Modern Image Smoothing:
Bilateral Filtering,
Non-local Means Denoising,
and LARK filter

Erkut Erdem

Review - Smoothing and Edge Detection

* While eliminating noise via smoothing, we also lose
some of the (important) image details.

— Fine details
— Image edges
— etc.
* What can we do to preserve such details?
— Use edge information during denoising!
— This requires a definition for image edges.
Chicken-and-egg dilemma!

* Edge preserving image smoothing

Today

* Bilateral filtering
* Non-local means denoising
* LARK filter

Today

* Bilateral filtering

Acknowledgement: The slides are adapted from the course “A Gentle Introduction to Bilateral
Filtering and its Applications” given by Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo
Durand (http://people.csail.mit.edu/sparis/bf course/).




Notation and Definitions Strategy for Smoothing Images

Image = 2D array of pixels X * Images are not smooth because
L x adjacent pixels are different.

Pixel = intensity (scalar) or color (3D vector) + Smoothing = making adjacent pixels

look more similar.

I, = value of image I at position: p = ( p,, p,)
* Smoothing strategy

) . pixel [¥] average of its neighbors

F [ 1] = output of filter F applied to image /

Box Average Equation of Box Average
squarnighborhood — = BO' (p —_ q)!
. 1 result at intensity at
‘ pixel p sum over pixel q
b all pixels q
normalized

box function




Square Box Generates Defects Strategy to Solve these Problems

* Axis-aligned streaks

* Blocky results output * Use an isotropic (i.e. circular) window.

e Use a window with a smooth falloff.

box window Gaussian window

Gaussian Blur

per-pixel multiplication
average

output




Equation of Gaussian Blur

Same idea: weighted average of pixels.

GB[I], =), I,

qes

normalized
Gaussian function
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Spatial Parameter

GBI, =ZGt(|lp—q||)1q |
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How to set s

* Depends on the application.

* Common strategy: proportional to image size
—e.g. 2% of the image diagonal
— property: independent of image resolution

Properties of Gaussian Blur
* Weights independent of spatial location
— linear convolution
— well-known operation

— efficient computation (recursive algorithm, FFT...)

Properties of Gaussian Blur

input

* Does smooth images

* But smoothes too much:
edges are blurred.

— Only spatial distance matters

— No edge term Q output

GBl1], =Y. CHlIP=al /,

qes space

Blur Comes from
Averaging across Edges

Same Gaussian kernel everywhere.




BI Iate ral FI Iter[Aurich 95, Smith 97, Tomasi 98]

No Averaging across Edges

u-0
-0
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The kernel shape depends on the image content.

Bilateral Filter Definition:
an Additional Edge Term

Same idea: weighted average of pixels.

BF[I],= == > G, (lp=all) I,
qesS
normalization space weight range weight

factor

I

lllustration a ID Image

* ID image = line of pixels

* Better visualized as a plot
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Gaussian Blur and Bilateral Filter

Gaussian blur

p

T

GB[I1, =Y G, (Ilp=all)/,

q
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Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]

-

p

| AME sri, = B Gl G
' aes range
. . . normalization




Bilateral Filter on a Height Field

BFII), = — 3G, (lp-al) G,(1,-1,1) 1,

\ y VVp qeS\, N v
~ -

Space and Range Parameters

1
BE[1),= -~ 3G, (Ip-al)G, (1,-1,1)1,

p 4eS

* space s,:spatial extent of the kernel, size of the
considered neighborhood.

* range s, : “minimum” amplitude of an edge

Influence of Pixels

Only pixels close in space and in range are considered.

P AWA

range

Exploring the Parameter Space

s, =[]
(Gaussian blur)

5.=0.1 5,=025




input

Varying the Range Parameter

s, = [¥]
(Gaussian blur)

=

5,=0.1 5,=0.25




Varying the Space Parameter

s, = (%]
5,=0.25 (Gaussian blur)

S

5,=0.1




How to Set the Parameters

Depends on the application. For instance:

* space parameter: proportional to image size
— e.g., 2% of image diagonal

* range parameter: proportional to edge amplitude

— e.g., mean or median of image gradients

* independent of resolution and exposure

Bilateral Filter Crosses Thin Lines

* Bilateral filter averages across
features thinner than ~2s,

* Desirable for smoothing: more pixels = more robust
* Different from diffusion that stops at thin lines

e

close-up kernel




Iterating the Bilateral Filter

[(n+1) = BF [I(n)]

* Generate more piecewise-flat images
» Often not needed in computational photo.




