BIL 717
Image Processing

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Clustering-based
Image Segmentation
Image segmentation

- Goal: identify groups of pixels that go together
The goals of segmentation

• Separate image into coherent “objects”

![image](http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/)

Slide credit: S. Lazebnik
The goals of segmentation

- Separate image into coherent “objects”
- Group together similar-looking pixels for efficiency of further processing

“superpixels”
Segmentation

• Compact representation for image data in terms of a set of components
• Components share “common” visual properties
• Properties can be defined at different level of abstractions
What is segmentation?

• Clustering image elements that “belong together”

 – **Partitioning**
 • Divide into regions/sequences with coherent internal properties
 – **Grouping**
 • Identify sets of coherent tokens in image
Segmentation is a global process

What are the occluded numbers?

Slide credit: B. Freeman and A. Torralba
Segmentation is a global process

What are the occluded numbers?

Occlusion is an important cue in grouping.

Slide credit: B. Freeman and A. Torralba
... but not too global
Magritte, 1957

Slide credit: B. Freeman and A. Torralba
Groupings by Invisible Completions

A

B

C

D

* Images from Steve Lehar’s Gestalt papers

Slide credit: B. Freeman and A. Torralba
Groupings by Invisible Completions

1970s: R. C. James

Slide credit: B. Freeman and A. Torralba
Groupings by Invisible Completions

2000s: Bev Doolittle

Slide credit: B. Freeman and A. Torralba
Perceptual organization

“…the processes by which the bits and pieces of visual information that are available in the retinal image are structured into the larger units of perceived objects and their interrelations”

Stephen E. Palmer, Vision Science, 1999
Gestalt Psychology

• German: *Gestalt* - "form" or "whole"
• Berlin School, early 20th century
 – Kurt Koffka, Max Wertheimer, and Wolfgang Köhler
• Gestalt: whole or group
 – Whole is greater than sum of its parts
 – Relationships among parts can yield new properties/features
• Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

 “I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have “327”? No. I have sky, house, and trees.”

 Max Wertheimer (1880-1943)
Laws of Seeing, Wolfgang Metzger, 1936
(English translation by Lothar Spillmann, MIT Press, 2006)
Parallelism
Symmetry
Continuity
Closure
Familiarity

Slide credit: B. Freeman and A. Torralba
Similarity
Symmetry
Common fate

Image credit: Arthus-Bertrand (via F. Durand)

Slide credit: K. Grauman
Proximity

http://www.capital.edu/Resources/Images/outside6_035.jpg

Slide credit: K. Grauman
Familiarity

Slide credit: B. Freeman and A. Torralba
Familiarity

Slide credit: B. Freeman and A. Torralba
Gestalt cues

- Good intuition and basic principles for grouping
- Basis for many ideas in segmentation and occlusion reasoning
- Some (e.g., symmetry) are difficult to implement in practice
Segmentation methods

• Segmentation as clustering
 – K-means clustering
 – Mean-shift segmentation

• Graph-theoretic segmentation
 – Min cut
 – Normalized cuts
• These intensities define the three groups.
• We could label every pixel in the image according to which of these primary intensities it is.
 • i.e., segment the image based on the intensity feature.
• What if the image isn’t quite so simple?
• Now how to determine the three main intensities that define our groups?
• We need to *cluster.*
• Goal: choose three “centers” as the representative intensities, and label every pixel according to which of these centers it is nearest to.

• Best cluster centers are those that minimize SSD between all points and their nearest cluster center c_i:

$$\sum_{clusters \ i} \sum_{points \ p \ in \ cluster \ i} \| p - c_i \|^2$$

Slide credit: K. Grauman
Clustering

• With this objective, it is a “chicken and egg” problem:
 – If we knew the **cluster centers**, we could allocate points to groups by assigning each to its closest center.

 – If we knew the **group memberships**, we could get the centers by computing the mean per group.
Segmentation as clustering

• Cluster together (pixels, tokens, etc.) that belong together...

