BIL 717
Image Processing
Apr. 29, 2015

Graphical Models

Erkut Erdem
Hacettepe University
Computer Vision Lab (HUCVL)
Energy Minimization

- Many vision tasks are naturally posed as energy minimization problems on a rectangular grid of pixels:

\[E(u) = E_{\text{data}}(u) + E_{\text{smoothness}}(u) \]

- The data term \(E_{\text{data}}(u) \) expresses our goal that the optimal model \(u \) be consistent with the measurements.
- The smoothness energy \(E_{\text{smoothness}}(u) \) is derived from our prior knowledge about plausible solutions.

- Recall Mumford-Shah functional
Sample Vision Tasks

- **Image Denoising:** Given a noisy image $\hat{I}(x,y)$, where some measurements may be missing, recover the original image $I(x, y)$, which is typically assumed to be smooth.

- **Image Segmentation:** Assign labels to pixels in an image, e.g., to segment foreground from background.

- Stereo matching
- Surface Reconstruction
- …
Smoothing out cluster assignments

- Assigning a cluster label per pixel may yield outliers:

How to ensure they are spatially smooth?

K. Grauman
Solution

Encode dependencies between pixels

\[P(\text{foreground} \mid \text{image}) \]

\[P(y; \theta, \text{data}) = \frac{1}{Z} \prod_{i=1..N} f_1(y_i; \theta, \text{data}) \prod_{i,j \in \text{edges}} f_2(y_i, y_j; \theta, \text{data}) \]

Normalizing constant

Labels to be predicted

Individual predictions

Pairwise predictions
Writing Likelihood as an “Energy”

\[
P(y; \theta, data) = \frac{1}{Z} \prod_{i=1..N} p_1(y_i; \theta, data) \prod_{i,j \in \text{edges}} p_2(y_i, y_j; \theta, data)
\]

\[
\text{Energy}(y; \theta, data) = \sum_{i} \psi_1(y_i; \theta, data) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, data)
\]

“Cost” of assignment \(y_i\)

“Cost” of pairwise assignment \(y_i, y_j\)
Markov Random Fields

\[\begin{align*}
\sum & \psi_1(y_i; \theta, data) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, data) \\
\end{align*} \]

Node \(y_i \): pixel label

Edge: constrained pairs

Cost to assign a label to each pixel

Cost to assign a pair of labels to connected pixels

Energy\((y; \theta, data) \) = \(\sum_i \psi_1(y_i; \theta, data) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, data) \)

D. Hoiem
Markov Random Fields

- Example: “label smoothing” grid

\[
\text{Energy}(y; \theta, \text{data}) = \sum_i \psi_1 (y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2 (y_i, y_j; \theta, \text{data})
\]

Unary potential
- 0: -\log P(y_i = 0; \text{data})
- 1: -\log P(y_i = 1; \text{data})

Pairwise Potential
\[
\begin{array}{ccc}
0 & 1 \\
0 & 0 & K \\
1 & K & 0
\end{array}
\]
Binary MRF Example

- Consider the following energy function for two binary random variables, \(y_1 \) & \(y_2 \).

\[
E (y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)
\]
Binary MRF Example

- Consider the following energy function for two binary random variables, y_1 & y_2.

\[
\begin{array}{ccc}
0 & 1 \\
1 & 2 & 1 & 3 & 1 & 4 & 0
\end{array}
\]

\[
E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)
\]
\[
= 5\bar{y}_1 + 2y_1
\]
\[
+ \bar{y}_2 + 3y_2
\]
\[
+ 3\bar{y}_1y_2 + 4y_1\bar{y}_2
\]

where $\bar{y}_1 = 1 - y_1$ and $\bar{y}_2 = 1 - y_2$.

S. Gould
Binary MRF Example

• Consider the following energy function for two binary random variables, \(y_1 \) & \(y_2 \).

\[
E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)
= 5\bar{y}_1 + 2y_1 + \bar{y}_2 + 3y_2 + 3\bar{y}_1y_2 + 4y_1\bar{y}_2
\]

where \(\bar{y}_1 = 1 - y_1 \) and \(\bar{y}_2 = 1 - y_2 \).
Image Denoising

- Given a noisy image \(v \), perhaps with missing pixels, recover an image \(u \) that is both smooth and close to \(v \).

