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Filtering

• The name “filter” is borrowed from frequency domain 
processing

• Accept or reject certain frequency components
• Fourier (1807):

Periodic functions 
could be represented
as a weighted sum of 
sines and cosines

Image courtesy of Technology Review



Signals

• A signal is composed of low and high frequency 
components

low frequency components: smooth /
piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points



Signals – Examples



Motivation: noise reduction

• Assume image is degraded with an additive model.
• Then,

Observation = True signal  + noise
Observed image = Actual image + noise

low-pass
filters

smooth the image



Common types of noise

– Salt and pepper noise: 
random occurrences of   
black and white pixels

– Impulse noise: 
random occurrences of 
white pixels

– Gaussian noise: 
variations in intensity 
drawn from a Gaussian 
normal distribution

Slide credit: S. Seitz



Gaussian noise

Slide credit: M. Hebert

>> noise = randn(size(im)).*sigma;
>> output = im + noise;

What is the impact of the sigma?



Motivation: noise reduction

• Make multiple observations of the same static scene
• Take the average
• Even multiple images of the same static scene will not be 

identical.

Adapted from: K. Grauman



Motivation: noise reduction

• Make multiple observations of the same static scene
• Take the average
• Even multiple images of the same static scene will not be 

identical.
• What if we can’t make multiple observations? 

What if there’s only one image? Adapted from: K. Grauman



Image Filtering

• Idea: Use the information coming from the 
neighboring pixels for processing 

• Design a transformation function of the local 
neighborhood at each pixel in the image
– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Various uses of filtering:
– Enhance an image (denoise, resize, etc)
– Extract information (texture, edges, etc)
– Detect patterns (template matching)

Adapted from: K. Grauman



Filtering

• Processing done on a function
– can be executed in continuous form (e.g. analog circuit)
– but can also be executed using sampled representation

• Simple example: smoothing by averaging

Slide credit: S. Marschner



Linear filtering

• Filtered value is the linear combination of neighboring 
pixel values.

• Key properties
– linearity: filter(f + g) = filter(f) + filter(g)
– shift invariance: behavior invariant to shifting the input

• delaying an audio signal
• sliding an image around

• Can be modeled mathematically by convolution

Adapted from: S. Marschner



First attempt at a solution

• Let’s replace each pixel with an average of all the values in 
its neighborhood

• Assumptions: 
– Expect pixels to be like their neighbors (spatial regularity in images)
– Expect noise processes to be independent from pixel to pixel

Slide credit: S. Marschner, K. Grauman



First attempt at a solution

• Let’s replace each pixel with an average of all the values in 
its neighborhood

• Moving average in 1D:

Slide credit: S. Marschner



Discrete convolution

• Simple averaging:

– every sample gets the same weight

• Convolution: same idea but with weighted average

– each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a moving weighted average

Slide credit: S. Marschner



Filters

• Sequence of weights a[j] is called a filter
• Filter is nonzero over its region of support
– usually centered on zero: support radius r
• Filter is normalized so that it sums to 1.0
– this makes for a weighted average, not just any

old weighted sum
• Most filters are symmetric about 0
– since for images we usually want to treat

left and right the same
a box filter

Slide credit: S. Marschner



Convolution and filtering

• Can express sliding average as convolution with a box filter
• abox = […, 0, 1, 1, 1, 1, 1, 0, …]

Slide credit: S. Marschner



Example: box and step

Slide credit: S. Marschner



Convolution and filtering

• Convolution applies with any sequence of weights
• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16

Slide credit: S. Marschner



And in pseudocode…

Slide credit: S. Marschner



Key properties

• Linearity: filter(f1 + f2) = filter(f1) + filter(f2)
• Shift invariance: filter(shift(f)) = shift(filter(f))

• same behavior regardless of pixel location, i.e. the value of the output 
depends on the pattern in the image neighborhood, not the position 
of the neighborhood.

• Theoretical result: any linear shift-invariant operator can be 
represented as a convolution

Slide credit: S. Lazebnik



Properties in more detail

• Commutative: a * b = b * a
– Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
– Often apply several filters one after another: (((a * b1) * b2) * b3)
– This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)
• Scalars factor out: ka * b = a * kb = k (a * b)
• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],

a * e = a

Slide credit: S. Lazebnik



Discrete filtering in 2D

• Same equation, one more index

– now the filter is a rectangle you slide around over a grid of numbers

• Usefulness of associativity
– often apply several filters one after another: (((a * b1) * b2) * b3)
– this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner



And in pseudocode…

Slide credit: S. Marschner



Moving Average In 2D
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Moving Average In 2D
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Slide credit: S. Seitz



Averaging filter
• What values belong in the kernel H for the moving 

average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111
111
111

“box filter”

?

