#### **Modern Image Smoothing:**

Bilateral Filtering,
Non-local Means Denoising,
and LARK filter

Erkut Erdem

## Today

- Bilateral filtering
- Non-local means denoising
- LARK filter

#### Review - Smoothing and Edge Detection

- While eliminating noise via smoothing, we also lose some of the (important) image details.
  - Fine details
  - Image edges
  - etc.
- What can we do to preserve such details?
  - Use edge information during denoising!
  - This requires a definition for image edges.

Chicken-and-egg dilemma!

• Edge preserving image smoothing

#### Today

- Bilateral filtering
- · Non-local means denoising
- LARK filter

<u>Acknowledgement:</u> The slides are adapted from the course "A Gentle Introduction to Bilateral Filtering and its Applications" given by Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand (http://people.csail.mit.edu/sparis/bf\_course/).

#### Notation and Definitions

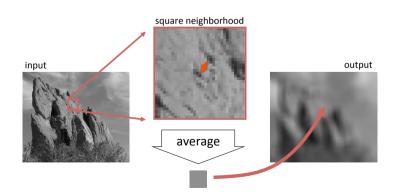
• Image = 2D array of pixels

- ns y t x
- Pixel = intensity (scalar) or color (3D vector)
- $I_{\mathbf{p}}$  = value of image I at position:  $\mathbf{p} = (p_x, p_y)$
- F[I] = output of filter F applied to image I

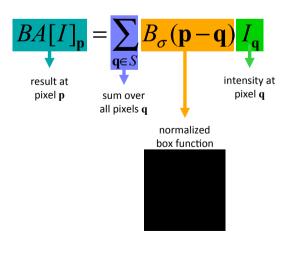
#### Strategy for Smoothing Images

- Images are not smooth because adjacent pixels are different.
- Smoothing = making adjacent pixels look more similar.
- Smoothing strategy
   pixel average of its neighbors

## Box Average



#### Equation of Box Average



## Square Box Generates Defects

- Axis-aligned streaks
- Blocky results

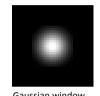




## Strategy to Solve these Problems

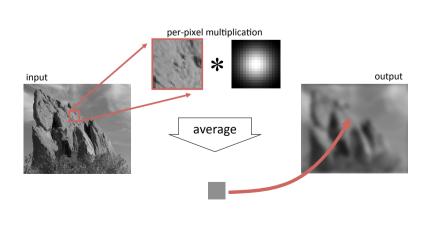
- Use an isotropic (i.e. circular) window.
- Use a window with a smooth falloff.

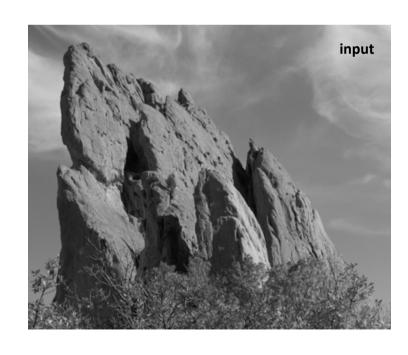




window

# Gaussian Blur









# Equation of Gaussian Blur

Same idea: weighted average of pixels.

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$
normalized
Gaussian function
$$0$$

# Spatial Parameter





inpu

small e



limited smoothing



large s



strong smoothing

#### How to set s

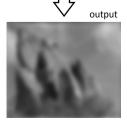
- Depends on the application.
- Common strategy: proportional to image size
  - e.g. 2% of the image diagonal
  - property: independent of image resolution

## Properties of Gaussian Blur

- Does smooth images
- But smoothes too much: edges are blurred.
  - Only spatial distance matters
  - No edge term

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

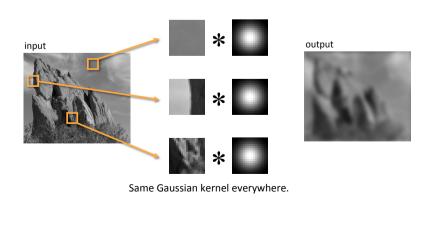




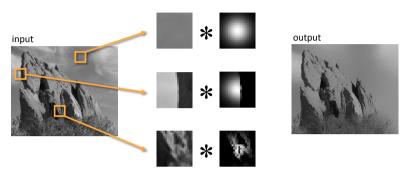
## Properties of Gaussian Blur

- Weights independent of spatial location
  - linear convolution
  - well-known operation
  - efficient computation (recursive algorithm, FFT...)