- Classical techniques:
 - Linear filtering (e.g. Gaussian filtering)
 - Median filtering
 - Wiener filtering

- Modern techniques
 - PDE-based techniques
 - Non-local methods
 - Wavelet techniques
 - MRF-based techniques

Denoising/smoothing techniques that preserve edges in images
Denoising as a Probabilistic Inference

• Perform maximum a posteriori (MAP) estimation by maximizing the \(a \) posteriori distribution:

\[
p(\text{true image} \mid \text{noisy image}) = p(u \mid v)
\]

• By Bayes theorem:

\[
p(u \mid v) = \frac{p(v \mid u)p(u)}{p(v)}
\]

• If we take logarithm:

\[
\log p(u \mid v) = \log p(v \mid u) + \log p(u) - \log p(v)
\]

• MAP estimation corresponds to minimizing the encoding cost

\[
E(u) = -\log p(v \mid u) - \log p(u)
\]
Modeling the Likelihood

- We assume that the noise at one pixel is independent of the others.
 \[p(v \mid u) = \prod_{i,j} p(v_{ij} \mid u_{ij}) \]

- We assume that the noise at each pixel is additive and Gaussian distributed:
 \[p(v_{ij} \mid u_{ij}) = G_\sigma(v_{ij} - u_{ij}) \]

- Thus, we can write the likelihood:
 \[p(v \mid u) = \prod_{i,j} G_\sigma(v_{ij} - u_{ij}) \]
Modeling the Prior

- How do we model the prior distribution of true images?
- What does that even mean?
 - We want the prior to describe how probable it is (a-priori) to have a particular true image among the set of all possible images.

(probable) (improbable)
Natural Images

- What distinguishes “natural” images from “fake” ones?
Simple Observation

• Nearby pixels often have a similar intensity:

• But sometimes there are large intensity changes.
MRF-based Image Denoising

• Let each pixel be a node in a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with 4-connected neighborhoods.

\[
E(u) = \sum_{i \in \mathcal{V}} D(u_i) + \sum_{(i,j) \in \mathcal{E}} V(u_i, u_j)
\]

• Unary (clique) potentials D stem from the measurement model, penalizing the discrepancy between the data v and the solution u. This models assumes conditional independence of observations.

• Interaction (clique) potentials V provide a definition of smoothness, penalizing changes in u between pixels and their neighbors.

Goal: Find the image u that minimizes $E(u)$ (and thereby maximizes $p(u|v)$ since, up to a constant, E is equal to the negative log posterior).
Image Denoising

- The energy function is given by
 \[E(u) = \sum_{i \in V} D(u_i) + \sum_{(i,j) \in E} V(u_i, u_j) \]

- Unary (clique) potentials \(D \) stem from the measurement model, penalizing the discrepancy between the data \(v \) and the solution \(u \).

- Interaction (clique) potentials \(V \) provide a definition of smoothness, penalizing changes in \(u \) between pixels and their neighbors.
Denoising as Inference

• **Goal**: Find the image u that minimizes $E(u)$

• Several options for MAP estimation process:
 - **Gradient techniques**
 - Gibbs sampling
 - Simulated annealing
 - Belief propagation
 - Graph cut
 - ...

Consider image restoration: Given a noisy image v, perhaps with missing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph $G = (V, E)$, with 4-connected neighborhoods. The maximal cliques are pairs of nodes. Accordingly, the energy function is given by

$$E(u) = \sum_{i \in V} D(u_i) + \sum_{(i,j) \in E} V(u_i, u_j)$$

- **Unary (clique) potentials** D stem from the measurement model, penalizing the discrepancy between the data v and the solution u. This models assumes conditional independence of observations. The unary potentials are pixel log likelihoods.

- **Interaction (clique) potentials** V provide a definition of smoothness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes $E(u)$ (and thereby maximizes $p(u | v)$ since, up to a constant, E is equal to the negative log posterior).
Quadratic Potentials in 1D

• Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

 where $u = (u_1, ..., u_N)$, $v = (v_1, ..., v_N)$, and $e = (e_1, ..., e_N)$.

