q

+ u [ IVH(g)lax
@)

where 4,, A,>0and u = 0 are fixed parameters.
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Active Contours Without Edges

* Segmentation involves minimizing the energy functional with
respect to ¢, ¢,, and @.

» Keeping @ fixed, the average gray values ¢, and ¢, can be
estimated as follows:

o = fQ H(¢(x))dx
fQ (4) x))dx

L Ja 00— )
Jao(1 = H(¢(x)))dx




Active Contours Without Edges

* Segmentation involves minimizing the energy functional with
respect to ¢, ¢,, and @.

» Keeping ¢, and ¢, fixed and using the calculus of variations for
the given functional, the gradient descent equation for the
evolution of @ is derived as:

Sample result of the Chan-Vese Model

* As the zero-level line of the evolving level set function @ is attracted to
object boundaries, a more accurate piecewise constant approximations
of the original image f'is recovered.
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Sample result of the Chan-Vese Model

* As the zero-level line of the evolving level set function @ is attracted to
object boundaries, a more accurate piecewise constant approximations
of the original image f'is recovered.

Sample result of the Chan-Vese Model

* As the zero-level line of the evolving level set function @ is attracted to
object boundaries, a more accurate piecewise constant approximations
of the original image f'is recovered.




Numerical Implementation

* In the numerical approximation, regularized form of the
Heaviside function is used:

He(z) = % <1 + %arctun (i))
dHe(z) 1 ¢
%(2) = iz me+ 22

Numerical Implementation

* Space-time discrete version:
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