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About my research

• My research centers on the areas of computer 
vision and machine learning. 

• specifically interested in the role of context in 
visual processing.

• I try to incorporate different kinds of context 
(spatial, temporal and/or cross-modal) into all 
levels of visual processing from low to mid and 
high-level vision. 



About my research
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ρ = 0.001, εls = 0.125, n = 25 respectively. Figure 12(b) is
taken from Berkeley Segmentation Dataset [53]. Note that
the basic idea is just to lower the diffusion at textured loca-
tions. The measure φls does not make a distinction between
noise and texture.

Finally, we apply our method to color images as de-
scribed in Sect. 3. We use the RGB channels as our multi-
channel data. For Fig. 13, we have repeated the texture pre-
serving denoising experiment using now colored versions
of Figs. 11(a) and 12(b). The denoising results presented
in Fig. 13(b) are obtained by diffusing each channel sepa-
rately with a common feedback measure estimated from the
intensity image.

Fig. 12 Some more experiments on texture preserving denoising.
Notice the difference between non-textured and textured regions.
(a)–(b) Source images. (c)–(d) Smoothed images

Figure 14 illustrates the results of using different strate-
gies for color image smoothing of the source image pre-
sented in Fig. 14(a) (image taken from Berkeley Seg-
mentation Dataset [53]). All smoothing results given in
Figs. 14(b)–(d) are obtained by considering the coalition of
directional consistency, edge continuity and texture edges
with the segmentation parameters α = 100, β = 0.1, ρ =
0.001 and the default contextual feedback parameters ex-
cept εdc = 0.05. Figure 14(b) is the result obtained by dif-
fusing each channel separately by using the feedback mea-
sures estimated from corresponding multi-channel data. Fig-
ure 14(c) is obtained by again diffusing each channel sepa-
rately but with a common feedback measure estimated from

Fig. 13 Texture preserving denoising on a color image. Notice the dif-
ference between non-textured and textured regions. (a) Source images.
(b) Smoothed images

Fig. 14 Color image
smoothing. (a) Source image.
(b) Result of
channel-by-channel smoothing.
(c) Result of
channel-by-channel smoothing
with a common feedback
measure estimated from
intensity image. (d) Color image
smoothing with a common edge
strength function and a feedback
measure estimated from
intensity image
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What does it mean, to see?

• “The plain man’s answer (and Aristotle’s, too) would be, to 
know what is where by looking. In other words, vision is 
the process of discovering from images what is present in 
the world, and where it is.” David Marr, Vision, 1982

• Our brain is able to use
an image as an input, 
and interpret it 
in terms of objects and 
scene structures.



What does Salvador Dali’s Study for the Dream 
Sequence in Spellbound (1945) say about our visual 
perception?



What does Paul Signac’s Place des Lices (1893) 
say about our visual perception?



Why does vision appear easy to 
humans? 
• Our brains are specialized to do vision. 
• Nearly half of the cortex in a human brain is devoted to doing vision 

(cf. motor control ~20-30%, language ~10-20%)

• “Vision has evolved to convert the ill-posed problems into solvable ones 
by adding premises: assumptions about how the world we evolved in is, 
on average, put together” 
Steven Pinker, How the Mind Works, 1997

• Gestalt Theory  
(Laws of Visual 
Perception), 
Max Wertheimer, 
1912

Figures: Steven Pinker, How the Mind Works, 1997



Computer Vision

• “Vision is a process that produces from images of 
the external world a description that is useful to 
the viewer and not cluttered with irrelevant 
information” ~David Marr

• The goal of Computer Vision: 
To develop artificial machine vision systems that 
make inferences related to the scene being 
viewed through the images acquired with digital 
cameras.