• With Gaussian IID noise, the negative log likelihood provides a quadratic data term. If we let the smoothness term be quadratic as well, then up to a constant, the log posterior is

$$E(u) = \sum_{n=1}^{N} (u_n - v_n)^2 + \lambda \sum_{n=1}^{N-1} (u_{n+1} - u_n)^2$$
Quadratic Potentials in 1D

• To find the optimal \(u^* \), we take derivatives of \(E(u) \) with respect to \(u_n \):

\[
\frac{\partial E(u)}{\partial u_n} = 2(u_n - v_n) + 2\lambda (-u_{n-1} + 2u_n - u_{n+1})
\]

and therefore the necessary condition for the critical point is

\[
u_n + \lambda (-u_{n-1} + 2u_n - u_{n+1}) = v_n
\]

• For endpoints we obtain different equations:

\[
\begin{align*}
u_1 + \lambda (u_1 - u_2) &= v_1 \\
u_N + \lambda (u_N - u_{N-1}) &= v_N
\end{align*}
\]

N linear equations in the N unknowns

D. J. Fleet
Missing Measurements

• Suppose our measurements exist at a subset of positions, denoted P. Then we can write the energy function as

$$E(u) = \sum_{n \in P} (u_n - v_n)^2 + \lambda \sum_{\text{all } n} (u_{n+1} - u_n)^2$$

• At locations n where no measurement exists, we have:

$$-u_{n-1} + 2u_n - u_{n+1} = 0$$

• The Jacobi update equation in this case becomes:

$$u_n^{(t+1)} = \begin{cases}
\frac{1}{1+2\lambda} (v_n + \lambda u_{n-1}^{(t)} + \lambda u_{n+1}^{(t)}) & \text{for } n \in P, \\
\frac{1}{2} (u_{n-1}^{(t)} + u_{n+1}^{(t)}) & \text{otherwise}
\end{cases}$$
2D Image Smoothing

- For 2D images, the analogous energy we want to minimize becomes:

\[
E(u) = \sum_{n,m \in P} (u[n,m] - v[n,m])^2 \\
+ \lambda \sum_{\text{all } n,m} (u[n+1,m] - u[n,m])^2 + (u[n,m+1] - u[n,m])^2
\]

where \(P \) is a subset of pixels where the measurements \(v \) are available.

Looks familiar??

D. J. Fleet
Robust Potentials

- Quadratic potentials are not robust to outliers and hence they over-smooth edges. These effects will propagate throughout the graph.

- Instead of quadratic potentials, we could use a robust error function \(\rho \):

\[
E(u) = \sum_{n=1}^{N} \rho(u_n - v_n, \sigma_d) + \lambda \sum_{n=1}^{N-1} \rho(u_{n+1} - u_n, \sigma_s),
\]

where \(\sigma_d \) and \(\sigma_s \) are scale parameters.
Robust Potentials

• **Example:** the *Lorentzian* error function

\[
\rho(z, \sigma) = \log \left(1 + \frac{1}{2} \left(\frac{z}{\sigma} \right)^2 \right), \quad \rho'(z, \sigma) = \frac{2z}{2\sigma^2 + z^2}.
\]

![Error function](image1.png) ![Influence function](image2.png)

D. J. Fleet
Robust Potentials

- **Example:** the Lorentzian error function
- Smoothing a noisy step edge

\[E(u) = \sum_{n=1}^{N} \rho(u_n - v_n, \sigma_d) + \lambda \sum_{n=1}^{N-1} \rho(u_{n+1} - u_n, \sigma_s) \]

where \(\sigma_d \) and \(\sigma_s \) are scale parameters. For example, the Lorentzian error function is given by

\[\rho(z, \sigma) = \log(1 + \frac{1}{2}(z \sigma)^2) \]

\[\rho'(z, \sigma) = 2z^2 \sigma + z^2 \]

Smoothing a noisy step edge:

Noisy step
LS smoother
Lorentzian smoother
Robust Image Smoothing

- A Lorentzian smoothness potential encourages an approximately piecewise constant result:

Original image Output of robust smoothing
Robust Image Smoothing

- A Lorentzian smoothness potential encourages an approximately piecewise constant result:

![Original image](original_image.png)

![Edges](edges.png)

Original image
Edges

Problem:
- Computational expense, local minima, and sensitivity to the initial guess.
Image Segmentation

- Given an image, partition it into meaningful regions or segments.
- Approaches
 - Variational segmentation models
 - Clustering-based approaches (K-means, Mean Shift)
 - Graph-theoretic formulations
- MRF-based techniques

MRFs and Graph-cut
Markov Random Fields

- Example: “label smoothing” grid

\[
\text{Energy}(y; \theta, \text{data}) = \sum_i \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data})
\]
Solving MRFs with graph cuts

Main idea:

• Construct a graph such that every st-cut corresponds to a joint assignment to the variables y

• The cost of the cut should be equal to the energy of the assignment, $E(y; \text{data})^*$.

