Graphical Models

Erkut Erdem
Hacettepe University
Computer Vision Lab (HUCVL)

Sample Vision Tasks

- **Image Denoising**: Given a noisy image \(I(x, y) \), where some measurements may be missing, recover the original image \(I(x, y) \), which is typically assumed to be smooth.

- **Image Segmentation**: Assign labels to pixels in an image, e.g., to segment foreground from background.

- Stereo matching
- Surface Reconstruction
- ...

Energy Minimization

- Many vision tasks are naturally posed as energy minimization problems on a rectangular grid of pixels:

 \[
 E(u) = E_{\text{data}}(u) + E_{\text{smoothness}}(u)
 \]

- The data term \(E_{\text{data}}(u) \) expresses our goal that the optimal model \(u \) be consistent with the measurements.

- The smoothness energy \(E_{\text{smoothness}}(u) \) is derived from our prior knowledge about plausible solutions.

- Recall Mumford-Shah functional

Smoothing out cluster assignments

- Assigning a cluster label per pixel may yield outliers:

 - How to ensure they are spatially smooth?

D. J. Fleet

K. Grauman
Solution

Alternate Text:

- Encode dependencies between pixels
- Normalize constant
- Cost to assign a label to each pixel
- Cost to assign a pair of labels to connected pixels

\[
P(\text{foreground} | \text{image}) = \frac{1}{Z} \prod_{i=1}^{N} f_i(y_i; \theta, \text{data}) \prod_{i,j \in \text{edges}} f_{ij}(y_i, y_j; \theta, \text{data})
\]

Markov Random Fields

- Node \(y_i \): pixel label
- Edge: constrained pairs
- Unary potential
 - 0: \(-\log P(y_i = 0; \text{data})\)
 - 1: \(-\log P(y_i = 1; \text{data})\)
- Pairwise Potential
 - 0 1
 - 0 0 K
 - 1 K 0

Writing Likelihood as an “Energy”

\[
P(y; \theta, \text{data}) = \frac{1}{Z} \prod_{i=1}^{N} p_1(y_i; \theta, \text{data}) \prod_{i,j \in \text{edges}} p_2(y_i, y_j; \theta, \text{data})
\]

\[
\text{Energy}(y; \theta, \text{data}) = \sum_{i} \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data})
\]

Example: “label smoothing” grid

\[
\text{Energy}(y; \theta, \text{data}) = \sum_{i} \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data})
\]
Binary MRF Example

- Consider the following energy function for two binary random variables, y_1 & y_2.

$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)$

\[
\begin{array}{cccc}
0 & 5 & 0 & 1 \\
1 & 2 & 1 & 3 \\
\end{array}
\]

$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)$

$= 5\bar{y}_1 + 2y_1$

$+ \bar{y}_2 + 3y_2$

$+ 3\bar{y}_1y_2 + 4y_1\bar{y}_2$

where $\bar{y}_1 = 1 - y_1$ and $\bar{y}_2 = 1 - y_2$.

Image Denoising

- Given a noisy image v, perhaps with missing pixels, recover an image u that is both smooth and close to v.

- Classical techniques:
 - Linear filtering (e.g. Gaussian filtering)
 - Median filtering
 - Wiener filtering

- Modern techniques:
 - PDE-based techniques
 - Non-local methods
 - Wavelet techniques
 - MRF-based techniques

Denoising/smoothing techniques that preserve edges in images
Denoising as a Probabilistic Inference

- Perform maximum a posteriori (MAP) estimation by maximizing the a posteriori distribution:
 \[p(\text{true image} | \text{noisy image}) = p(u | v) \]
- By Bayes theorem:
 \[p(u | v) = \frac{p(v | u)p(u)}{p(v)} \]
 - If we take logarithm:
 \[\log p(u | v) = \log p(v | u) + \log p(u) - \log p(v) \]
- MAP estimation corresponds to minimizing the encoding cost
 \[E(u) = -\log p(v | u) - \log p(u) \]

Modeling the Likelihood

- We assume that the noise at one pixel is independent of the others.
 \[p(v | u) = \prod_{i,j} p(v_{ij} | u_{ij}) \]
- We assume that the noise at each pixel is additive and Gaussian distributed:
 \[p(v_{ij} | u_{ij}) = \mathcal{N}(v_{ij} - u_{ij}) \]
- Thus, we can write the likelihood:
 \[p(v | u) = \prod_{i,j} \mathcal{N}(v_{ij} - u_{ij}) \]

Modeling the Prior

- How do we model the prior distribution of true images?
- What does that even mean?
 - We want the prior to describe how probable it is (a-priori) to have a particular true image among the set of all possible images.