Marr’s observation: Studying vision 
at three different levels
• Vision as an information processing task 

[David Marr, 1982]

• Three levels of understanding:
1. Computational theory

– What is computed? Why it is computed?
2. Representation and Algorithm

– How it is computed?
– Input, Output, Transformation

3. Physical Realization
– Hardware



• Visual perception as a data-driven, bottom-up process 
(traditional view since D. Marr)

• Unidirectional information flow 
• Simple low-level cues  >> Complex abstract perceptual units

Visual Modules and the Information 
Flow



• Vision modules can be categorized into three groups 
according to their functionality:
– Low-level vision: filtering out irrelevant image data
– Mid-level vision: grouping pixels or boundary fragments together
– High-level vision: complex cognitive processes

Visual Modules and the Information 
Flow



Subject matter of this course

• Vision modules can be categorized into three groups 
according to their functionality:
– Low-level vision: filtering out irrelevant image data
– Mid-level vision: grouping pixels or boundary fragments 

together
– High-level vision: complex cognitive processes

Visual Modules and the Information 
Flow



Fundamentals of Image Processing

Reality Image Formation
(Software - Hardware) 

Digital
Image

Image Processing

Another
Digital Image

Information
• What is a digital image, how it is formed?
• How images are represented in 
computers?
• Why we process images?
• How we process images?



Image Formation

Three Dimensional
World

Two Dimensional
Image Space

• What is measured in an image location?

– brightness
– color

viewpoint
illumination conditions
local geometry
local material properties

<<

Figures: Francis Crick, The Astonishing Hypothesis, 1995



Image Formation

Figures: Gonzalez and Woods, Digital Image Processing, 3rd Edition, 2008

• Discretization
- in image space - sampling
- In image brightness - quantization



Image Representation
• Digital image: 2D discrete function f
• Pixel: Smallest element of an image f(x,y)The raster image (pixel matrix) 

Figure: M. J. Black



Image Representation
• Digital image: 2D discrete function f
• Pixel: Smallest element of an image f(x,y)

Figure: M. J. Black

The raster image (pixel matrix) 
0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 
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Sample Problems and Techniques

• Edge Detection
• Image Denoising
• Image Smoothing
• Image Deblurring
• Image Segmentation
• Visual Saliency
• Semantic 

Segmentation

• PDEs
• Variational models
• MRFs
• Graph Theory
• Sparse Coding
• Deep Learning



Image Filtering

• Filtering out the irrelevant information

• Image denoising, image sharpening, image 
smoothing, image deblurring, etc.

• Edge detection

observed
image

desired
image

irrelevant
data



• Edges: abrupt changes in the intensity
– Uniformity of intensity or color

• Edges to object boundaries

Canny edge detector

Edge Detection



Image Filtering

• Difficulty: Some of the irrelevant image information 
have characteristics similar to those of important 
image features



• Gaussian Filtering / linear diffusion 
– the most widely used method

• mid 80’s – unified formulations
– methods that combine smoothing and edge 

detection
– Geman & Geman’84, Blake & Zisserman’87, 

Mumford & Shah’89, Perona & Malik’90

Image Smoothing - A Little Bit of 
History



Image Denoising

R. H. Chan, C.-W. Ho, and M. Nikolova, Salt-and-Pepper Noise Removal by Median-Type
Noise Detectors and Detail-Preserving Regularization. IEEE TIP 2005 

1482 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 10, OCTOBER 2005

Fig. 3. Restoration results of different filters. (a) Corrupted Lena image with 70% salt-and-pepper noise (6.7 dB). (b) MED filer (23.2 dB). (c) PSM filter (19.5 dB).
(d) MSM filter (19.0 dB). (e) DDBSM filter (17.5 dB). (f) NASM filter (21.8 dB). (g) ISM filter (23.4 dB). (h) Algorithm I (25.8 dB). (i) Algorithm II (24.6 dB).
(j) Our proposed algorithm (29.3 dB). (k) Original image.

noise with equal probability. Also a wide range of noise levels
varied from 10% to 70% with increments of 10% will be tested.
Restoration performances are quantitatively measured by the
peak signal-to-noise ratio (PSNR) and the mean absolute error
(MAE) defined in [1, p. 327]

where and denote the pixel values of the restored image
and the original image, respectively.