# Blur Comes from Averaging across Edges



# Bilateral Filter<sub>[Aurich 95, Smith 97, Tomasi 98]</sub> No Averaging across Edges



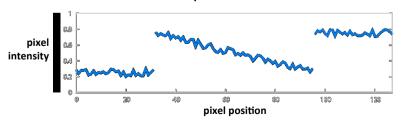
#### The kernel shape depends on the image content.

## Illustration a 1D Image

• ID image = line of pixels

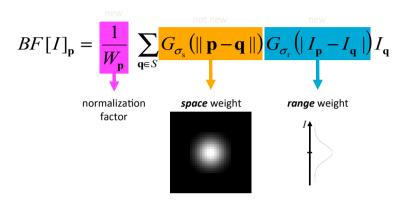


• Better visualized as a plot

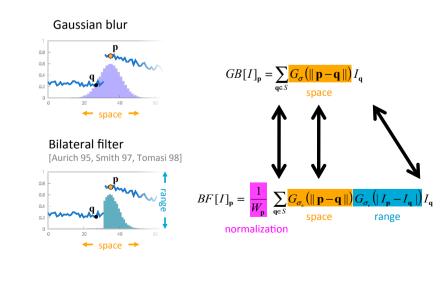


# Bilateral Filter Definition: an Additional Edge Term

Same idea: weighted average of pixels.



#### Gaussian Blur and Bilateral Filter



## Bilateral Filter on a Height Field

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

$$f(\mathbf{p}) = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

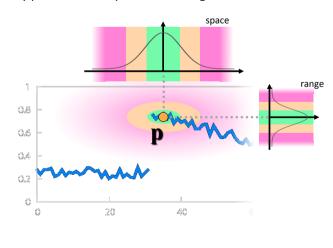
## Space and Range Parameters

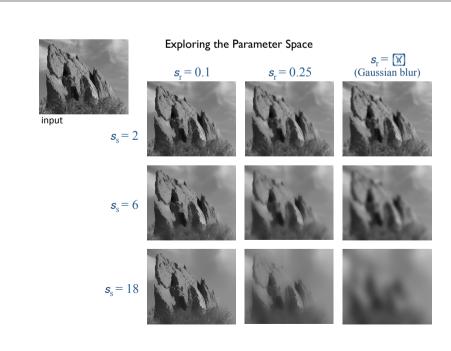
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

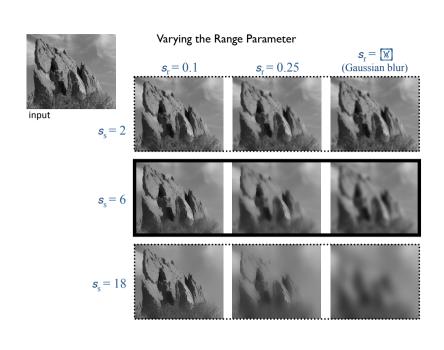
- space  $s_s$ : spatial extent of the kernel, size of the considered neighborhood.
- range  $s_r$ : "minimum" amplitude of an edge

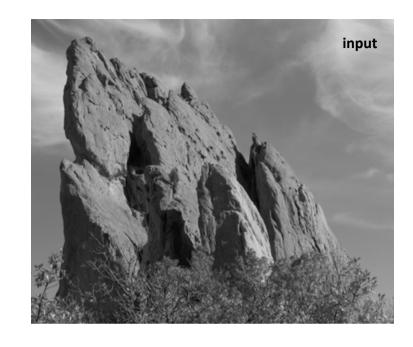
#### Influence of Pixels

Only pixels close in space and in range are considered.