Natural Images

- What distinguishes “natural” images from “fake” ones?

S. Roth
Simple Observation

- Nearby pixels often have a similar intensity:
- But sometimes there are large intensity changes.

Image Denoising

- The energy function is given by
 \[E(u) = \sum_{i \in V} D(u_i) + \sum_{(i,j) \in E} V(u_i, u_j) \]
- Unary (clique) potentials \(D \) stem from the measurement model, penalizing the discrepancy between the data \(v \) and the solution \(u \).
- Interaction (clique) potentials \(V \) provide a definition of smoothness, penalizing changes in \(u \) between pixels and their neighbors.

MRF-based Image Denoising

- Let each pixel be a node in a graph \(G = (V, E) \) with 4-connected neighborhoods.

Denoising as Inference

- **Goal**: Find the image \(u \) that minimizes \(E(u) \)
- Several options for MAP estimation process:
 - Gradient techniques
 - Gibbs sampling
 - Simulated annealing
 - Belief propagation
 - Graph cut
 - …
Quadratic Potentials in 1D

- Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

 \[
 u = (u_1, ..., u_N), \quad v = (v_1, ..., v_N), \quad \text{and} \quad e = (e_1, ..., e_N).
 \]

- With Gaussian IID noise, the negative log likelihood provides a quadratic data term. If we let the smoothness term be quadratic as well, then up to a constant, the log posterior is

 \[
 E(u) = \sum_{n=1}^{N} (u_n - v_n)^2 + \lambda \sum_{n=1}^{N-1} (u_{n+1} - u_n)^2
 \]

D. J. Fleet

Missing Measurements

- Suppose our measurements exist at a subset of positions, denoted P. Then we can write the energy function as

 \[
 E(u) = \sum_{n \in P} (u_n - v_n)^2 + \lambda \sum_{n=1}^{N-1} (u_{n+1} - u_n)^2
 \]

- At locations n where no measurement exists, we have:

 \[
 -u_{n-1} + 2u_n - u_{n+1} = 0
 \]

- The Jacobi update equation in this case becomes:

 \[
 u_n^{(t+1)} = \begin{cases}
 \frac{1}{1-2\lambda} (v_n + \lambda u_{n-1}^{(t)} + \lambda u_{n+1}^{(t)}) & \text{for } n \in P, \\
 \frac{1}{2} (u_{n-1}^{(t)} + u_{n+1}^{(t)}) & \text{otherwise}
 \end{cases}
 \]

D. J. Fleet

Quadratic Potentials in 1D

- To find the optimal u^*, we take derivatives of $E(u)$ with respect to u_n:

 \[
 \frac{\partial E(u)}{\partial u_n} = 2(u_n - v_n) + 2\lambda (-u_{n-1} + 2u_n - u_{n+1})
 \]

 and therefore the necessary condition for the critical point is

 \[
 u_n + \lambda (-u_{n-1} + 2u_n - u_{n+1}) = v_n
 \]

- For endpoints we obtain different equations:

 \[
 u_1 + \lambda (u_1 - u_2) = v_1 \quad \text{N linear equations in the N unknowns}
 \]

D. J. Fleet

2D Image Smoothing

- For 2D images, the analogous energy we want to minimize becomes:

 \[
 E(u) = \sum_{n,m \in P} (u[n,m] - v[n,m])^2 \\
 + \lambda \sum_{n,m} (u[n+1,m] - u[n,m])^2 + (u[n+1,m] - u[n,m])^2
 \]

 where P is a subset of pixels where the measurements v are available.