• The minimum-cut then corresponds to the minimum energy assignment, $y^* = \text{argmin}_y E(y; \text{data})$.

* Requires non-negative energies
Solving MRFs with graph cuts

\[\text{Energy}(y; \theta, \text{data}) = \sum_{i} \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data}) \]
Solving MRFs with graph cuts

\[
\text{Energy}(y; \theta, data) = \sum_i \psi_1(y_i; \theta, data) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, data)
\]

Source (Label 0)

Sink (Label 1)
The *st*-Mincut Problem

Graph \((V, E, C)\)
- Vertices \(V = \{v_1, v_2 \ldots v_n\}\)
- Edges \(E = \{(v_1, v_2) \ldots \}\)
- Costs \(C = \{c_{(1, 2)} \ldots \}\)
The \textit{st}-Minicut Problem

What is a \textit{st}-cut?

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{st-mincut-diagram.png}
\caption{Diagram of an \textit{st}-Minicut Problem}
\end{figure}
The st-Mincut Problem

What is a st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

$5 + 1 + 9 = 15$
The st-Mincut Problem

What is a st-cut?
An st-cut \((S,T)\) divides the nodes between source and sink.

What is the cost of a st-cut?
Sum of cost of all edges going from S to T

What is the st-mincut?
st-cut with the minimum cost

2 + 2 + 4 = 8
So how does this work?

Construct a graph such that:

1. Any st-cut corresponds to an assignment of x
2. The cost of the cut is equal to the energy of x : $E(x)$

$E(x)$ \rightarrow Solution

[Hammer, 1965] [Kolmogorov and Zabih, 2002]
$E(x) = \sum_i \theta_i(x_i) + \sum_{i,j} \theta_{ij}(x_i, x_j)$

For all ij

$\theta_{ij}(0,1) + \theta_{ij}(1,0) \geq \theta_{ij}(0,0) + \theta_{ij}(1,1)$

Equivalent (transformable)

$E(x) = \sum_i c_i x_i + \sum_{i,j} c_{ij} x_i(1-x_j)$

$c_{ij} \geq 0$
Graph Construction

$E(a_1, a_2)$
Graph Construction

\[E(a_1, a_2) = 2a_1 \]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 \]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 \]
Graph Construction

$$E(a_1,a_2) = 2a_1 + 5\tilde{a}_1 + 9a_2 + 4\tilde{a}_2 + 2a_1\tilde{a}_2$$
Graph Construction

\[E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

Cost of cut = 11

\[
\begin{align*}
E(1, 1) &= 11 \\
a_1 &= 1 \quad a_2 = 1
\end{align*}
\]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
How to compute the st-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

Edges: Flow < Capacity
Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem
In every network, the maximum flow equals the cost of the st-mincut

Assuming non-negative capacity
Maxflow Algorithms

Augmenting Path Based Algorithms

Flow = 0

Source

Sink
Maxflow Algorithms

Flow = 0

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
Maxflow Algorithms

Flow = 0 + 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path

Flow = 2
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 2

P. Kohli
Maxflow Algorithms

Flow = 2 + 4

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 6
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 6
Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 6 + 2
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 8
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 8
Flow and Reparametrization

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

\[2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

\[= 2(a_1 + \bar{a}_1) + 3\bar{a}_1 \]

\[= 2 + 3\bar{a}_1 \]
Flow and Reparametrization

\[E(a_1, a_2) = 2 + 3\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 2 + 3\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

\[9a_2 + 4\bar{a}_2 = 4(a_2 + \bar{a}_2) + 5\bar{a}_2 = 4 + 5\bar{a}_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 2 + 3\tilde{a}_1 + 5a_2 + 4 + 2a_1\tilde{a}_2 + \tilde{a}_1a_2 \]

\[9a_2 + 4\tilde{a}_2 = 4(a_2 + \tilde{a}_2) + 5\tilde{a}_2 = 4 + 5\tilde{a}_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

\[3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 = 2(\bar{a}_1 + a_2 + a_1\bar{a}_2) + \bar{a}_1 + 3a_2
= 2(1 + \bar{a}_1a_2) + \bar{a}_1 + 3a_2 \]

\[F_1 = \bar{a}_1 + a_2 + a_1\bar{a}_2 \]
\[F_2 = 1 + \bar{a}_1a_2 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(F_1)</th>
<th>(F_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