Bilateral Filtering Color Images

For gray-level images intensity difference

8P, = - 3G, (p-al) G, (IR

p aeS scalar

For color images )
g color difference

BF[I], = Wi 3G, (Ip-al)G, (

p Q€S

3D vector
(RGB, Lab)

Hard to Compute

* Nonlinear  Br, =8 Y G, (||p—q||)-1q
— Cannot be precomputed, no FFT...

qeS

* Brute-force implementation is slow > [Omin

Additional Reading: S. Paris and F. Durand,A Fast
Approximation of the Bilateral Filter using a Signal Processing
Approach, In Proc. ECCV, 2006

* Complex, spatially varying kernels

Basic denoising

Noisy input Bilateral filter 7x7 window




Basic denoising

Bilateral filter Median 3x3

Bilateral filter

Basic denoising

Median 5x5

Basic denoising

Bilateral filter Bilateral filter — lower sigma

Bilateral filter

Basic denoising

Bilateral filter — higher sigma




Denoising

* Small spatial sigma (e.g. 7x7 window)
* Adapt range sigma to noise level

* Maybe not best denoising method, but best
simplicity/quality tradeoff

— No need for acceleration (small kernel)

Goal: Understand how does bilateral
filter relates with other methods

Bilateral
/ filter \

. Partlal. Local mode
differential filtering
equations

\ Robust
statistics

Today’s paper: Generalised Nonlocal Image Smoothing,
L. Pizarro, P. Mrazek, S. Didas, S. Grewenig and J.Weickert, |JCV, 2010

Today

* Non-local means denoising

Acknowledgement: The slides are adapted from the course “A Gentle Introduction to Bilateral
Filtering and its Applications” given by Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo
Durand (http://people.csail.mit.edu/sparis/bf course/).

New ldea:
NL-Means Filter (Buades 2005)

* Same goals: ‘Smooth within Similar Regions’

« KEY INSIGHT: Generalize, extend ‘Similarity’

— Bilateral:
Averages neighbors with similar intensities;

— NL-Means:
Averages neighbors with similar neighborhoods!




NL-Means Method:
Buades (2005)

* For each and

every pixel p:

NL-Means Method:
Buades (2005)

* For each and

every pixel p:

— Define a small, simple fixed size neighborhood;

NL-Means Method:
Buades (2005)

0.74
0.32
0.41

Vp = |oss

* For each and
every pixel p:

— Define a small, simple fixed size neighborhood;
— Define vector V:a list of neighboring pixel values.

NL-Means Method:
Buades (2005)

‘Similar”_ pixels p, q
- SMALL
vector distance;

—_ 2
V=V, I




NL-Means Method:
Buades (2005)

‘Dissimilar’” pixels p, q
- LARGE
vector distance;

TV, =Vq 1

NL-Means Method:
Buades (2005)

‘Dissimilar’”_ pixels p, q
- LARGE
vector distance;

| Vo=V, 112

Filter with this!

NL-Means Method:
Buades (2005)

P, q neighbors define
a vector distance;

V= Vg I

Filter with this:

No spatial term!

NLMFIT), = - ZMSQ

p 94<S

v
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NL-Means Method:
Buades (2005)
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pixels p, q neighbors
Set a vector distance;

|| Vo=V, I1?

Vector Distance to p sets ) )
weight for each pixel q o ¥

p Q&S




NL-Means Method: Buades (2005)
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Figure 2. Display of the NL weight distribution used to esti
weights go from 1(white) to zero(black).

tral pixel of every image. The

NL-Means Method: Buades (2005)

FI1G. 9. NL-means denoising experiment with a natural image. Left: Noisy image with standard
deviation 20. Right: Restored image.

NL-Means Method: Buades (2005)

* Noisy
source
image:

NL-Means Method: Buades (2005)

¢ Gaussian
Filter

Low noise,
Low detail




NL-Means Method: Buades (2005)

* Anisotropic
Diffusion

(Note
‘stairsteps’ :
~ piecewise
constant)

NL-Means Method: Buades (2005)

* Bilateral
Filter

(better, but
similar
‘stairsteps’ :

NL-Means Method: Buades (2005)

* NL-Means:

Sharp,
Low noise,
Few artifacts.