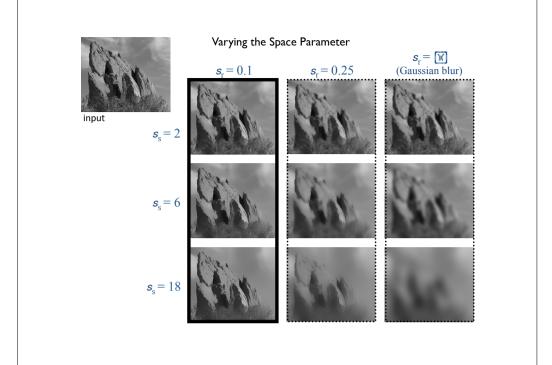


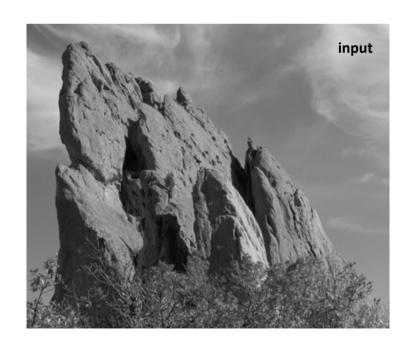


















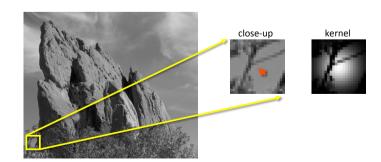
Depends on the application. For instance:

- space parameter: proportional to image size
   e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
   e.g., mean or median of image gradients
- independent of resolution and exposure



#### Bilateral Filter Crosses Thin Lines

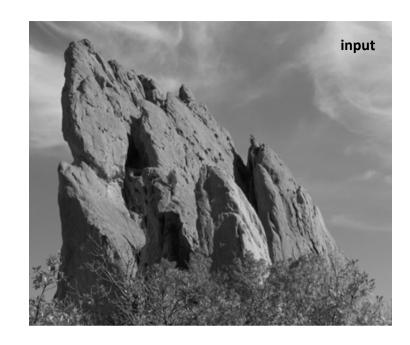
- Bilateral filter averages across features thinner than  ${\sim}2s_{\rm s}$
- Desirable for smoothing: more pixels = more robust
- Different from diffusion that stops at thin lines



# Iterating the Bilateral Filter

$$I_{(n+1)} = BF\left[I_{(n)}\right]$$

- Generate more piecewise-flat images
- Often not needed in computational photo.









## Bilateral Filtering Color Images

For gray-level images

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}}(\| \mathbf{p} - \mathbf{q} \|) G_{\sigma_{\mathbf{r}}}(| \mathbf{I}_{\mathbf{p}} - \mathbf{I}_{\mathbf{q}} |) \mathbf{I}_{\mathbf{q}}$$
scala



For color images

For color images 
$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}} \big( \| \, \mathbf{p} - \mathbf{q} \, \| \big) G_{\sigma_{\mathbf{r}}} \Big( \frac{\mathbf{C}_{\mathbf{p}} - \mathbf{C}_{\mathbf{q}}}{\| \, \mathbf{C}_{\mathbf{p}} - \mathbf{C}_{\mathbf{q}} \|} \Big) \mathbf{C}_{\mathbf{q}}$$



## Hard to Compute

- $BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} I_{\mathbf{q}}|) I_{\mathbf{q}}$ Nonlinear
- Complex, spatially varying kernels - Cannot be precomputed, no FFT...









• Brute-force implementation is slow > 10min

**Additional Reading:** S. Paris and F. Durand, A Fast Approximation of the Bilateral Filter using a Signal Processing Approach, In Proc. ECCV, 2006

## Basic denoising



# Basic denoising



# Basic denoising



# Basic denoising



# Basic denoising



#### Denoising

- Small spatial sigma (e.g. 7x7 window)
- Adapt range sigma to noise level
- Maybe not best denoising method, but best simplicity/quality tradeoff
  - No need for acceleration (small kernel)

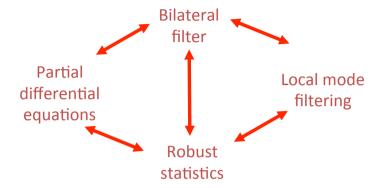


## Today

- Bilateral filtering
- Non-local means denoising
- LARK filter

<u>Acknowledgement:</u> The slides are adapted from the course "A Gentle Introduction to Bilateral Filtering and its Applications" given by Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand (http://people.csail.mit.edu/sparis/bf\_course/).