• Agglomerative clustering
 – attach closest to cluster it is closest to – repeat

• Divisive clustering
 – split cluster along best boundary – repeat

• Dendrograms
 – yield a picture of output as clustering process continues
Greedy Clustering Algorithms

Algorithm 15.3: Agglomerative clustering, or clustering by merging

Make each point a separate cluster
Until the clustering is satisfactory
 Merge the two clusters with the smallest inter-cluster distance
end

Algorithm 15.4: Divisive clustering, or clustering by splitting

Construct a single cluster containing all points
Until the clustering is satisfactory
 Split the cluster that yields the two components with the largest inter-cluster distance
end
Agglomerative clustering

1. Say “Every point is its own cluster”
Agglomerative clustering

1. Say “Every point is its own cluster”
2. Find “most similar” pair of clusters
Agglomerative clustering

1. Say “Every point is its own cluster”
2. Find “most similar” pair of clusters
3. Merge it into a parent cluster

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 42

Slide credit: D. Hoiem
Agglomerative clustering

1. Say “Every point is its own cluster”
2. Find “most similar” pair of clusters
3. Merge it into a parent cluster
4. Repeat
Agglomerative clustering

1. Say “Every point is its own cluster”
2. Find “most similar” pair of clusters
3. Merge it into a parent cluster
4. Repeat

Copyright © 2001, 2004, Andrew W. Moore
K-means and Hierarchical Clustering: Slide 44

Slide credit: D. Hoiem
Common similarity/distance measures

- **P-norms**
 - City Block (L1)
 - Euclidean (L2)
 - L-infinity

 \[
 \|x\|_p := \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}
 \]

 \[
 \|x\|_1 := \sum_{i=1}^{n} |x_i|
 \]

 \[
 \|x\| := \sqrt{x_1^2 + \cdots + x_n^2}
 \]

 \[
 \|x\|_\infty := \max (|x_1|, \ldots, |x_n|)
 \]

- **Mahalanobis**
 - Scaled Euclidean

 \[
 d(\overline{x}, \overline{y}) = \sqrt{\sum_{i=1}^{N} \frac{(x_i - y_i)^2}{\sigma_i^2}}
 \]

- **Cosine distance**

 \[
 \text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\|\|B\|}
 \]

Slide credit: D. Hoiem
Dendograms

Data set

Dendrogram formed by agglomerative clustering using single-link clustering.

Slide credit: B. Freeman
Agglomerative clustering

How to define cluster similarity?

- Average distance between points, maximum distance, minimum distance
- Distance between means or medoids

How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges

Slide credit: D. Hoiem
Agglomerative clustering

Good

• Simple to implement, widespread application
• Clusters have adaptive shapes
• Provides a hierarchy of clusters

Bad

• May have imbalanced clusters
• Still have to choose number of clusters or threshold
• Need to use an “ultrametric” to get a meaningful hierarchy

Slide credit: D. Hoiem
Segmentation methods

• Segmentation as clustering
 – K-means clustering
 – Mean-shift segmentation

• Graph-Theoretic Segmentation
 – Min cut
 – Normalized cuts
K-means clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.

 1. Randomly initialize the cluster centers, c_1, \ldots, c_K
 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
 3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
 4. If c_i have changed, repeat Step 2

Properties

- Will always converge to some solution
- Can be a “local minimum”
 - does not always find the global minimum of objective function:

\[
\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} ||p - c_i||^2
\]

Slide credit: S. Seitz
K-means

1. Ask user how many clusters they’d like.
 (e.g. $k=5$)
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations

3. Each datapoint finds out which Center it’s closest to. (Thus each Center “owns” a set of datapoints)
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations

3. Each datapoint finds out which Center it’s closest to.

4. Each Center finds the centroid of the points it owns

Slide credit: K Grauman, A. Moore
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it’s closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until terminated!
K-means: pros and cons

Pros
- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Cons/_issues
- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed

Slide credit: K Grauman
An aside: Smoothing out cluster assignments

• Assigning a cluster label per pixel may yield outliers:

 original

 labeled by cluster center’s intensity

• How to ensure they are spatially smooth?
Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity** similarity

Feature space: intensity value (I-d)

Slide credit: K Grauman
quantization of the feature space; segmentation label map
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on color similarity

Feature space: color value (3-d)

Slide credit: K Grauman
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity similarity

Clusters based on intensity similarity don’t have to be spatially coherent.
Segmentation as clustering

K-means clustering using intensity alone and color alone

Slide credit: B. Freeman
Segmentation as clustering

Image

Clusters on color

K-means using color alone, 11 segments

Slide credit: B. Freeman
Segmentation as clustering

K-means using color alone, 11 segments.