NL-Means Method: Buades (2005)

Figure 4. Method noise experience on a natural image. Displaying of the image difference « — Dj,(u). From leftto
right and from top to bottom: original image, Gauss filtering, anisotropic filtering, Total variation minimization,
Neighborhood filtering and NL-means algorithm. The visual experiments corroborate the formulas of section 2.




NL-Means Method: Buades (2005)

original noisy, standard deviation 15

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

denoised

NL-Means Method: Buades (2005)

original

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

NL-Means Method: Buades (2005)

noisy

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

NL-Means Method: Buades (2005)

denoised

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/




NL-Means Method: Buades (2005)

original

NL-Means Method: Buades (2005)

noisy

denoised

Today

* LARK filter

Acknowledgement: The slides are adapted from the ones prepared by P. Milanfar.




From pixels to patches and to images

Images
Patches

Pixels

Similarities can be defined at different scales..

Pixelwise similarity metrics

* To measure the similarity of two pixels, we can
consider

— Spatial distance
— Gray-level distance

y

Gray-level A

1eT11

Spatial A

Euclidean metrics
* Natural ways to incorporate the two As:
— Bilateral Kernel [Tomasi, Manduchi, ‘98] (pixelwise)

— Non-Local Means Kernel [Buades, et al.‘05] (patchwise)

y ) “Euclidean” distance

Gray-level A

Te (VTT

Spatial A

Bilateral Kernel (BL) [Tomasi et al.‘98]

Pixels

— 2 x7 — x||2
K%, 31,9 — &b { I~ _ x| }
37 3

Pixel similarity Spatial similarity

Q00000000
I500000000000000000000)




Non-local Means (NLM) [Buades et al.‘05]

Patches

2 2
Y, y X X
K(xl,x, YI,Y) = exp{ ” lh2 ” — ” lh2 “ }
U T U d

Patch similarity Spatial similarity
gl

Smoothing effect

Beyond Euclidean metrics

* Better similarity measures

More effective ways to combine the two As:
— LARK Kernel [Takeda, et al.‘07]
— Beltrami Kernel [Sochen, et al.*98]

y “Signal-induced” distance
“Riemannian Metric”
) [ J
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Spatial A

Non-parametric Kernel Regression

* The data fitting problem Zero-mean, i.i.d noise (No other assump.)

. — o~ ) L 27 =1 2 ... D
Y — ~#\ X/ T <o vt — Ly <4y af[
Given samples The sampling position  The number of samples
The regression function o
Regression function o ]
* The particular Bumps Yr, Yy
Measurements )

form of z(x)

may remain

unspecified % ?w\

for now. | 2(x))

Locality in Kernel Regression

* The data model

— . — 5 ... D
—_— C/L, v — <

1
Ly <y s 4

* Local representation (N-term Taylor series expansion)
2(x;) ~z2(x) + 2/ (x)(2; — ) + Ez”(x)(arl —x)?
1
+ -+ ﬁZ(N)(.T)(:EZ — .T)N
= o + B1(zi — x) + Pa(wi — x)°

+ ot By (i — 2)N.

* Note that with a polynomial basis, we only need to estimate
the first unknown S8,




Locality in Kernel Regression

¢ The data model
yZ:Z(XZ)—i_E’La i:172)"'7P

* Local representation (N-term Taylor series expansion)

Unknowns

* Note that with a polynomial basis, we only need to estimate
the first unknown S

Finding the unknowns via optimization

We have a local representation with respect to each
sample:
v1=P0+B1 (x1—x) + % VEL”1\X1—X)\X1 -x)7 f'f‘ e,
v2=fo + 61 (x2 —x) + B3 vech{(xQ -x) (2 =)} -+ e,

P | Tr, <\ vach [ix )\ (s 5
vp = Po+ B1 (% — x) + B3 vech | (xp — X) (xp — %)

* Estimate the parameters {ﬂn}ﬁzoy from the data while
giving the nearby samples higher weight than samples

farther away. »r
min Z [y = Bo = Bi(i — ) = Pa(a; — x)?