Slide credit: K. Grauman



Smoothing by averaging

depicts box filter: 
white = high value, black = low value

original filtered
What if the filter size was 5 x 5 instead of 3 x 3?

Slide credit: K. Grauman



Boundary issues

• What is the size of the output?
• MATLAB: output size / “shape” options

– shape = ‘full’: output size is sum of sizes of f and g
– shape = ‘same’: output size is same as f
– shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Slide credit: S. Lazebnik



Boundary issues

• What about near the edge?
– the filter window falls off the edge of the image
– need to extrapolate
– methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge

Slide credit: S. Marschner



Boundary issues

• What about near the edge?
– the filter window falls off the edge of the image
– need to extrapolate
– methods (MATLAB):

• clip filter (black): imfilter(f, g, 0)
• wrap around: imfilter(f, g, ‘circular’)
• copy edge: imfilter(f, g, ‘replicate’)
• reflect across edge: imfilter(f, g, ‘symmetric’)

Slide credit: S. Marschner



Gaussian filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want nearest neighboring pixels to have the 
most influence on the output?

• Removes high-frequency components from the image 
(“low-pass filter”).

This kernel is an 
approximation of a 2d 
Gaussian function:

Slide credit: S. Seitz



Smoothing with a Gaussian

Slide credit: K. Grauman



Gaussian filters
• What parameters matter here?
• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete 
filters use finite kernels

σ = 5 with 
10 x 10 kernel

σ = 5 with 
30 x 30 kernel

Slide credit: K. Grauman



Gaussian filters
• What parameters matter here?
• Variance of Gaussian: determines extent of 

smoothing

σ = 2 with 
30 x 30 kernel

σ = 5 with 
30 x 30 kernel

Slide credit: K. Grauman



Matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation 
>> imshow(outim);

outim
Slide credit: K. Grauman



Smoothing with a Gaussian

for sigma=1:3:10 
h = fspecial('gaussian‘, fsize, sigma);
out = imfilter(im, h); 
imshow(out);
pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 
kernel, and controls the amount of smoothing.

Slide credit: K. Grauman



Properties of smoothing filters

• Smoothing
– Values positive 
– Sum to 1 à constant regions same as input
– Amount of smoothing proportional to mask size
– Remove “high-frequency” components; “low-pass” filter

Slide credit: K. Grauman



Linear Diffusion

• Let f (x) denote a grayscale (noisy) input image and u(x, t) be 
initialized with u(x,0) = u0(x) = f(x). 

• The linear diffusion process can be defined by the equation: 

where ∇· denotes the divergence operator. Thus, 
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1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1) ∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2) ∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.
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Linear Diffusion (cont’d.)

• Diffusion process as an evolution process.
• Artificial time variable t denotes the diffusion time
• Input image is smoothed at a constant rate in all 

directions.
– u0(x): initial image, 
– u(x, t): the evolving images under the governed equation 

representing the successively smoothed versions of the 
initial input image f (x). 

• Diffusion process creates a scale space representation 
of the given image f , with t > 0 being the scale.



Linear Diffusion 
(cont’d.)
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red: active areas
blue: inactive area 

influence of the central pixel
on the other pixels 
(red: high, blue: low) 

gray-level image

Credit: S. Paris



Linear Diffusion (cont’d.)

• As we move to coarser scales, 
– Evolving images become more and more simplified
– Diffusion process removes the image structures at finer scales. 

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2



Linear Diffusion (cont’d.)

• As we move to coarser scales, 
– Evolving images become more and more simplified
– Diffusion process removes the image structures at finer scales. 

T = 0 T = 5 T = 10

T = 20 T = 40 T = 80

Figure 2: Linear diffusion results for different diffusion times.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) and u(x) respectively denote the given noisy image and the desired de-
noised image, and n(x) represents the additive noise.

3



Linear Diffusion and Gaussian Filtering

• The solution of the linear diffusion can be explicitly estimated 
as:

with

• Solution of the linear diffusion equation is equivalent to a 
proper convolution of the input image with the Gaussian 
kernel Gσ(x) with standard deviation

• The higher the value of T, the higher the value of σ, and the 
more smooth the image becomes. 
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Numerical Implementation

• Solving the linear diffusion equation requires discretization in 
both spatial and time coordinates.

• Central differences for the spatial derivatives: 

where ui,j denotes the gray value or the brightness of the 
evolving image at pixel location (i, j). 
• We take hx = hy = 1 for a regular grid.
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2σ2
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Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:
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x
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h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to
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Numerical Implementation (cont’d.)

• Original model:

• Space discrete version:

• Space-time discrete version:
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1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1) ∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2) ∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.