For Algorithm I (the adaptive median filter), the maximum
window size should be chosen such that it increases with
the noise level in order to filter out the noise. Since it is not
known a priori, we tried different for any given noise
level, and found that given in Table I are sufficient for
the filtering. We, therefore, set in all our tests. We
remark that with such choice of , almost all the salt-and-
pepper noise are detected in the filtered images.

For Algorithm II (the variational method in [13]), we choose
as the edge-preserving function. We observe that if

is small ( ), most of the noise is suppressed but
staircases appear. If is large ( ), the fine details are not
distorted seriously but the noise cannot be fully suppressed. The
selection of is a tradeoff between noise suppression and detail
preservation [13]. In the tests, the best restoration results are not
sensitive to when it is between 1.2 and 1.4. We, therefore,
choose , and is tuned to give the best result in
terms of PSNR.

For our proposed Algorithm III, the noise candidate set
should be obtained such that most of the noise are detected. This,
again, amounts to the selection of . As mentioned,

can be fixed for most purposes. Then, we can restore those
noise pixels with . As in Algorithm II, the edge-
preserving function will be used. That leaves only
the parameter to be determined. Later, we will demonstrate
that our proposed algorithm is very robust with respect to ,
and, thus, we fix in all the tests.

For comparison purpose, Algorithm I, Algorithm II, the
standard median (MED) filter, and, also, recently proposed
filters like the progressive switching median (PSM) filter [21],
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Fig. 4. Restoration results of different filters: (a) Corrupted Bridge image with 70% salt-and-pepper noise (6.8 dB). (b) MED filer (19.8 dB). (c) PSM filter
(17.0 dB). (d) MSM filter (16.4 dB). (e) DDBSM filter (15.9 dB). (f) NASM filter (19.9 dB). (g) ISM filter (20.1 dB). (h) Algorithm I (21.8 dB). (i) Algorithm II
(21.1 dB). (j) Our proposed algorithm (25.0 dB). (k) Original image.

the multistate median (MSM) filter [6], the noise adaptive
soft-switching median (NASM) filter [7], the directional dif-
ference-based switching median (DDBSM) filter [22], and the
improved switching median (ISM) filter [18] are also tested.
For the MED filter, the window sizes are chosen for each noise
level to achieve its best performance. For the MSM filter, the
maximum center weights of 7, 5, and 3 are tested for each noise
level. For the ISM filter, the convolution kernels , and

and filtering window sizes of 9 9 and 11 11 are used.
The decision thresholds in the PSM, MSM, DDBSM, ISM
filters are also tuned to give the best performance in terms of
PSNR.

B. Denoising Performance

We summarize the performance of different methods in
Figs. 1 and 2. From the plots, we see that all the methods have
similar performance when the noise level is low. This is because
those recently proposed methods focus on the noise detection.
However, when the noise level increases, noise patches will be
formed and they may be considered as noise free pixels. This

causes difficulties in the noise detection algorithm. With erro-
neous noise detection, no further modifications will be made to
the noise patches, and, hence, their results are not satisfactory.

On the other hand, our proposed denoising scheme achieves
a significantly high PSNR and low MAE even when the noise
level is high. This is mainly based on the accurate noise detec-
tion by the adaptive median filter and the edge-preserving prop-
erty of the variational method of [13].