# Goal: Understand how does bilateral filter relates with other methods



**Today's paper:** Generalised Nonlocal Image Smoothing, L. Pizarro, P. Mrazek, S. Didas, S. Grewenig and J. Weickert, IJCV, 2010

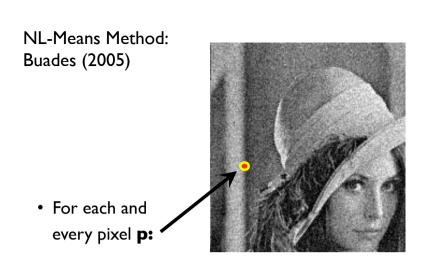
#### New Idea: NL-Means Filter (Buades 2005)

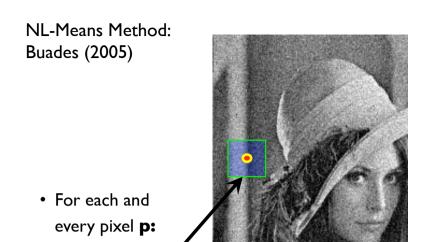
- Same goals: 'Smooth within Similar Regions'
- **KEY INSIGHT**: Generalize, extend 'Similarity'
  - Bilateral:

Averages neighbors with **similar intensities**;

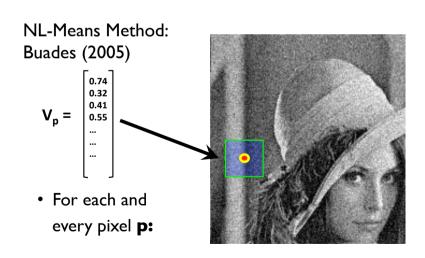
- NL-Means:

Averages neighbors with **similar neighborhoods!** 





- Define a small, simple fixed size neighborhood;



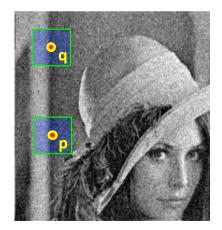
- Define a small, simple fixed size neighborhood;
- Define vector  $\mathbf{V_p}$ : a list of neighboring pixel values.

NL-Means Method: Buades (2005)

'Similar' pixels p, q

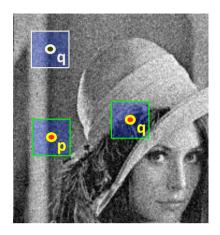
→ SMALL
vector distance;

$$| | V_p - V_q | |^2$$



<u>'Dissimilar'</u> pixels **p, q**→ **LARGE**vector distance;

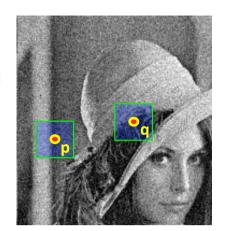
$$| | V_p - V_q | |^2$$



#### NL-Means Method: Buades (2005)

<u>'Dissimilar'</u> pixels **p, q**→ **LARGE**vector distance;

Filter with this!



NL-Means Method: Buades (2005)

**p, q** neighbors define a vector distance;

Filter with this:

No spatial term!

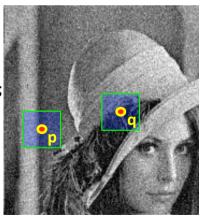


NL-Means Method: Buades (2005)

pixels **p, q** neighbors Set a vector distance:

$$| | V_p - V_q | |^2$$

Vector Distance to p sets weight for each pixel q



$$NLMF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{r}}} \left( \|\vec{V}_{\mathbf{p}} - \vec{V}_{\mathbf{q}}\|^{2} \right) I_{\mathbf{q}}$$

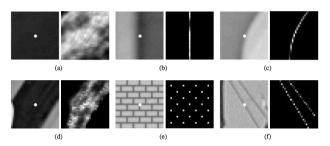


Figure 2. Display of the NL-means weight distribution used to estimate the central pixel of every image. The weights go from 1(white) to zero(black).

# NL-Means Method: Buades (2005)

Noisy source image:



#### NL-Means Method: Buades (2005)



FIG. 9. NL-means denoising experiment with a natural image. Left: Noisy image with standard deviation 20. Right: Restored image.

## NL-Means Method: Buades (2005)

• Gaussian Filter

Low noise, Low detail



• Anisotropic Diffusion

(Note 'stairsteps': ~ piecewise constant)



# NL-Means Method: Buades (2005)

• NL-Means:

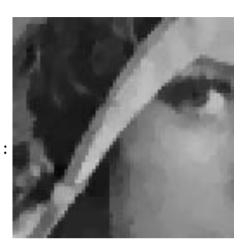
Sharp, Low noise, Few artifacts.