∗erkut@cs.hacettepe.edu.tr
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Figure 2: Linear diffusion results for different diffusion times.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) and u(x) respectively denote the given noisy image and the desired de-
noised image, and n(x) represents the additive noise.
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Variational Regularization

• Variational regularization models formulate smoothing 
process as a functional minimization via which a noise-free 
approximation of a given image is to be estimated. 

• With an additive model, f(x) = u(x) + n(x) 
– f(x): original image
– u(x): smoothed image 
– n(x): noise component

• An example: Tikhonov energy functional 

1. LINEAR DIFFUSION

Consider the Tikhonov energy functional [5] as an illustrative example:

(8) E(u) =
∫

Ω

(

(u − f )2 + α|∇u|2
)

dx

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the smooth approximation of f ,

• α > 0 is the scale parameter.

The first term in E(u) is the data fidelity term that penalizes the deviations between
u and f , and thus forces the restored image to be close to the original image. The
second term is called the regularization or smoothness term which penalizes the high
gradients, and gives preference to smooth approximations. The relative importance of
these two terms are defined by the scale parameter α.

The minimizing function u formally satisfies the Euler-Lagrange equation

(9) (u − f )− α∇2u = 0

with the Neumann boundary condition ∂u
∂n

∣

∣

∣

∂Ω
= 0.

It is possible to rewrite (9) as

(10) u − u0

α
= ∇2u with u0 = f ,

whichmay be regarded as an implicit time discretization of the linear diffusion equation
(1) where a single time step (T = α) is used. Note that diffusion time (scale selection)
problem is not really eliminated by the variational regularization, it is replaced with a
new parameter α that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that the smoothing process does
not consider information regarding important image features such as edges. It follows
that same amount of smoothing to be applied at every image location. As a result, the
diffusion process does smooth not only noise, but also image edges.

4
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Variational Regularization and 
Diffusion Equations 
• A strong relation between variational regularization methods 

and diffusion equations.
• The minimizing function u of the Tikhonov energy functional 

formally satisfies the Euler-Lagrange equation:

with the Neumann boundary condition
• can be rewritten as: 
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Today

• Linear Filtering
– Review 
– Gauss filter
– Linear diffusion

• Edge Detection
– Review
– Derivative filters
– Laplacian of Gaussian
– Canny edge detector



Signals and Images

• A signal is composed of low and high frequency 
components

low frequency components: smooth /
piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points



Edge detection

• Goal:  Identify sudden changes 
(discontinuities) in an image
– Intuitively, most semantic and shape 

information from the image can be 
encoded in the edges

– More compact than pixels

• Ideal: artist’s line drawing (but 
artist is also using object-level 
knowledge)

Slide credit: D. Lowe



Why do we care about edges?

• Extract information, recognize 
objects

• Recover geometry and viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

Source: J. Hays



Closeup of edges

Slide credit: D. Hoiem



What causes an edge?

Depth discontinuity: 
object boundary

Change in surface 
orientation: shape

Cast shadows

Reflectance change: 
appearance 
information, texture

Slide credit: K. Grauman



Characterizing edges

• An edge is a place of rapid change in the image 
intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Slide credit: K. Grauman



Derivatives with convolution
For 2D function f(x,y), the partial derivative is:

For discrete data, we can approximate using finite 
differences:

To implement above as convolution, what would be the 
associated filter?

ε
ε

ε

),(),(lim),(
0

yxfyxf
x
yxf −+
=

∂

∂
→

1
),(),1(),( yxfyxf

x
yxf −+
≈

∂

∂

Slide credit: K. Grauman



Partial derivatives of an image

-1     
1-1    1

x
yxf

∂

∂ ),(
y
yxf

∂

∂ ),(

Which shows changes with respect to x?
Slide credit: K. Grauman



Assorted finite difference filters

>> My = fspecial(‘sobel’);
>> outim = imfilter(double(im), My); 
>> imagesc(outim);
>> colormap gray;

Slide credit: K. Grauman



The gradient points in the direction of most rapid increase in 
intensity

Image gradient
• The gradient of an image: 

•

The gradient direction is given by

Slide credit: S. Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?



Original Image

Slide credit: K. Grauman



Gradient magnitude image

Slide credit: K. Grauman



Thresholding gradient 
with a lower threshold

Slide credit: K. Grauman



Thresholding gradient 
with a higher threshold

Slide credit: K. Grauman



Intensity profile

Slide credit: D. Hoiem



With a little Gaussian noise

Gradient

Slide credit: D. Hoiem



Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Slide credit: S. Seitz



Effects of noise

• Difference filters respond strongly to noise
– Image noise results in pixels that look very different from their 

neighbors
– Generally, the larger the noise the stronger the response

• What can we do about it?