In Figs. 3 and 4, we present restoration results for the 70%
corrupted Lena and Bridge images. Among the restorations, ex-
cept for our proposed one, Algorithm I gives the best perfor-
mance in terms of noise suppression and detail preservation. As
mentioned before, it is because the algorithm locates the noise
accurately. In fact, about 70.2% and 70.4% pixels are detected
as noise candidates in Lena and Bridge, respectively, by Algo-
rithm I. However, the edges are jittered by the median filter. For
Algorithm II, much of the noise is suppressed but the blurring
and distortion are serious. This is because every pixel has to be
examined and may have been altered. Compared with all the al-
gorithms tested, our proposed Algorithm III is the best one. It
has successfully suppressed the noise with the details and the
edges of the images being preserved very accurately.
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soft-switching median (NASM) filter [7], the directional dif-
ference-based switching median (DDBSM) filter [22], and the
improved switching median (ISM) filter [18] are also tested.
For the MED filter, the window sizes are chosen for each noise
level to achieve its best performance. For the MSM filter, the
maximum center weights of 7, 5, and 3 are tested for each noise
level. For the ISM filter, the convolution kernels , and

and filtering window sizes of 9 9 and 11 11 are used.
The decision thresholds in the PSM, MSM, DDBSM, ISM
filters are also tuned to give the best performance in terms of
PSNR.
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similar performance when the noise level is low. This is because
those recently proposed methods focus on the noise detection.
However, when the noise level increases, noise patches will be
formed and they may be considered as noise free pixels. This

causes difficulties in the noise detection algorithm. With erro-
neous noise detection, no further modifications will be made to
the noise patches, and, hence, their results are not satisfactory.

On the other hand, our proposed denoising scheme achieves
a significantly high PSNR and low MAE even when the noise
level is high. This is mainly based on the accurate noise detec-
tion by the adaptive median filter and the edge-preserving prop-
erty of the variational method of [13].

In Figs. 3 and 4, we present restoration results for the 70%
corrupted Lena and Bridge images. Among the restorations, ex-
cept for our proposed one, Algorithm I gives the best perfor-
mance in terms of noise suppression and detail preservation. As
mentioned before, it is because the algorithm locates the noise
accurately. In fact, about 70.2% and 70.4% pixels are detected
as noise candidates in Lena and Bridge, respectively, by Algo-
rithm I. However, the edges are jittered by the median filter. For
Algorithm II, much of the noise is suppressed but the blurring
and distortion are serious. This is because every pixel has to be
examined and may have been altered. Compared with all the al-
gorithms tested, our proposed Algorithm III is the best one. It
has successfully suppressed the noise with the details and the
edges of the images being preserved very accurately.

• Images are corrupted with 70% salt-and-pepper noise 

What do 
these examples
demonstrate?

Noisy input Recovered image Original image



Non-local Means Denoising

A. Buades, B. Coll, J. M. Morel, A non-local algorithm for image denoising, CVPR, 2005

Preserve fine image details
and texture during denoising



Context-Guided Filtering

• Use local image context to steer filtering

E. Erdem and S. Tari, Mumford-Shah Regularizer with Contextual Feedback, JMIV, 2009

Preserve main image
structures during
filtering



Image Smoothing

L. Xu, C. Lu, Y. Xu, J. Jia, Image Smoothing via L0 Gradient Minimization, ACM Trans. Graphics 2011 
(SIGGRAPH Asia 2011)



Image Smoothing

L. Karacan, E. Erdem, A. Erdem, Structure Preserving Image Smoothing via Region Covariances, 
ACM Trans. Graphics 2013 (SIGGRAPH Asia 2013)



Image Deblurring

• Remove blur and restore a sharp image

from	a	given	blurred	image find	its	latent	sharp	image

Slide credit: Lee and Cho



Image Deblurring

• Remove blur and restore a sharp image

Slide credit: Lee and Cho

Input	blurred	image Levin	et	al.	CVPR	2010



Visual Saliency
• The problem of predicting where people look at images

E. Erdem and A. Erdem, Visual saliency estimation by nonlinearly integrating features using region covariances, 
Journal of Vision 2013

The squares shows where the observers looked 
in eye tracking experiments



Visual Saliency
• The problem of predicting where people look at images

E. Erdem and A. Erdem, Visual saliency estimation by nonlinearly integrating features using region covariances, 
Journal of Vision 2013



Image Retargetting
• automatically resize an image to arbitrary aspect ratios 

while preserving important image features

S. Avidan and A. Shamir, Seam Carving for Content-Aware Image Resizing, SIGGRAPH, 2007

How we define the importance?
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Fig. S.6: Some example results from the ReTargetMe data set. [Figure 5]

Image retargeting by Seam Carving
with different importance maps

CovSal



Sparse Coding
• The problem of finding a small number of 

representative atoms from a dictionary which when 
combined with right weights represent a given signal.