## NL-Means Method: Buades (2005)

Bilateral Filter

(better, but similar 'stairsteps':



#### NL-Means Method: Buades (2005)

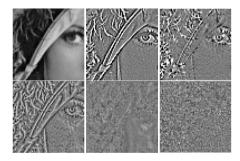
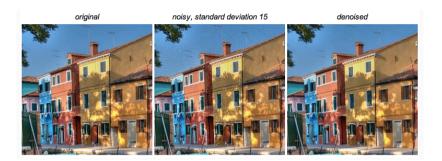
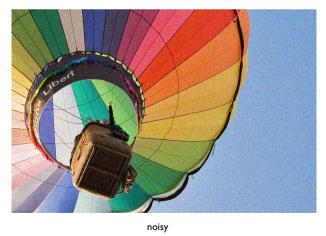


Figure 4. Method noise experience on a natural image. Displaying of the image difference  $u-D_h(u)$ . From left to right and from top to bottom: original image, Gauss filtering, anisotropic filtering, Total variation minimization, Neighborhood filtering and NL-means algorithm. The visual experiments corroborate the formulas of section 2.



#### http://www.ipol.im/pub/algo/bcm\_non\_local\_means\_denoising/

#### NL-Means Method: Buades (2005)



http://www.ipol.im/pub/algo/bcm\_non\_local\_means\_denoising/

#### NL-Means Method: Buades (2005)



http://www.ipol.im/pub/algo/bcm\_non\_local\_means\_denoising/

#### NL-Means Method: Buades (2005)



denoised

http://www.ipol.im/pub/algo/bcm\_non\_local\_means\_denoising/



original

http://www.ipol.im/pub/algo/bcm\_non\_local\_means\_denoising/

#### NL-Means Method: Buades (2005)



denoised

http://www.ipol.im/pub/algo/bcm\_non\_local\_means\_denoising/

#### NL-Means Method: Buades (2005)



noisy

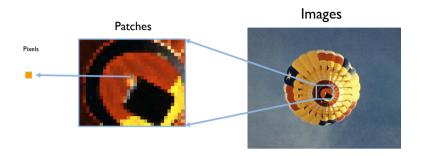
http://www.ipol.im/pub/algo/bcm\_non\_local\_means\_denoising/

## Today

- Bilateral filtering
- Non-local means denoising
- LARK filter

Acknowledgement: The slides are adapted from the ones prepared by P. Milanfar.

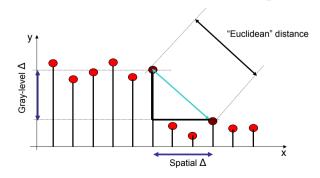
#### From pixels to patches and to images



Similarities can be defined at different scales..

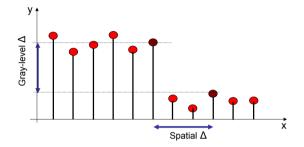
#### **Euclidean metrics**

- Natural ways to incorporate the two  $\Delta$ s:
  - Bilateral Kernel [Tomasi, Manduchi, '98] (pixelwise)
  - Non-Local Means Kernel [Buades, et al. '05] (patchwise)



#### Pixelwise similarity metrics

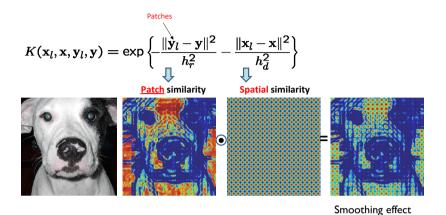
- To measure the similarity of two pixels, we can consider
  - Spatial distance
  - Gray-level distance



#### Bilateral Kernel (BL) [Tomasi et al. '98]

$$K(\mathbf{x}_l,\mathbf{x},y_l,y) = \exp\left\{-\frac{\|y_l-y\|^2}{h_r^2} - \frac{\|\mathbf{x}_l-\mathbf{x}\|^2}{h_d^2}\right\}$$
Pixel similarity
Spatial similarity

#### Non-local Means (NLM) [Buades et al. '05]



## Non-parametric Kernel Regression

• The data fitting problem Zero-mean, i.i.d noise (No other assump.)

$$y_i = z(\mathbf{x}_i) + \varepsilon_i, \quad i = 1, 2, \dots, P$$

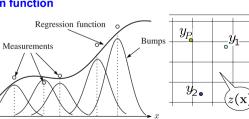
Given samples

The sampling position

The number of samples

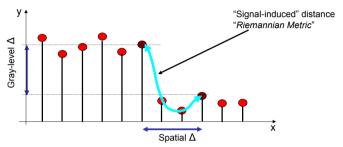
The regression function

 The particular form of z(x) may remain unspecified for now.