Slide credit: D. Forsyth



Solution: smooth first

• To find edges, look for peaks in )( gf
dx
d

∗

f

g

f * g

)( gf
dx
d

∗

Slide credit: S. Seitz



Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the 
Gaussian kernel, and controls the amount of smoothing.

…

Slide credit: K. Grauman



Effect of σ on derivatives 

The apparent structures differ depending on 
Gaussian’s scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Slide credit: K. Grauman



So, what scale to choose?
It depends what we’re looking for.

Slide credit: K. Grauman



Smoothing and Edge Detection

• While eliminating noise via smoothing, we also lose some of 
the (important) image details.
– Fine details
– Image edges
– etc.

• What can we do to preserve such details?
– Use edge information during denoising!
– This requires a definition for image edges. 

• Edge preserving image smoothing (Next week’s topic!)

Chicken-and-egg dilemma!



• Differentiation is convolution, and convolution is associative:

• This saves us one operation: g
dx
dfgf

dx
d

∗=∗ )(

Derivative theorem of convolution

g
dx
df ∗

f

g
dx
d

Slide credit: S. Seitz



Derivative of Gaussian filter

x-direction y-direction

Slide credit: S. Lazebnik

* [1 -1] = 



Derivative of Gaussian filter

• Which one finds horizontal/vertical edges?

x-direction y-direction

Slide credit: S. Lazebnik



Smoothing vs. derivative filters
• Smoothing filters

– Gaussian: remove “high-frequency” components; 
“low-pass” filter

– Can the values of a smoothing filter be negative?
– What should the values sum to?

• One: constant regions are not affected by the filter

• Derivative filters
– Derivatives of Gaussian
– Can the values of a derivative filter be negative?
– What should the values sum to? 

• Zero: no response in constant regions
– High absolute value at points of high contrast

Slide credit: S. Lazebnik



Laplacian of Gaussian
Consider  

Laplacian of Gaussian
operator

Where is the edge?  Zero-crossings of bottom graph
Slide credit: K. Grauman



2D edge detection filters

• The Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Slide credit: K. Grauman



Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

original image

Source: D. Marr and E. Hildreth (1980)



Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with

Source: D. Marr and E. Hildreth (1980)



Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with

(pos. values – white, neg. values – black)

Source: D. Marr and E. Hildreth (1980)



Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

zero-crossings

Source: D. Marr and E. Hildreth (1980)



Designing an edge detector

• Criteria for a good edge detector:
– Good detection: the optimal detector should find all real edges, 

ignoring noise or other artifacts
– Good localization

• the edges detected must be as close as possible to the true edges
• the detector must return one point only for each true edge point

• Cues of edge detection
– Differences in color, intensity, or texture across the boundary
– Continuity and closure
– High-level knowledge

Slide credit: L. Fei-Fei



The Canny edge detector

original image (Lena)

Slide credit: K. Grauman



The Canny edge detector

norm of the gradientthresholding

Slide credit: K. Grauman



The Canny edge detector

thresholding

How to turn 
these thick 
regions of the 
gradient into 
curves?

Slide credit: K. Grauman



Non-maximum suppression

Check if pixel is local maximum along gradient direction, 
select single max across width of the edge

– requires checking interpolated pixels p and r

Slide credit: K. Grauman



The Canny Edge Detector

thinning
(non-maximum suppression)

Problem: pixels along 
this edge didn’t 
survive the 
thresholding

Slide credit: K. Grauman



Hysteresis thresholding

• Threshold at low/high levels to get weak/strong edge pixels
• Do connected components, starting from strong edge pixels

Slide credit: J. Hays



Hysteresis thresholding
• Check that maximum value of gradient value is 

sufficiently large
– drop-outs?  use hysteresis

• use a high threshold to start edge curves and a low threshold to 
continue them.

Slide credit: S. Seitz



Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Slide credit: L. Fei-Fei



original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Slide credit: L. Fei-Fei

Hysteresis thresholding



Recap: Canny edge detector

1. Filter image with derivative of Gaussian 
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

– Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):

– Define two thresholds: low and high
– Use the high threshold to start edge curves and 

the low threshold to continue them
• MATLAB:   edge(image, ‘canny’);

Slide credit: D. Lowe, L. Fei-Fei



Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of σ depends on desired behavior
• large σ detects large scale edges
• small σ detects fine features

Slide credit: S. Seitz



Background Texture Shadows

Low-level edges vs. perceived contours

Slide credit: K. Grauman



Edge detection is just the beginning…

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Source: S. Lazebnik



[D. Martin et al. 
PAMI 2004]

Human-marked segment boundaries

Learn from 
humans which 
combination of 
features is 
most indicative 
of a “good” 
contour?

Slide credit: K. Grauman