CONTEXT – Sparse models 

Robust recovery: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Impossible in general (                      ) 
   Well-posed if      is sparse, errors      not too dense, but still NP-hard 
   Tractable: via convex optimization: 
          …  if          is  “nice”  (cross and bouquet)  

 

 

 

Hugely active area: Candès+Tao ’05,  Wright+Ma ’10,  Nguyen+Tran ‘11,  Li  ’11,  
also  Zhang,  Yang,  Huang’11,  etc… 

Wright, Yang, Ganesh, Sastry, and Ma. Robust Face Recognition via Sparse Representation, TPAMI 2009  

CONTEXT – Dense Error Correction 

Extended Yale B Database (38 subjects) 

Testing:  subset 3 (453 images) 
Training: subsets 1 and 2 (717 images)  

50% 

70% 

99.3% 90.7% 

37.5% 

Wright and Ma. Dense Error Correction via L1 Minimization, Trans. Information Theory, 2011.  

Credit: Yi Ma



Low-Rank Matrix Approximations

• The problem of prediction where people look at 
images

Credit: Yi Ma

Repairing Images: Highly Robust Repairing of Low-rank Textures!  

Low-rank Texture Sparse Corruptions 

Liang, Ren, Zhang, and Ma, Repairing Sparse Low-Rank Texture, in ECCV 2012. 

D Low-rank	Texture	A Sparse	Corruptions	E

D A D A



Image Inpainting

• Reconstructing lost or deteriorated parts of images

M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, Image Inpainting, SIGGRAPH, 2000

What do 
these examples
demonstrate?



Image Segmentation

• Partition an image into meaningful regions that are likely to 
correspond to objects exist in the image

Figures: A. Erdem

Grouping of pixels

according to what
criteria?

high-level object
specific knowledge
matters!



Image Segmentation

• Boundary-based segmentation
• Region-based segmentation
• Unified formulations



Snakes

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Contour Models,  IJCV, 1988

• Curve Evolution - parametric curve formulation



Active Contours Without Edges

T. Chan and L. Vese. Active Contours Without Edges, IEEE Trans. Image Processing, 2001

• Curve Evolution – a level-set based curve formulation



Normalized Cuts

• A graph-theoretic formulation for segmentation

J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE Trans. Pattern Anal. Mach. Intel.



Normalized Cuts



From contours to regions

• State-of-the-art: gPb-owt-ucm segmentation 
algorithm 

P. Arbelaez, M. Maire, C. Fowlkes and J. Malik, Contour Detection and Hierarchical Image Segmentation, 
IEEE Trans Pattern Anal. Mach. Intell. 33(5):898-916, 2011



From contours to regions

• State-of-the-art: gPb-owt-ucm segmentation 
algorithm 

P. Arbelaez, M. Maire, C. Fowlkes and J. Malik, Contour Detection and Hierarchical Image Segmentation, 
IEEE Trans Pattern Anal. Mach. Intell. 33(5):898-916, 2011



Prior-Shape Guided Segmentation 
• Incorporate prior shape information into 

the segmentation process

Our result Deformation map
E. Erdem, S. Tari, and L. Vese, Segmentation Using The Edge Strength Function as a Shape Prior 

within a Local Deformation Model, ICIP 2009



4-connected; 
pairwise MRF 

Higher-order MRF 

E(x) = ∑ θij (xi,xj)
i,j Є N4

higher(8)-connected; 
pairwise MRF 

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2 Order 2 Order n

E(x) = ∑ θij (xi,xj)

