BIL 717
Image Processing
Feb. 18, 2015

Introduction

Erkut Erdem
Hacettepe University
Computer Vision Lab (HUCVL)
Today

• About me
• About you
• Introduction to Image Processing
• Course outline and logistics
Today

• About me
• About you
• Introduction to Image Processing
• Course outline and logistics
About me

• Asst. Prof. Erkut Erdem
 http://web.cs.hacettepe.edu.tr/~erkut/

Hacettepe University
Faculty Member
2010-now

Ecole Nationale Supérieure des Télécommunications
Post-doctoral Researcher
2009-2010

Middle East Technical University
1997-2008
Ph.D., 2008
M.Sc., 2003
B.Sc., 2001

University of California Los Angeles
Visiting Researcher
About me

• Asst. Prof. Erkut Erdem
 http://web.cs.hacettepe.edu.tr/~erkut/

HACETTEPE UNIVERSITY
COMPUTER VISION LAB

http://vision.cs.hacettepe.edu.tr/
About my research

• My research centers on the areas of computer vision and machine learning.
• specifically interested in the role of context in visual processing.

• I try to incorporate different kinds of context (*spatial*, *temporal* and/or *cross-modal*) into all levels of visual processing from low to mid and high-level vision.
About my research

image smoothing

image colorization

visual saliency

object segmentation
Today

- About me
- About you
- Introduction to Image Processing
- Course outline and logistics
Introduce yourselves

• Who are you?
• What do you know about image processing?
• Why you want to take BIL717?
Today

• About me
• About you
• Introduction to Image Processing
• Course outline and logistics
What does it mean, to see?

• “The plain man’s answer (and Aristotle’s, too) would be, to know what is where by looking. In other words, vision is the process of discovering from images what is present in the world, and where it is.” David Marr, Vision, 1982

• Our brain is able to use an image as an input, and interpret it in terms of objects and scene structures.
What does Salvador Dali’s Study for the Dream Sequence in Spellbound (1945) say about our visual perception?
What does Paul Signac’s *Place des Lices* (1893) say about our visual perception?
Why does vision appear easy to humans?

- Our brains are specialized to do vision.
- Nearly half of the cortex in a human brain is devoted to doing vision (cf. motor control ~20-30%, language ~10-20%)

“Vision has evolved to convert the ill-posed problems into solvable ones by adding premises: assumptions about how the world we evolved in is, on average, put together”
Steven Pinker, How the Mind Works, 1997

- Gestalt Theory (Laws of Visual Perception), Max Wertheimer, 1912

Figures: Steven Pinker, How the Mind Works, 1997
Computer Vision

- “Vision is a process that produces from images of the external world a description that is useful to the viewer and not cluttered with irrelevant information” ~David Marr

- The goal of Computer Vision: To develop artificial machine vision systems that make inferences related to the scene being viewed through the images acquired with digital cameras.
Marr’s observation: Studying vision at three different levels

• Vision as an information processing task
 [David Marr, 1982]

• Three levels of understanding:
 1. Computational theory
 – What is computed? Why it is computed?
 2. Representation and Algorithm
 – How it is computed?
 – Input, Output, Transformation
 3. Physical Realization
 – Hardware
Visual Modules and the Information Flow

- Visual perception as a data-driven, bottom-up process (traditional view since D. Marr)
- Unidirectional information flow
- Simple low-level cues \(\rightarrow\) Complex abstract perceptual units
Vision modules can be categorized into three groups according to their functionality:

- **Low-level vision**: filtering out irrelevant image data
- **Mid-level vision**: grouping pixels or boundary fragments together
- **High-level vision**: complex cognitive processes
• Vision modules can be categorized into three groups according to their functionality:
 – Low-level vision: filtering out irrelevant image data
 – Mid-level vision: grouping pixels or boundary fragments together
 – High-level vision: complex cognitive processes
Fundamentals of Image Processing

- What is a digital image, how it is formed?
- How images are represented in computers?
- Why we process images?
- How we process images?
Image Formation

What is measured in an image location?