 Looks familiar??

D. J. Fleet
Robust Potentials

- Quadratic potentials are not robust to outliers and hence they over-smooth edges. These effects will propagate throughout the graph.
- Instead of quadratic potentials, we could use a robust error function \(\rho \):

\[
E(u) = \sum_{n=1}^{N} \rho(u_n - v_n, \sigma_d) + \lambda \sum_{n=1}^{N-1} \rho(u_{n+1} - u_n, \sigma_s)
\]

where \(\sigma_d \) and \(\sigma_s \) are scale parameters.

D. J. Fleet

Robust Image Smoothing

- **Example:** the Lorentzian error function

\[
\rho(z, \sigma) = \log \left(1 + \frac{1}{2} \left(\frac{z}{\sigma} \right)^2 \right), \quad \rho'(z, \sigma) = \frac{2z}{2\sigma^2 + z^2}.
\]

D. J. Fleet

Example: the Lorentzian error function

\[
\rho(z, \sigma) = \log \left(1 + \frac{1}{2} \left(\frac{z}{\sigma} \right)^2 \right), \quad \rho'(z, \sigma) = \frac{2z}{2\sigma^2 + z^2}.
\]

D. J. Fleet

Robust POTENTIALS

- **Example:** the Lorentzian error function

Smoothing a noisy step edge

D. J. Fleet

Robust POTENTIALS

- **Example:** the Lorentzian error function

Smoothing a noisy step edge

D. J. Fleet

Robust POTENTIALS

- **Example:** the Lorentzian error function

Smoothing a noisy step edge

D. J. Fleet
Robust Image Smoothing

• A Lorentzian smoothness potential encourages an approximately piecewise constant result:

We can use the Lorentzian error function to detect spatial outliers.

Problem:
• Computational expense, local minima, and sensitivity to the initial guess.

Image Segmentation

• Given an image, partition it into meaningful regions or segments.
• Approaches
 – Variational segmentation models
 – Clustering-based approaches (K-means, Mean Shift)
 – Graph-theoretic formulations
• MRF-based techniques

Markov Random Fields

• Example: “label smoothing” grid

Energy(y;\theta,\text{data}) = \sum_{i} \psi_1(y_i;\theta,\text{data}) + \sum_{i,j,\text{edges}} \psi_2(y_i,y_j;\theta,\text{data})

Solving MRFs with graph cuts

Main idea:
• Construct a graph such that every st-cut corresponds to a joint assignment to the variables y
 • The cost of the cut should be equal to the energy of the assignment, $E(y;\text{data})$.
 • The minimum-cut then corresponds to the minimum energy assignment, $y^* = \arg\min_y E(y;\text{data})$.

* Requires non-negative energies
Solving MRFs with graph cuts

Energy(y; \theta, data) = \sum_i \psi_1(y_i; \theta, data) + \sum_{i,j \text{edges}} \psi_2(y_i, y_j; \theta, data)

The st-Mincut Problem

Graph (V, E, C)
Vertices V = \{v_1, v_2 \ldots v_n\}
Edges E = \{(v_i, v_j) \ldots\}
Costs C = \{c_{i,j} \ldots\}

What is a st-cut?
The \textit{st}-MinCut Problem

What is a \textit{st}-cut?

An \textit{st}-cut \((S,T)\) divides the nodes between source and sink.

What is the cost of a \textit{st}-cut?

Sum of cost of all edges going from \(S\) to \(T\)

What is the \textit{st}-mincut?

\textit{st}-cut with the minimum cost

\[5 + 1 + 9 = 15 \]

So how does this work?