P. Kohli
Flow and Reparametrization

\[E(a_1, a_2) = 8 + \tilde{a}_1 + 3a_2 + 3\tilde{a}_1a_2 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(F_1)</th>
<th>(F_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Flow and Reparametrization

\[E(a_1, a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2 \]

No more augmenting paths possible
Flow and Reparametrization

\[E(a_1, a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2 \]

Residual Graph (positive coefficients)

Total Flow

bound on the optimal solution

Tight Bound >> Inference of the optimal solution becomes trivial

Source (0)

Sink (1)

P. Kohli
Flow and Reparametrization

\[E(a_1, a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2 \]

Total Flow

bound on the energy of the optimal solution

Residual Graph

(positive coefficients)

st-mincut cost = 8

\[a_1 = 1 \quad a_2 = 0 \]

\[E(1,0) = 8 \]
Maxflow in Computer Vision

• Specialized algorithms for vision problems
 – Grid graphs
 – Low connectivity (m ~ O(n))

• Dual search tree augmenting path algorithm
 [Boykov and Kolmogorov PAMI 2004]
 • Finds approximate shortest augmenting paths efficiently
 • High worst-case time complexity
 • Empirically outperforms other algorithms on vision problems
Code for Image Segmentation

\[E(x) = \sum_{i} c_i x_i + \sum_{i,j} d_{ij} |x_i-x_j| \]

Global Minimum \((x^*)\)

\[x^* = \arg \min_{x} E(x) \]

How to minimize \(E(x)\)?

\(E: \{0,1\}^n \rightarrow \mathbb{R} \)

\(0 \rightarrow \text{fg} \)

\(1 \rightarrow \text{bg} \)

\(n = \text{number of pixels} \)