+θ(x1,…,xn)
i,j Є N4

MRF with 
global variables 

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2

C.	Rother

Graphical Models in Vision



[TextonBoost;	Shotton	et	al,	‘06] C.	Rother

Semantic Segmentation



Semantic Segmentation

Carreira et al., Semantic Segmentation with Second-Order Pooling , ECCV, 2012

Semantic Segmentation with Second-Order Pooling 11

Feature Extr. Prediction Learning
Exp-χ2 [18] (7 descript.) 7.8s / img. 87s / img. 59h / class

O2P (4 descript.) 4.4s / img. 0.004s / img. 26m / class

Table 3. Efficiency of our regressors compared to those of the best performing method
[18] on the Pascal VOC 2011 Segmentation Challenge. We train and test on the large
VOC dataset orders of magnitude faster than [18] because we use linear support vector
regressors, while [18] requires non-linear (exponentiated-χ2) kernels. While learning is
130 times faster with the proposed methodology, the comparative advantage in predic-
tion time per image is particularly striking: more than 20,000 times quicker. This is
understandable, since a linear predictor computes a single inner product per category
and segment, as opposed to the 10,000 kernel evaluations in [18], one for each support
vector. The timings reflect an experimental setting where an average of 150 (CPMC)
segments are extracted per image.

Fig. 1. Examples of our semantic segmentations including failures. There are typical
recognition problems: false positive detections such as the tv/monitor in the kitchen
scene, and false negatives like the undetected cat. In some cases objects are correctly
recognized but not very accurately segmented, as visible in the potted plant example.

are used and the number of training examples is small, learning takes only a few
seconds. We also experimented using SVM with an RBF-kernel but did not
observe any improvement over the linear kernel.

Our proposed pooling leads to the best accuracy among aggregation meth-
ods with a single feature, using 30 training examples and the standard evalua-
tion protocol. It is also competitive with other top-performing, but significantly
slower alternatives. Our method is very simple to implement, efficient, scalable
and requires no coding stage. The results and additional details can be found in
table 5.

6 Conclusion

We have presented a framework for second-order pooling over free-form regions
and applied it in object category recognition and semantic segmentation. The

• The problem of joint recognition and segmentation



Top-down Saliency

• Task-oriented models (e.g. searching for a target object 
from a specific category)

A. Kocak et al., Top down saliency estimation via superpixel-based discriminative dictionaries, BMVC 2014



Top-down Saliency

• Task-oriented models (e.g. searching for a target object 
from a specific category)

A. Kocak et al., Top down saliency estimation via superpixel-based discriminative dictionaries, BMVC 2014



Top-down Saliency

• Task-oriented models (e.g. searching for a target object 
from a specific category)

A. Kocak et al., Top down saliency estimation via superpixel-based discriminative dictionaries, BMVC 2014



Deep Learning
Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

“car”

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Deep Learning

• [Krizhevsky et al. NIPS12]
– 54 million parameters; 8 layers (5 conv, 3 fully-connected)
– Trained on 1.4M images in ImageNet

Input Image

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected 
MLP

1k output
units

Slide Credit: Dhruv Batra



Deep Learning

Fully Convolutional Networks for Semantic Segmentation[Long, Shelmer & Darrell 2015]



Today

• About me
• About you
• Introduction to Image Processing
• Course outline and logistics



Logistics

• Asst. Prof. Erkut ERDEM
• erkut@cs.hacettepe.edu.tr
• Office: 114

• Lectures:  Monday, 13:30-16:30
• Office Hour: By appointment.



About BIL717

• This course provides a comprehensive overview of 
fundamental topics in image processing for graduate 
students. 

• The goal of this course is to provide a deeper 
understanding of the state-of-the-art methods in 
image processing literature and to study their 
connections. 

• The course makes the students gain knowledge and 
skills in key topics and provides them the ability to 
employ them in their advanced-level studies.