Construct a graph such that:
1. Any \textit{st}-cut corresponds to an assignment of \(x\)
2. The cost of the cut is equal to the energy of \(x\): \(E(x)\)

\[E(x) = \sum_i \theta_i(x_i) + \sum_{ij} \theta_{ij}(x_i,x_j) \]

For all \(ij\)

\[\theta_{ij}(0,1) + \theta_{ij}(1,0) \geq \theta_{ij}(0,0) + \theta_{ij}(1,1) \]

Equivalent (transformable)

\[E(x) = \sum_i c_i x_i + \sum_{ij} c_{ij} x_i(1-x_j) \]

\(c_{ij} \geq 0\)
Graph Construction

\[E(a_1, a_2) \]

\[E(a_1, a_2) = 2a_1 + 5a_2 \]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1a_2 \]

Sink (1)
Source (0)

Cost of cut = 11

\[\bar{a}_1 = 1 \quad a_2 = 1 \]

\[E(1,1) = 11 \]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5a_1 + 9a_2 + 4a_2 + 2a_1a_2 + \bar{a}_1\bar{a}_2 \]

Sink (1)

Source (0)

\[E(1,0) = 8 \]

Maxflow Algorithms

Flow = 0

Augmenting Path Based Algorithms

Min-cut/Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut.

Assuming non-negative capacity

How to compute the st-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Maxflow Algorithms

Flow = 0

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found
Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found
Maxflow Algorithms

Flow = 8

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 8

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow and Reparametrization

\[E(a_1, a_2) = 2a_1 + 5a_1 + 9a_2 + 4a_2 + 2a_1a_2 + a_1a_2 \]

Flow and Reparametrization

\[E(a_1, a_2) = 2a_1 + 5a_1 + 9a_2 + 4a_2 + 2a_1a_2 + a_1a_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 2 + 3\bar{a}_1 + 9a_2 + 4a_2 + 2a_1a_2 + \bar{a}_1a_2 \]

\[2a_1 + 5\bar{a}_1 = 2(a_1 + \bar{a}_1) + 3\bar{a}_1 = 2 + 3\bar{a}_1 \]

\[9a_2 + 4\bar{a}_2 = 4(a_2 + \bar{a}_2) + 5\bar{a}_2 = 4 + 5\bar{a}_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 6 + 3a_1 + 5a_2 + 2a_1a_2 \]

Flow and Reparametrization

\[E(a_1, a_2) = 8 + a_1 + 3a_2 + 3a_1a_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2 \]

Residual Graph (positive coefficients)

Total Flow bound on the optimal solution

Tight Bound >> Inference of the optimal solution becomes trivial

\[E(1, 0) = 8 \]

st-mincut cost = 8

\[a_1 = 1 \quad a_2 = 0 \]

\[E(1, 0) = 8 \]

Maxflow in Computer Vision

- Specialized algorithms for vision problems
 - Grid graphs
 - Low connectivity (m \(\sim\) O(n))

- Dual search tree augmenting path algorithm
 [Boykov and Kolmogorov PAMI 2004]
 - Finds approximate shortest augmenting paths efficiently
 - High worst-case time complexity
 - Empirically outperforms other algorithms on vision problems

Code for Image Segmentation

\[E(x) = \sum_i c_i x_i + \sum_{ij} d_{ij} |x_i - x_j| \]

\[E: \{0,1\}^n \rightarrow \mathbb{R} \]

\[0 \rightarrow fg \]

\[1 \rightarrow bg \]

\[n = \text{number of pixels} \]

\[x = \arg \min_x E(x) \]

Global Minimum (\(x^*\))

How to minimize \(E(x)\)?
Graph *g;
For all pixels p
 /* Add a node to the graph */
 nodeID(p) = g->add_node();
 /* Set cost of terminal edges */
 set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p, q
 add_weights(nodeID(p), nodeID(q), cost(p, q));
end

\(\text{label}_p = g->\text{is_connected_to_source}(\text{nodeID}(p)); \)
// is the label of pixel p (0 or 1)
Random Fields in Vision

4-connected; pairwise MRF

E(x) = \sum_{i,j \in \mathcal{N}_4} \theta_{ij}(x_i, x_j)

Operator 2

Higher-order MRF

E(x) = \sum_{i,j \in \mathcal{N}_8} \theta_{ij}(x_i, x_j) + \theta(x_1, \ldots, x_n)

Order 2

Order n

MRF with global variables

User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.