Color alone often will not yield salient segments!
Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on intensity+position similarity

Both regions are black, but if we also include position \((x,y)\), then we could group the two into distinct segments; way to encode both similarity & proximity.

Slide credit: K Grauman
Segmentation as clustering

- Color, brightness, position alone are not enough to distinguish all regions…
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on texture similarity

Feature space: filter bank responses (e.g., 24-d)

Slide credit: K Grauman
Texture representation example

Windows with primarily horizontal edges

Windows with small gradient in both directions

Windows with primarily vertical edges

Both

Dimension 1 (mean d/dx value)

Dimension 2 (mean d/dy value)

statistics to summarize patterns in small windows

Slide credit: K Grauman
Segmentation with texture features

• Find “textons” by \textbf{clustering} vectors of filter bank outputs
• Describe texture in a window based on \textit{texton histogram}

Slide credit: K Grauman, L. Lazebnik
Image segmentation example

Texture-based regions

Color-based regions

Slide credit: K Grauman
Segmentation methods

• Segmentation as clustering
 – K-means clustering
 – Mean-shift segmentation

• Graph-theoretic segmentation
 – Min cut
 – Normalized cuts

• Interactive segmentation
Mean shift clustering and segmentation

- An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Finding Modes in a Histogram

- How Many Modes Are There?
 - Easy to see, hard to compute
Mean shift algorithm

- The mean shift algorithm seeks *modes* or local maxima of density in the feature space.
Mean shift algorithm

Mean Shift Algorithm

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:

Two issues:
(1) Kernel to interpolate density based on sample positions.
(2) Gradient ascent to mode.

Slide credit: B. Freeman and A. Torralba
Mean shift

Search window
Center of mass
Mean Shift vector

Slide credit: Y. Ukrainitz & B. Sarel
Mean shift

Center of mass

Search window

Mean Shift vector

Slide credit: Y. Ukrainitz & B. Sarel
Mean shift

Search window
Center of mass

Mean Shift vector

Slide credit: Y. Ukrainitz & B. Sarel
Mean shift

Slide credit: Y. Ukrainitz & B. Sarel
Mean shift

Search window

Center of mass

Mean Shift vector

Slide credit: Y. Ukrainitz & B. Sarel
Mean shift
Mean shift

Search window
Center of mass

Slide credit: Y. Ukrainitz & B. Sarel
Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode
Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same “peak” or mode

Slide credit: S. Lazebnik
Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same “peak” or mode

Slide credit: S. Lazebnik
Apply mean shift jointly in the image (left col.) and range (right col.) domains.

- Window in image domain
- Center of mass of pixels within both image and range domain windows
- Intensities of pixels within image domain window
- Window in range domain
- Center of mass of pixels within both image and range domain windows

Slide credit: B. Freeman and A. Torralba
Fig. 4. Visualization of mean shift-based filtering and segmentation for gray-level data. (a) Input. (b) Mean shift paths for the pixels on the plateau and on the line. The black dots are the points of convergence. (c) Filtering result $(h_x, h_y) = (8, 4)$. (d) Segmentation result.
Mean shift segmentation results

Slide credit: S. Lazebnik

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
More results
More results
Mean shift pros and cons

• Pros
 – Does not assume spherical clusters
 – Just a single parameter (window size)
 – Finds variable number of modes
 – Robust to outliers

• Cons
 – Output depends on window size
 – Computationally expensive
 – Does not scale well with dimension of feature space
Segmentation methods

• Segmentation as clustering
 – K-means clustering
 – Mean-shift segmentation

• Graph-theoretic segmentation
 • Min cut
 • Normalized cuts
Graph-Theoretic Image Segmentation

Build a weighted graph $G=(V,E)$ from image

V: image pixels

E: connections between pairs of nearby pixels

W_{ij}: probability that i & j belong to the same region

Segmentation = graph partition

Slide credit: B. Freeman and A. Torralba
Graphs Representations

Adjacency Matrix

Slide credit: B. Freeman and A. Torralba

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
A Weighted Graph and its Representation