#### Beyond Euclidean metrics

- Better similarity measures
- More effective ways to combine the two  $\Delta$  s:
  - LARK Kernel [Takeda, et al. '07]
  - Beltrami Kernel [Sochen, et al. '98]



#### Locality in Kernel Regression

· The data model

$$y_i = z(\mathbf{x}_i) + \varepsilon_i, \quad i = 1, 2, \dots, P$$

• Local representation (N-term Taylor series expansion)

$$z(x_i) \approx z(x) + z'(x)(x_i - x) + \frac{1}{2!}z''(x)(x_i - x)^2$$

$$+ \dots + \frac{1}{N!}z^{(N)}(x)(x_i - x)^N$$

$$= \beta_0 + \beta_1(x_i - x) + \beta_2(x_i - x)^2$$

$$+ \dots + \beta_N(x_i - x)^N.$$

• Note that with a polynomial basis, we only need to estimate the first unknown  $\beta_0$ 

#### Locality in Kernel Regression

• The data model

$$y_i = z(\mathbf{x}_i) + \varepsilon_i, \quad i = 1, 2, \dots, P$$

• Local representation (N-term Taylor series expansion)

$$\begin{split} z(\mathbf{x}_i) &= \underbrace{z(\mathbf{x})} + \underbrace{\{\nabla z(\mathbf{x})\}^T}(\mathbf{x}_i - \mathbf{x}) + \underbrace{\frac{1}{2!}}(\mathbf{x}_i - \mathbf{x})^T\underbrace{\{\mathcal{H}z(\mathbf{x})\}}(\mathbf{x}_i - \mathbf{x}) + \cdots \\ &= \underbrace{\beta_0} + \underbrace{\beta_1^T}(\mathbf{x}_i - \mathbf{x}) + \underbrace{\beta_2^T} \operatorname{vech}\left\{(\mathbf{x}_i - \mathbf{x}) \, (\mathbf{x}_i - \mathbf{x})^T\right\} + \cdots, \end{split}$$

• Note that with a polynomial basis, we only need to estimate the first unknown  $\beta_0$ 

#### Finding the unknowns via optimization

• We have a local representation with respect to each sample:

$$\begin{aligned} y_1 &= \beta_0 + \beta_1^T \left( \mathbf{x}_1 - \mathbf{x} \right) + \beta_2^T \operatorname{vech} \left\{ \left( \mathbf{x}_1 - \mathbf{x} \right) \left( \mathbf{x}_1 - \mathbf{x} \right)^T \right\} + \dots + \varepsilon_1, \\ y_2 &= \beta_0 + \beta_1^T \left( \mathbf{x}_2 - \mathbf{x} \right) + \beta_2^T \operatorname{vech} \left\{ \left( \mathbf{x}_2 - \mathbf{x} \right) \left( \mathbf{x}_2 - \mathbf{x} \right)^T \right\} + \dots + \varepsilon_2, \\ &\vdots \\ y_p &= \beta_0 + \beta_1^T \left( \mathbf{x}_p - \mathbf{x} \right) + \beta_2^T \operatorname{vech} \left\{ \left( \mathbf{x}_p - \mathbf{x} \right) \left( \mathbf{x}_p - \mathbf{x} \right)^T \right\} + \dots + \varepsilon_p, \end{aligned}$$

Optimization

N+1 terms

The regression

$$\min_{\{\beta_n\}_{n=0}^N} \sum_{i=1}^P \left[ y_i - \beta_0 - \beta_1^T(\mathbf{x}_i - \mathbf{x}) - \beta_2^T \mathrm{vech} \left\{ (\mathbf{x}_i - \mathbf{x}) \, (\mathbf{x}_i - \mathbf{x})^T \right\} - \cdots \right]^2 \mathrm{K} \, (\mathbf{x}_i - \mathbf{x})$$
 This tepm give the estimated pixel value z(x). The choice of the kernel function is open, e.g. Gaussian. 
$$\widehat{z}(\mathbf{x}) = \sum_{i=1}^P W_i(\mathbf{x}, K, h, N) \, y_i$$