- brightness
- color

viewpoint
illumination conditions
local geometry
local material properties

Figures: Francis Crick, The Astonishing Hypothesis, 1995
Image Formation

- Discretization
 - in image space - sampling
 - In image brightness - quantization

Image Representation

- **Digital image:** 2D discrete function f
- **Pixel:** Smallest element of an image $f(x,y)$

Figure: M. J. Black
Image Representation

• Digital image: 2D discrete function f
• Pixel: Smallest element of an image f(x,y)

Figure: M. J. Black
Sample Problems and Techniques

- Edge Detection
- Image Denoising
- Image Smoothing
- Image Deblurring
- Image Segmentation
- Visual Saliency
- Semantic Segmentation

- PDEs
- Variational models
- MRFs
- Graph Theory
- Sparse Coding
Image Filtering

• Filtering out the irrelevant information

\[f(x) = u(x) + n(x) \]

\[
\downarrow \quad \downarrow \quad \downarrow \\
\text{observed} \quad \text{desired} \quad \text{irrelevant} \\
\text{image} \quad \text{image} \quad \text{data}
\]

• Image denoising, image sharpening, image smoothing, image deblurring, etc.
• Edge detection
Edge Detection

- Edges: abrupt changes in the intensity
 - Uniformity of intensity or color
- Edges to object boundaries
Image Filtering

• **Difficulty:** Some of the irrelevant image information have characteristics similar to those of important image features.
Image Smoothing - A Little Bit of History

- Gaussian Filtering / linear diffusion
 - the most widely used method
 \[\frac{\partial u}{\partial t} = \nabla \cdot (\nabla u) = \nabla^2 u \]

- mid 80’s – unified formulations
 - methods that combine smoothing and edge detection
 - Geman & Geman’84, Blake & Zisserman’87, Mumford & Shah’89, Perona & Malik’90
Image Denoising

- Images are corrupted with 70% salt-and-pepper noise

R. H. Chan, C.-W. Ho, and M. Nikolova, Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail-Preserving Regularization. IEEE TIP 2005
Non-local Means Denoising

Figure 1. Scheme of NL-means strategy. Similar pixel neighborhoods give a large weight, $w(p,q_1)$ and $w(p,q_2)$, while much different neighborhoods give a small weight $w(p,q_3)$.

Preserve fine image details and texture during denoising

A. Buades, B. Coll, J. M. Morel, A non-local algorithm for image denoising, CVPR, 2005
Context-Guided Filtering

• Use local image context to steer filtering

E. Erdem and S. Tari, Mumford-Shah Regularizer with Contextual Feedback, JMIV, 2009
Image Smoothing

Image Smoothing

Image Deblurring

• Remove blur and restore a sharp image

from a given blurred image

find its latent sharp image

Slide credit: Lee and Cho
Image Deblurring

• Remove blur and restore a sharp image

Input blurred image

Levin et al. CVPR 2010
Visual Saliency

• The problem of predicting where people look at images

The squares shows where the observers looked in eye tracking experiments

Visual Saliency

• The problem of predicting where people look at images

Image Retargetting

- automatically resize an image to arbitrary aspect ratios while preserving important image features

How we define the importance?

S. Avidan and A. Shamir, Seam Carving for Content-Aware Image Resizing, SIGGRAPH, 2007
Image retargeting by Seam Carving with different importance maps

Fig. S.6: Some example results from the ReTargetMe data set. [Figure 5]
Sparse Coding

- The problem of finding a small number of representative atoms from a dictionary which when combined with right weights represent a given signal.

\[y = Lx + e \]
Low-Rank Matrix Approximations

D \rightarrow \text{Low-rank Texture } A \rightarrow \text{Sparse Corruptions } E$

Credit: Yi Ma
Image Inpainting

- Reconstructing lost or deteriorated parts of images

What do these examples demonstrate?
Image Segmentation

• Partition an image into meaningful regions that are likely to correspond to objects exist in the image

Figures: A. Erdem
Image Segmentation

- Boundary-based segmentation
- Region-based segmentation
- Unified formulations
Snakes

- Curve Evolution - parametric curve formulation

Fig. 3. Two edge snakes on a pear and potato. Upper-left: The user has pulled one of the snakes away from the edge of the pear. Others: After the user lets go, the snake snaps back to the edge of the pear.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Contour Models, IJCV, 1988
Active Contours Without Edges

- Curve Evolution – a level-set based curve formulation

Normalized Cuts

- A graph-theoretic formulation for segmentation
Normalized Cuts
From contours to regions

- **State-of-the-art**: gPb-owt-ucm segmentation algorithm

From contours to regions

- **State-of-the-art:** gPb-owt-ucm segmentation algorithm

Prior-Shape Guided Segmentation

• Incorporate prior shape information into the segmentation process

E. Erdem, S. Tari, and L. Vese, Segmentation Using The Edge Strength Function as a Shape Prior within a Local Deformation Model, ICIP 2009
Graphical Models in Vision

4-connected; pairwise MRF

E(x) = \sum_{i,j \in N_4} \theta_{ij}(x_i,x_j)

Order 2

Higher(8)-connected; pairwise MRF

E(x) = \sum_{i,j \in N_8} \theta_{ij}(x_i,x_j)

Order 2

MRF with global variables

E(x) = \sum_{i,j \in N_8} \theta_{ij}(x_i,x_j)