Affinity Matrix

\[
W = \begin{bmatrix}
1 & .1 & .3 & 0 & 0 \\
.1 & 1 & .4 & 0 & .2 \\
.3 & .4 & 1 & .6 & .7 \\
0 & 0 & .6 & 1 & 1 \\
0 & .2 & .7 & 1 & 1 \\
\end{bmatrix}
\]

\(W_{ij}\): probability that i & j belong to the same region

Slide credit: B. Freeman and A. Torralba

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Segmentation by graph partitioning

- Break graph into segments
 - Delete links that cross between segments
 - Easiest to break links that have low affinity
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Slide credit: S. Seitz
Affinity between pixels

Similarities among pixel descriptors

$$W_{ij} = \exp(-||z_i - z_j||^2 / \sigma^2)$$

σ = Scale factor… it will hunt us later

Slide credit: B. Freeman and A. Torralba
Affinity between pixels

Similarities among pixel descriptors
\[W_{ij} = \exp\left(-||z_i - z_j||^2 / \sigma^2\right) \]

Interleaving edges
\[W_{ij} = 1 - \max Pb \]

With Pb = probability of boundary

\(\sigma = \text{Scale factor… it will hunt us later} \)

Slide credit: B. Freeman and A. Torralba
Scale affects affinity

- Small σ: group only nearby points
- Large σ: group far-away points
Feature grouping by “relocalisation” of eigenvectors of the proximity matrix

Guy L. Scott
Robotics Research Group
Department of Engineering Science
University of Oxford

H. Christopher Longuet-Higgins
University of Sussex
Falmer
Brighton

Three points in feature space

\[W_{ij} = \exp\left(-\| z_i - z_j \|^2 / s^2 \right) \]

With an appropriate \(s \)

\[
\begin{array}{ccc}
A & B & C \\
A & 1.00 & 0.63 & 0.03 \\
B & 0.63 & 1.00 & 0.0 \\
C & 0.03 & 0.0 & 1.00 \\
\end{array}
\]

The eigenvectors of \(W \) are:

<table>
<thead>
<tr>
<th>Eigenvalues</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.71</td>
<td>-0.01</td>
<td>0.71</td>
</tr>
<tr>
<td>B</td>
<td>-0.71</td>
<td>-0.05</td>
<td>-0.71</td>
</tr>
<tr>
<td>C</td>
<td>-0.04</td>
<td>1.00</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

The first 2 eigenvectors group the points as desired...

Slide credit: B. Freeman and A. Torralba
Example eigenvector

Slide credit: B. Freeman and A. Torralba
Example eigenvector

Affinity matrix

points

eigenvector

Slide credit: B. Freeman and A. Torralba
Graph cut

- Set of edges whose removal makes a graph disconnected
- Cost of a cut: sum of weights of cut edges
- A graph cut gives us a segmentation
 - What is a “good” graph cut and how do we find one?
Segmentation methods

• Segmentation as clustering
 – K-means clustering
 – Mean-shift segmentation

• Graph-theoretic segmentation
 • Min cut
 • Normalized cuts
Minimum cut

A cut of a graph G is the set of edges S such that removal of S from G disconnects G.

Cut: sum of the weight of the cut edges:

$$\text{cut}(A,B) = \sum_{u \in A, v \in B} W(u,v),$$

with $A \cap B = \emptyset$.

Slide credit: B. Freeman and A. Torralba
Minimum cut

- We can do segmentation by finding the minimum cut in a graph
 - Efficient algorithms exist for doing this
Minimum cut

- We can do segmentation by finding the *minimum cut* in a graph
 - Efficient algorithms exist for doing this
Drawbacks of Minimum cut

- Weight of cut is directly proportional to the number of edges in the cut.