P. Kohli
Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),
 bgCost(p));

end

for all adjacent pixels p,q
 add_weights(nodeID(p),nodeID(q),
 cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
How does the code look like?

```c
Graph *g;

For all pixels p

    /* Add a node to the graph */
    nodeID(p) = g->add_node();

    /* Set cost of terminal edges */
    set_weights(nodeID(p), fgCost(p),
               bgCost(p));

end

for all adjacent pixels p,q
    add_weights(nodeID(p), nodeID(q),
               cost(p,q));

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```

P. Kohli
Graph *g;

For all pixels p

 /* Add a node to the graph */
 nodeID(p) = g->add_node();

 /* Set cost of terminal edges */
 set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q

 add_weights(nodeID(p), nodeID(q), cost(p,q));

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
Graph *g;

For all pixels p

 /* Add a node to the graph */
 nodeID(p) = g->add_node();

 /* Set cost of terminal edges */
 set_weights(nodeID(p),fgCost(p), bgCost(p));

end

for all adjacent pixels p,q

 add_weights(nodeID(p),nodeID(q), cost(p,q));

end

 g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p)); // is the label of pixel p (0 or 1)
Random Fields in Vision

4-connected; pairwise MRF

\[E(x) = \sum_{i,j \in N_4} \theta_{ij}(x_i, x_j) \]

Order 2

Higher(8)-connected; pairwise MRF

\[E(x) = \sum_{i,j \in N_8} \theta_{ij}(x_i, x_j) \]

Order 2

MRF with global variables

\[E(x) = \sum_{i,j \in N_8} \theta_{ij}(x_i, x_j) + \theta(x_1, \ldots, x_n) \]

Order 2

Higher-order MRF

C. Rother
GrabCut segmentation

User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.
MRF with global potential

GrabCut model [Rother et. al. ‘04]

\[
E(x, \theta^F, \theta^B) = \sum_i F_i(\theta^F)x_i + B_i(\theta^B)(1-x_i) + \sum_{i,j \in N} |x_i - x_j|
\]

\[
F_i = -\log \Pr(z_i|\theta^F) \quad \text{and} \quad B_i = -\log \Pr(z_i|\theta^B)
\]

Problem: for unknown \(x, \theta^F, \theta^B\) the optimization is NP-hard! [Vicente et al. ‘09]
GrabCut: Iterated Graph Cuts

[Rother et al. Siggraph ‘04]

\[
\min_{\theta^F, \theta^B} E(x, \theta^F, \theta^B)
\]

Learning of the colour distributions

Graph cut to infer segmentation

Most systems with global variables work like that
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. ’06, LayoutCRF Winn et al. ’06]

C. Rother
GrabCut: Iterated Graph Cuts

1. Define graph
 - usually 4-connected or 8-connected

2. Define unary potentials
 - Color histogram or mixture of Gaussians for background and foreground

 \[
 \text{unary_potential}(x) = -\log \left(\frac{P(c(x); \theta_{\text{foreground}})}{P(c(x); \theta_{\text{background}})} \right)
 \]

3. Define pairwise potentials

 \[
 \text{edge_potential}(x, y) = k_1 + k_2 \exp \left\{ -\frac{\|c(x) - c(y)\|^2}{2\sigma^2} \right\}
 \]

4. Apply graph cuts

5. Return to 2, using current labels to compute foreground, background models
GrabCut: Iterated Graph Cuts

Result

Energy after each Iteration

Guaranteed to converge

C. Rother
Colour Model

Iterated graph cut
Optimizing over θ’s help

[GrabCut ’04]

no iteration
[Boykov&Jolly ’01]

after convergence
[GrabCut ’04]

Input

after convergence
[GrabCut ’04]
What is easy or hard about these cases for graphcut-based segmentation?
Easier examples
More difficult Examples

Camouflage & Low Contrast

Initial Rectangle

Fine structure

Harder Case

Initial Result

D. Hoiem
Semantic Segmentation
Joint Object recognition & segmentation

\[
E(x, \omega) = \sum_i \theta_i(\omega, x_i) + \sum_i \theta_i(x_i) + \sum_i \theta_i(x_i) + \sum_{i,j} \theta_{ij}(x_i, x_j)
\]

\(x_i \in \{1, \ldots, K\}\) for \(K\) object classes

Location

Class (boosted textons)

sky

grass

[TextonBoost; Shotton et al, ‘06]
Semantic Segmentation
Joint Object recognition & segmentation

[TextonBoost; Shotton et al, ‘06]

C. Rother
Semantic Segmentation
Joint Object recognition & segmentation

Good results …

[TextonBoost; Shotton et al, ‘06]
Random Fields in Vision

4-connected; pairwise MRF

\[E(x) = \sum_{i,j \in N_4} \theta_{ij}(x_i, x_j) \]

Order 2

Higher(8)-connected; pairwise MRF

\[E(x) = \sum_{i,j \in N_8} \theta_{ij}(x_i, x_j) \]

Order 2

MRF with global variables

\[E(x) = \sum_{i,j \in N_8} \theta_{ij}(x_i, x_j) + \theta(x_1, \ldots, x_n) \]

Order 2

Higher-order MRF

\[E(x) = \sum_{i,j \in N_4} \theta_{ij}(x_i, x_j) + \theta(x_1, \ldots, x_n) \]

Order n

C. Rother
Why Higher-order Functions?

In general \(\theta(x_1, x_2, x_3) \neq \theta(x_1, x_2) + \theta(x_1, x_3) + \theta(x_2, x_3) \)

Reasons for higher-order RFs:

1. **Even better image(texture) models:**
 - Field-of Expert [FoE, Roth et al. ‘05]
 - Curvature [Woodford et al. ‘08]

2. **Use global Priors:**
 - Connectivity [Vicente et al. ‘08, Nowozin et al. ‘09]
 - Better encoding label statistics [Woodford et al. ‘09]
 - Convert global variables to global factors [Vicente et al. ‘09]
Modeling the Potentials

• Could the potentials (image priors) be learned from natural images?

Field of Experts (FoE), S. Roth & M. J. Black, CVPR 2005
De-noising with Field-of-Experts
[Roth and Black ’05, Ishikawa ‘09]

\[E(X) = \sum_i (z_i - x_i)^2 / 2\sigma^2 + \sum \sum \alpha_k (1 + 0.5(J_k x_c)^2) \]

Unary likelihood \[z\]

FoE prior \[x\]

\[x_c \text{ set of nxn patches (here 2x2)} \]
\[J_k \text{ set of filters:} \]

non-convex optimization problem

How to handle continuous labels in discrete MRF?

From [Ishikawa PAMI ’09, Roth et al ‘05]

C. Rother
De-noising with Field-of-Experts
[Roth and Black ’05, Ishikawa ‘09]

- Very sharp discontinuities. No blurring across boundaries.
- Noise is removed quite well nonetheless.

S. Roth