GrabCut segmentation

Most systems with global variables work like that e.g. [ObjCut Kumar et. al. '05, PoseCut Bray et al. '06, LayoutCRF Winn et al. '06]
GrabCut: Iterated Graph Cuts

1. Define graph
 - usually 4-connected or 8-connected
2. Define unary potentials
 - Color histogram or mixture of Gaussians for background and foreground
 \[\text{unary _ potential}(x) = -\log \left(\frac{P(c(x); \theta_{\text{foreground}})}{P(c(x); \theta_{\text{background}})} \right) \]
3. Define pairwise potentials
 - \[\text{edge _ potential}(x, y) = k_1 + k_2 \exp \left(-\frac{|c(x) - c(y)|}{2\sigma^2} \right) \]
4. Apply graph cuts
5. Return to 2, using current labels to compute foreground, background models

Colour Model

- **Input**
 - Background
 - Foreground & Background

- **Iterated graph cut**
 - **R**
 - **G**

Optimizing over \(\theta \)'s help

- **Input**
- no iteration [Boykov&Jolly ’01]
- after convergence [GrabCut ’04]

- **Input**
- after convergence [GrabCut ’04]
What is easy or hard about these cases for graphcut-based segmentation?

More difficult Examples

Easier examples

Semantic Segmentation

Joint Object recognition & segmentation

\[E(x,ω) = \sum_i \theta_i(ω, x_i) + \sum_i \theta_i(x_i) + \sum_i \theta_i(x_i) + \sum_i \theta_i(x_i,x_j) \]

\(x_i \in \{1,..,K\} \) for K object classes

Location

Class (boosted textons)

[TextonBoost; Shotton et al., '06]

C. Rother
Semantic Segmentation
Joint Object recognition & segmentation

(a) 69.6%
Class + location
(b) 70.3%
+ edges
(c) 72.2%
+ color

[TextonBoost; Shotton et al., '06]

Random Fields in Vision

4-connected; pairwise MRF
\[
E(x) = \sum_{i,j \in N_4} \theta_{ij}(x_i, x_j)
\]
Order 2

higher(8)-connected; pairwise MRF
\[
E(x) = \sum_{i,j \in N_8} \theta_{ij}(x_i, x_j)
\]
Order 2

MRF with global variables
\[
E(x) = \sum_{i \in N_4} \theta_i(x_i)
\]
Order 2

Higher-order MRF
\[
E(x) = \sum_{i \in N_4} \theta_i(x_i) + \theta(x_1, \ldots, x_n)
\]
Order n

[TextonBoost; Shotton et al., '06]

Why Higher-order Functions?

In general \(\theta(x_1, x_2, x_3) \neq \theta(x_1, x_2) + \theta(x_1, x_3) + \theta(x_2, x_3) \)

Reasons for higher-order RFs:

1. Even better image(texture) models:
 - Field-of Expert [FoE, Roth et al., '05]
 - Curvature [Woodford et al., '08]

2. Use **global** Priors:
 - Connectivity [Vicente et al., '08, Nowozin et al., '09]
 - Better encoding label statistics [Woodford et al., '09]
 - Convert global variables to global factors [Vicente et al., '09]
Modeling the Potentials

• Could the potentials (image priors) be learned from natural images?

Field of Experts (FoE), S. Roth & M. J. Black, CVPR 2005

De-noising with Field-of-Experts
[Roth and Black ’05, Ishikawa ’09]

\[
E(X) = \sum_i (z_i - x_i)^2 / 2\sigma^2 + \sum_c \sum_k \alpha_c (1 + 0.5(J_k x_i)^2)
\]

 Unary likelihood FoE prior

\(x_c\) set of nxn patches (here 2x2)
\(J_k\) set of filters:

non-convex optimization problem

How to handle continuous labels in discrete MRF?

From [Ishikawa PAMI ’09, Roth et al ’05]

C. Rother

De-noising with Field-of-Experts
[Roth and Black ‘05, Ishikawa ‘09]

original image noisy image, \(\sigma=20\) denoised using gradient ascent

PSNR 22.49dB SSIM 0.528

PSNR 27.60dB SSIM 0.810

• Very sharp discontinuities. No blurring across boundaries.
• Noise is removed quite well nonetheless.

S. Roth