#### Finding the unknowns via optimization

• We have a local representation with respect to each sample:

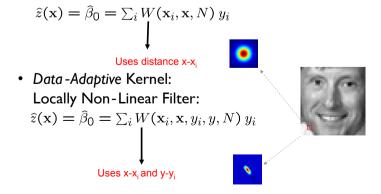
$$\begin{aligned} y_1 &= \beta_0 + \beta_1^T \left( \mathbf{x}_1 - \mathbf{x} \right) + \beta_2^T \operatorname{vech} \left\{ \left( \mathbf{x}_1 - \mathbf{x} \right) \left( \mathbf{x}_1 - \mathbf{x} \right)^T \right\} + \dots + \varepsilon_1, \\ y_2 &= \beta_0 + \beta_1^T \left( \mathbf{x}_2 - \mathbf{x} \right) + \beta_2^T \operatorname{vech} \left\{ \left( \mathbf{x}_2 - \mathbf{x} \right) \left( \mathbf{x}_2 - \mathbf{x} \right)^T \right\} + \dots + \varepsilon_2, \\ &\vdots \\ y_P &= \beta_0 + \beta_1^T \left( \mathbf{x}_P - \mathbf{x} \right) + \beta_2^T \operatorname{vech} \left\{ \left( \mathbf{x}_P - \mathbf{x} \right) \left( \mathbf{x}_P - \mathbf{x} \right)^T \right\} + \dots + \varepsilon_P, \end{aligned}$$

• Estimate the parameters  $\{\beta_n\}_{n=0}^N$  from the data while giving the nearby samples higher weight than samples farther away.

$$\min_{\{\beta_n\}} \sum_{i=1}^{P} \left[ y_i - \beta_0 - \beta_1 (x_i - x) - \beta_2 (x_i - x)^2 - \dots - \beta_N (x_i - x)^N \right]^2 \frac{1}{h} K \left( \frac{x_i - x}{h} \right)$$

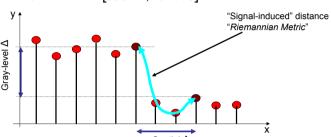
## Defining Data-Adaptive Kernels

• Classic Kernel: Locally Linear Filter:

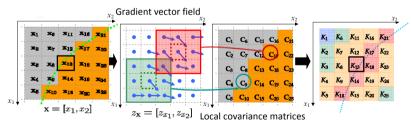


#### Recall - Beyond Euclidean metrics

- Better similarity measures
- More effective ways to combine the two  $\Delta$ s:
  - LARK Kernel [Takeda, et al. '07]
  - Beltrami Kernel [Sochen, et al. '98]



#### LARK Kernels

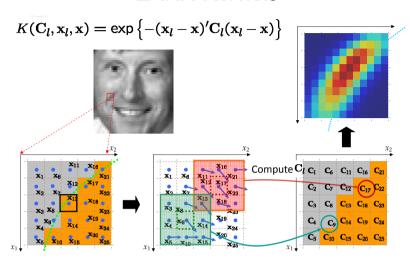


Locally Adaptive Regression Kernel: LARK

$$K(\mathbf{C}_l, \mathbf{x}_l, \mathbf{x}) = \exp\left\{-(\mathbf{x}_l - \mathbf{x})' \underline{\mathbf{C}_l}(\mathbf{x}_l - \mathbf{x})\right\}$$

$$\mathbf{C}_l = \sum_{k \in \mathbf{\Omega}} \begin{bmatrix} z_{x_1}^2(\mathbf{x}_k) & z_{x_1}(\mathbf{x}_k)z_{x_2}(\mathbf{x}_k) \\ z_{x_1}(\mathbf{x}_k)z_{x_2}(\mathbf{x}_k) & z_{x_2}^2(\mathbf{x}_k) \end{bmatrix}$$