1:1
N2 1 T — T
— = Bn(z — K
A (i = ) ] h ( h )

Finding the unknowns via optimization

* We have a local representation with respect to each sample:
u1= o+ B (x1 —x) + 85 vech {(x1 = %) (x1 =0T} + -+ o1,
v2=Bo + BT (x2 —x) + B vech {(x2 = x) (xa = )"} + -+ + &2,

v =Po+ BT (xp —x) + AL vech {(x, — %) (% —0) T} + - + 5,

* Optimization The regression
N+1 terms order
P
) 2
min 3" [y = fo — B (x; —x) — Bhvech {(xi —x) (x; = )T} =+ | K (x; = x)

The choice of the
kernel function is
open, e.g. Gaussian.

Defining Data-Adaptive Kernels

* Classic Kernel: Locally Linear Filter:

Z2(x) = Bo =2 W, x,N) y;

Uses distance x-x; n —
* Data-Adaptive Kernel: r:p
Locally Non-Linear Filter: ”
2(x) =Po =% VlV(Xi,X, Yi» ¥, N) yi A\

Uses x-x;and y-y; n




Recall - Beyond Euclidean metrics

* Better similarity measures

* More effective ways to combine the two As:
— LARK Kernel [Takeda, et al.‘07]
— Beltrami Kernel [Sochen, et al.*98]

y “Signal-induced” distance
“Riemannian Metric
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Spatial A

LARK Kernels

K(Cyp,x;,x) = exp {—(xl —x)'Cy(x; — x)}

- —

X2

LARK Kernels

x, Gradient vector field
X2

Ax _ [ ' 2] x — IR
= .= x = [zx]_, z$2] Lo

Xy

cal covariance matrices

Locally Adaptive Regression Kernel: LARK
14
K(Cp,x;,%) = exp {—(x; — x)'Cy(x; — x)}
“Structure tensor”
C, = E [ zgl(xk) 21 (Xp) 22 (X1) ]
kKo 2y (Xp) 2 (X)) 232(1%)

Gradient Covariance Matrix and Local
Geometry

Gradient matrix over a local patch: =

4
C = [ za:21 (xx) le(}gc)zzg(xk) ] r
reoy | 7 (dzma(xk) - 2, (xx)
C,=G'G
0 60+
G:USVT=U[SOI Sz][vl va ] i




Image as a Surface Embedded in the
Euclidean 3 spacg, . Do
S(z1,x2) = {z1,22,2(z1,22)} ER® | =
Arclength on the surface
d32 = d.’L‘% + d:l:% + de ﬂ Chain rule
= da? + dz3 + (20,dz1 + 22,dz2)>
= (14 23))dz? + 22z, zzpdz1doo + (1 + 22,)dz3

_ 142, gy | ( dos
= (dzg d:cz)( z 2o, 1+ 22, dzo

E> (Xl - X)T(Cl + :[) (xl — x) Riemannian metric

Regularization term

K(Cp,xp,x) = exp {—(x, —x)'Ci(x —x)}

(Dense) LARK Kernels as
Visual Descriptors [Seo and Milanfar ‘10]

K(Cy,x;,x) = exp {—(xl - x)'Cy(x; — x)}

Measure the similarity of pixels using the metric
implied by the local structure of the iage

Robustness of LARK Descriptors

o 8 4]

Original Brightness Contrast WGN

image change change sigma =10

S-1-1-]-
AN
2111

A Variant Better-suited for Restoration
[Takeda et al.’07]

K(Cl, xl,x) =i,/det C;exp {—(Xl @x)’Cl(xl — X)}

Edge strength




Film Grain Reduction (Real Noise)

Noisy image

Film Grain Reduction (Real Noise)

Film Grain Reduction (Real Noise)

LARK

KSVD BM3D

Adaptive Sharpening/Denoising

* Sharpening the LARK Kernel

Laplacian operator
“Sharpness” P P
parameter

SZK—F;L(X)K

05
04
015
03
02
0.05
01
0
10 0 10




LARK -based Simultaneous Sharpening/
Deblurring/Denoising
* Net effect:

— aggressive denoising in “flat” areas

— Selective denoising and sharpening in “edgy” areas

LARK-based
filter
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Locally adaptive denoise/deblur filters

Exam ples _ original image . RK

original image

state-of-the-are methods

Examples

Examples