Communication

• The course webpage will be updated regularly throughout 
the semester with lecture notes, programming and reading 
assignments and 
important deadlines. 
http://web.cs.hacettepe.edu.tr/~erkut/bil717.s16

• All other communications will be carried out through 
Piazza. Please enroll it by following the link 
https://piazza.com/hacettepe.edu.tr/spring2016/bil717



Prerequisites 

• Programming skills 
(C/C++, Matlab)

• Good math background
(Calculus, Linear Algebra, Statistical Methods)

• A prior, introductory-level course in image 
processing is highly recommended.



Reference Books
• Mathematical Problems in Image Processing: Partial 

Differential Equations and the Calculus of Variations, G.  
Aubert and P. Kornprobst, 
2nd Edition, Springer-Verlag, 2006

• Image Processing And Analysis:  Variational, PDE,  Wavelet,  
And Stochastic Methods, 
T. Chan and J. Shen, Society for Industrial and Applied 
Mathematics, 2005

• Markov Random Fields For Vision And Image Processing, 
Edited by A. Blake, P. Kohli and 
C. Rother, MIT Press, 2011

• Deep Learning, 
Ian Goodfellow, Aaron Courville, and Yoshua Bengio, book in 
preparation for MIT Press



Reading Material

• Lecture notes and handouts
• Papers and journal articles



Related Conferences
• IEEE International Conference on Computer Vision (ICCV)
• European Conference on Computer Vision (ECCV)
• IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR)
• IEEE Winter Conference on Applications of Computer Vision 

(WACV)
• British Machine Vision Conference (BMVC)
• ACM SIGGRAPH
• ACM SIGGRAPH Asia
• Advances in Neural Information Processing Systems (NIPS)
• IEEE International Conference on Pattern Recognition (ICPR)
• IEEE International Conference on Image Processing (ICIP)



Related Journals

• IEEE Transactions on Image Processing (IEEE TIP)
• IEEE Transactions on Pattern Analysis and 

Machine Intelligence (IEEE TPAMI)
• ACM Transactions on Graphics (TOG)
• International Journal of Computer Vision (IJCV)
• Computer Vision and Image Understanding (CVIU)
• Image and Vision Computing (IMAVIS)
• Pattern Recognition (PR)



Grading Policy

• 20% Quizzes
• 20% Programming Assignments
• 20% Paper presentations/Class participation
• 40% Project and final term paper



Paper presentations and Quizzes

• The students will be required to present at least 
one research paper either of their choice or from 
the suggested reading list. 

• These papers should be read by every student as 
the quizzes about the presented papers will be 
given on the weeks of the presentations.

• The schedule for the presentations will be finalized 
on 15th of February.



Programming Assignments

• There will be three assignments related to the 
topics covered in the class.

• Each assignment will involve implementing an 
algorithm, carrying out a set of experiments to 
evaluate it, and writing up a report on the 
experimental results.

• All assignments have to be done individually, 
unless stated otherwise.



Project

• The aim of the project is to give the students some 
experience on conducting research. 

• Students should work individually or groups in two.

• This project may involve
– design of a novel approach and its experimental analysis,
– an extension to a recent study (published after 2010) of non-

trivial complexity and its experimental analysis,
– an in-depth empirical evaluation and analysis of two 

or more related methods not covered in the class.



Project – Important Dates

• Project proposals: 29th of February
• Project progress reports: 4th of April
• Project progress presentations: 11th of April
• Project presentations: will be announced!
• Project final reports: 23rd of May

• Late submissions will be penalized! 



Tentative Outline

• (1 week) Overview of Image Processing
• (1 week) Edge Detection, Linear Filtering
• (1 week) Image Segmentation, Boundary 

Detection
• (1 week) Nonlinear Filtering
• (1 week) Snakes, Variational Segmentation Models
• (2 weeks) Modern Image Filtering
• (1 week) Image Deblurring



Tentative Outline

• (1 week) Sparse Coding
• (1 week) Graphical Models
• (1 week) Semantic Segmentation
• (1 week) Visual Saliency
• (1 week) Deep Learning