Slide credit: B. Freeman and A. Torralba

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Segmentation methods

• Segmentation as clustering
 – K-means clustering
 – Mean-shift segmentation

• Graph-theoretic segmentation
 • Min cut
 • Normalized cuts
Normalized cuts

Write graph as V, one cluster as A and the other as B

\[\text{Ncut}(A,B) = \frac{\text{cut}(A,B)}{\text{assoc}(A,V)} + \frac{\text{cut}(A,B)}{\text{assoc}(B,V)} \]

\(\text{cut}(A,B) \) is sum of weights with one end in A and one end in B

\[\text{cut}(A,B) = \sum_{u \in A, v \in B} W(u,v), \]

with \(A \cap B = \emptyset \)

\(\text{assoc}(A,V) \) is sum of all edges with one end in A.

\[\text{assoc}(A,B) = \sum_{u \in A, v \in B} W(u,v) \]

A and B not necessarily disjoint

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Slide credit: B. Freeman and A. Torralba
Normalized cut

- Let W be the adjacency matrix of the graph
- Let D be the diagonal matrix with diagonal entries $D(i, i) = \sum_j W(i, j)$
- Then the normalized cut cost can be written as
 \[
 \frac{y^T (D - W) y}{y^T D y}
 \]
 where y is an indicator vector whose value should be 1 in the ith position if the ith feature point belongs to A and a negative constant otherwise.

J. Shi and J. Malik. [Normalized cuts and image segmentation](https://www.cse.psu.edu/~shi/). PAMI 2000
Normalized cut

• Finding the exact minimum of the normalized cut cost is NP-complete, but if we relax y to take on arbitrary values, then we can minimize the relaxed cost by solving the generalized eigenvalue problem $(D - W)y = \lambda Dy$

• The solution y is given by the generalized eigenvector corresponding to the second smallest eigenvalue

• Intuitively, the ith entry of y can be viewed as a “soft” indication of the component membership of the ith feature
 – Can use 0 or median value of the entries as the splitting point (threshold), or find threshold that minimizes the Ncut cost

Normalized cut algorithm

1. Given an image or image sequence, set up a weighted graph $G = (V, E)$, and set the weight on the edge connecting two nodes being a measure of the similarity between the two nodes.

2. Solve $(D - W)x = \lambda Dx$ for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with second smallest eigenvalue to bipartition the graph.

4. Decide if the current partition should be sub-divided, and recursively repartition the segmented parts if necessary.

Slide credit: B. Freeman and A. Torralba
Global optimization

- In this formulation, the segmentation becomes a global process.
- Decisions about what is a boundary are not local (as in Canny edge detector)
Boundaries of image regions defined by a number of attributes

- Brightness/color
- Texture
- Motion
- Stereoscopic depth
- Familiar configuration
Example

\[w_{ij} = e^{-\frac{\|F(i) - F(j)\|_2^2}{\sigma_I}} \]

\[
\begin{cases}
 \frac{-\|X(i) - X(j)\|_2^2}{\sigma_X} & \text{if } \|X(i) - X(j)\|_2 < r \\
 0 & \text{otherwise}
\end{cases}
\]

Location

brightness

N pixels = ncols \times nrows

Slide credit: B. Freeman and A. Torralba
Figure 12: Subplot (1) plots the smallest eigenvectors of the generalized eigenvalue system (11). Subplot (2) - (9) shows the eigenvectors corresponding the 2nd smallest to the 9th smallest eigenvalues of the system. The eigenvectors are reshaped to be the size of the image.

Slide credit: B. Freeman and A. Torralba
Brightness Image Segmentation

A multiresolution implementation can be used to reduce this running time further on larger images. In our current experiments, with this implementation, the running time on a 300 × 400 image can be reduced to about 20 seconds on Intel Pentium 300MHz machines. Furthermore, the bottleneck of the computation, a sparse matrix-vector

Slide credit: B. Freeman and A. Torralba
Brightness Image Segmentation

Slide credit: B. Freeman and A. Torralba
Results on color segmentation

Slide credit: B. Freeman and A. Torralba
Example results
Results: Berkeley Segmentation Engine

http://www.cs.berkeley.edu/~fowlkes/BSE/

Slide credit: S. Lazebnik
Normalized cuts: Pro and con

• Pros
 – Generic framework, can be used with many different features and affinity formulations

• Cons
 – High storage requirement and time complexity
 – Bias towards partitioning into equal segments