#### LARK Kernels



# Gradient Covariance Matrix and Local Geometry

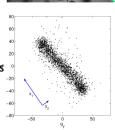
Gradient matrix over a local patch:

$$\mathbf{C}_l = \sum_{k \in \Omega_l} \left[ egin{array}{ccc} z_{x_1}^2(\mathbf{x}_k) & z_{x_1}(\mathbf{x}_k)z_{x_2}(\mathbf{x}_k) \ z_{x_1}(\mathbf{x}_k)z_{x_2}(\mathbf{x}_k) & z_{x_2}^2(\mathbf{x}_k) \end{array} 
ight]$$

$$C_l = G^TG$$

$$\mathbf{G} = \mathbf{U}\mathbf{S}\mathbf{V}^T = \mathbf{U} \begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}^T$$

Capturing locally dominant orientations

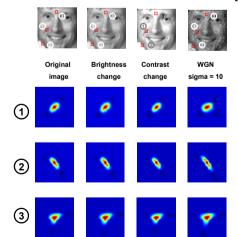


# Image as a Surface Embedded in the

Euclidean 3-space  $x_1 \stackrel{z}{\underset{dz}{\longrightarrow}} x_2$   $S(x_1,x_2) = \{x_1,x_2,z(x_1,x_2)\} \in \mathbb{R}^3$   $dx_1 \stackrel{z}{\underset{dz}{\longrightarrow}} x_2$  Arclength on the surface  $ds^2 = dx_1^2 + dx_2^2 + dz^2 \text{ Chain rule}$   $= dx_1^2 + dx_2^2 + (z_{x_1}dx_1 + z_{x_2}dx_2)^2$   $= (1+z_{x_1}^2)dx_1^2 + 2z_{x_1}z_{x_2}dx_1dx_2 + (1+z_{x_2}^2)dx_2^2$   $= (dx_1 \quad dx_2) \begin{pmatrix} 1+z_{x_1}^2 & z_{x_1}z_{x_2} \\ z_{x_1}z_{x_2} & 1+z_{x_2}^2 \end{pmatrix} \begin{pmatrix} dx_1 \\ dx_2 \end{pmatrix}$   $\Leftrightarrow (\mathbf{x}_l - \mathbf{x})^T (\mathbf{C}_l + \mathbf{I})(\mathbf{x}_l - \mathbf{x})$  Riemannian metric

#### Robustness of LARK Descriptors

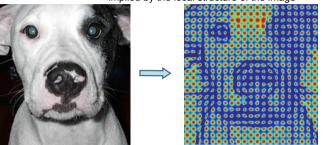
 $K(\mathbf{C}_l, \mathbf{x}_l, \mathbf{x}) = \exp\left\{-(\mathbf{x}_l - \mathbf{x})'\mathbf{C}_l(\mathbf{x}_l - \mathbf{x})\right\}$ 



#### (Dense) LARK Kernels as Visual Descriptors [Seo and Milanfar '10]

$$K(\mathbf{C}_l, \mathbf{x}_l, \mathbf{x}) = \exp\left\{-(\mathbf{x}_l - \mathbf{x})'\mathbf{C}_l(\mathbf{x}_l - \mathbf{x})\right\}$$

Measure the similarity of pixels using the metric implied by the local structure of the image



# A Variant Better-suited for Restoration [Takeda et al. '07]

$$K(\mathbf{C}_l,\mathbf{x}_l,\mathbf{x}) = \sqrt{\det \mathbf{C}_l} \exp \left\{ -(\mathbf{x}_l - \mathbf{x})' \mathbf{C}_l (\mathbf{x}_l - \mathbf{x}) \right\}$$

#### Film Grain Reduction (Real Noise)



Noisy image

#### Film Grain Reduction (Real Noise)

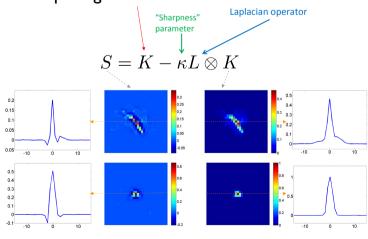


## Film Grain Reduction (Real Noise)



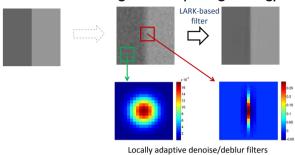
## Adaptive Sharpening/Denoising

• Sharpening the LARK Kernel



## LARK-based Simultaneous Sharpening/ Deblurring/Denoising

- Net effect:
  - aggressive denoising in "flat" areas
  - Selective denoising and sharpening in "edgy" areas



## **Examples**



original image



original image







state-of-the-are methods

## **Examples**



# Examples