Order 2

E(x) = \sum_{i,j \in N_4} \theta_{ij}(x_i,x_j)

+ \theta(x_1,\ldots,x_n)

Order n
Semantic Segmentation

[TextonBoost; Shotton et al, ‘06]
Semantic Segmentation

- The problem of joint recognition and segmentation
Top-down Saliency

- Task-oriented models (e.g. searching for a target object from a specific category)

A. Kocak et al., Top down saliency estimation via superpixel-based discriminative dictionaries, BMVC 2014
Top-down Saliency

• Task-oriented models (e.g. searching for a target object from a specific category)

A. Kocak et al., Top down saliency estimation via superpixel-based discriminative dictionaries, BMVC 2014
Top-down Saliency

- Task-oriented models (e.g. searching for a target object from a specific category)

A. Kocak et al., Top down saliency estimation via superpixel-based discriminative dictionaries, BMVC 2014
Today

• About me
• About you
• Introduction to Image Processing
• Course outline and logistics
Logistics

• Asst. Prof. Erkut ERDEM
• erkut@cs.hacettepe.edu.tr
• Office: 114
• Tel: 297 7500 / 149

• Lectures: Wednesday, 13:00-15:50
• Office Hour: By appointment.
About BIL717

• This course provides a comprehensive overview of fundamental topics in image processing for graduate students.

• The goal of this course is to provide a deeper understanding of the state-of-the-art methods in image processing literature and to study their connections.

• The course makes the students gain knowledge and skills in key topics and provides them the ability to employ them in their advanced-level studies.
Communication

- The course webpage will be updated regularly throughout the semester with lecture notes, programming and reading assignments and important deadlines.

 http://web.cs.hacettepe.edu.tr/~erkut/bil717.s15

- All other communications will be carried out through Piazza. Please enroll it by following the link

 https://piazza.com/hacettepe.edu.tr/spring2015/bil717
Prerequisites

• Programming skills (C/C++, Matlab)
• Good math background (Calculus, Linear Algebra, Statistical Methods)
• A prior, introductory-level course in image processing is recommended.
Reference Books

Reading Material

• Lecture notes and handouts
• Papers and journal articles
Related Conferences

- IEEE International Conference on Computer Vision (ICCV)
- European Conference on Computer Vision (ECCV)
- IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
- IEEE Winter Conference on Applications of Computer Vision (WACV)
- British Machine Vision Conference (BMVC)
- ACM SIGGRAPH
- ACM SIGGRAPH Asia
- Advances in Neural Information Processing Systems (NIPS)
- IEEE International Conference on Pattern Recognition (ICPR)
- IEEE International Conference on Image Processing (ICIP)
Related Journals

• IEEE Transactions on Image Processing (IEEE TIP)
• IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAMI)
• ACM Transactions on Graphics (TOG)
• International Journal of Computer Vision (IJCV)
• Computer Vision and Image Understanding (CVIU)
• Image and Vision Computing (IMAVIS)
• Pattern Recognition (PR)
Grading Policy

- 20% Quizzes
- 20% Programming Assignments
- 20% Paper presentations/Class participation
- 40% Project and final term paper
Paper presentations and Quizzes

• The students will be required to present at least one research paper either of their choice or from the suggested reading list.

• These papers should be read by every student as the quizzes about the presented papers will be given on the weeks of the presentations.

• The schedule for the presentations will be finalized on 4th of March.
Programming Assignments

• There will be three assignments related to the topics covered in the class.
• Each assignment will involve implementing an algorithm, carrying out a set of experiments to evaluate it, and writing up a report on the experimental results.
• All assignments have to be done individually, unless stated otherwise.
Project

• The aim of the project is to give the students some experience on conducting research.
• Students should work individually.

• This project may involve
 – design of a novel approach and its experimental analysis,
 – an extension to a recent study (published after 2009) of non-trivial complexity and its experimental analysis,
 – an in-depth empirical evaluation and analysis of two or more related methods not covered in the class.
Project – Important Dates

- Project proposals: 11th of March
- Project progress reports: 15th of April
- Project progress presentations: 22nd of April
- Project presentations: will be announced!
- Project final reports: 3rd of June

- Late submissions will be penalized!
Tentative Outline

• (1 week) Overview of Image Processing
• (1 week) Linear Filtering, Edge Detection,
• (1 week) Nonlinear Filtering
• (1 week) Variational Segmentation Models
• (2 weeks) Modern Image Filtering
• (1 week) Image Deblurring
• (1 week) Sparse Coding
• (1 week) Image Segmentation
Tentative Outline

• (1 week) Graphical Models
• (1 week) Semantic Segmentation
• (1 week) Visual Saliency
• (1 week) What we’ve done, Where we’re going