BIL 717

Image Processing
Feb. 15, 2016

Linear Filtering
Edge Detection

Erkut Erdem

Hacettepe University
Computer Vision Lab (HUCVL)

Today

« Linear Filtering
— Review
— Gauss filter
— Linear diffusion

« Edge Detection
— Review
— Derivative filters
— Laplacian of Gaussian
— Canny edge detector

Today

« Linear Filtering
— Review
— Gauss filter
— Linear diffusion

Filtering

* The name “filter” is borrowed from frequency domain

processing

« Accept or reject certain frequency components

Fourier (1807):

Periodic functions
could be represented
as a weighted sum of
sines and cosines

Image courtesy of Technology Review

Signals

« A signal is composed of low and high frequency
components

low frequency components: smooth/
piecewise smooth

Neighboring pixels have similar brightness values
You’re within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values
You’re either at the edges or noise points

Signals - E

xamples

300

250

200

150

100

50

300

250

200

150

100

50

50

I
100

I
150

1
200

L
250

50

100

150

200

250

Motivation: noise reduction

« Assume image is degraded with an additive model.
e Then,

Observation = True signal + noise

Observed image = Actual image + noise

low-pass
filters

l

smooththe image

Common types of noise

— Salt and pepper noise:
random occurrences of
black and white pixels

— Impulse noise:
random occurrences of
white pixels

— Gaussian noise: Original
variations in intensity
drawn from a Gaussian
normal distribution

Impulse noise Gaussian noise
Shide credit: S. Seitz

Gaussian noise

Ideal Image Noise process Gaussian i.i.d. (“white") noise:
flx,y)= f(z,y) + n(z,y) n(z,y) ~N(u,o)
>> noise = randn(size (im)) .*sigma;
>> output = im + noise;

What is the impact of the sigma”?

Slide credit: M. Hebert

Motivation: noise reduction

1]
801

(cc

« Make multiple olbservations of the same static scene

« Take the average

« Even multiple images of the same static scene will not be
identical.

Adapted from: K. Grauman

Motivation: noise reduction

« Make multiple olbservations of the same static scene

« Take the average

« Even multiple images of the same static scene will not be
identical.

« \What if we can’t make multiple observations”?
: ; :
What if there’s only one image? Adapted from: K. Grauman

Image Filtering

» |dea: Use the information coming from the
neighboring pixels for processing

« Design a transformation function of the local
neighborhood at each pixel in the image

— Function specified by a “filter” or mask saying how to
combine values from neighlbors.

 Various uses of filtering:
— Enhance an image (denoise, resize, etc)
— Extract information (texture, edges, etc)
— Detect patterns (template matching)

Adapted from: K. Grauman

Filtering

Processing done on a function
— can be executed in continuous form (e.g. analog circuit)
— but can also be executed using sampled representation

Simple example: smoothing by averaging

continuous smoothing filter discrete smoothing filter
| B I I
X—r X X+r I—r i i+r

Slhide credit; S. Marschner

Linear filtering

 Filtered value is the linear combination of neighboring
pixel values.

» Key properties

— linearity: filter(f + g) = filter(f) + filter(g)

— shift invariance: behavior invariant to shifting the input
 delaying an audio signal
« sliding an image around

« Can be modeled mathematically by convolution

Adapted from: S. Marschner

First attempt at a solution

e | et’s replace each pixel with an average of all the values In
Its neighbborhood

e Assumptions:

— Expect pixels to be like their neighbors (spatial regularity in images)
— Expect noise processes to be independent from pixel to pixel

Shde credit: S. Marschner, K. Grauman

First attempt at a solution

e | et’s replace each pixel with an average of all the values In
Its neighbborhood

¢ Moving average in 1D:

Slhide credit; S. Marschner

Discrete convolution

« Simple averaging:

1 1+r
bsmooth[i] — o + 1 Z b[j]
j=ti—r

— every sample gets the same weight
« (Convolution: same idea but with weighted average

(axb)[i] = aljlbli —]

J

— each sample gets its own weight (normally zero far away)

e This is all convolution is: it IS a moving weighted average

Slhide credit; S. Marschner

Filters

« Sequence of weights alj] is called a filter

 Filter iIs nonzero over its region of support
— usually centered on zero: support radius r

e Filter is normalized so that it sums to 1.0

— this makes for a weighted average, not just any
old weighted sum

— since for images we usually want to treat
left and right the same -

* Most filters are symmetric about O 2r1+1 N [[[‘

a box filter

Slhide credit; S. Marschner

Convolution and filtering

« (Can express sliding average as convolution with a box filter
* dpox=1.--,0,1,1,1,1,1,0, ...]

Example: box and step

" LTI

Slhide credit; S. Marschner

Convolution and filtering

« Convolution applies with any sequence of weights
 Example: bell curve (gaussian-like) [..., 1, 4, 6,4, 1, ...]/16

And In pseudocode...

function convolve(sequence a, sequence b, int r, int 7)

8 =0
for j = —r tor

s = s+ alj|b[t — 7]
return s

Slhide credit; S. Marschner

Key properties

e Linearity: filter(f; + 1,) = filter(f;) + filter(f,)
e Shift invariance: filter(shift(f)) = shift(filter(7))

e same behavior regardless of pixel location, i.e. the value of the output
depends on the pattern in the image neighborhood, not the position

of the neighborhood.

e T[heoretical result: any linear shift-invariant operator can be
represented as a convolution

Shide credit: S. Lazebnik

Properties in more detail

e Commutative:a*b=b *a
— Conceptually no difference between filter and signal

e Associative:a*(b*c)=(@”*b)*c
— Often apply several filters one after another: ((@ * b4) * by) * bs)
— This is equivalent to applying one filter: a* (b4 * b, * by)

e Distributes over addition: a* (b +c¢c)=(@ *b) + (@ * c)
e Scalarsfactor out: ka *b=a *kb =k (@ * b)

e [dentity: unit impulsee =1...,0,0,1, 0,0, ...],
a‘e=a

Shide credit: S. Lazebnik

Discrete filtering in 2D

Same equation, one more index
(axb)i,j] =) ali',jbli —',5 — §']

S i
]

— now the filter is a rectangle you slide around over a grid of numbers

Usefulness of associativity
— often apply severalfilters one after another: (((@ * by) * b,) * bs)
— this is equivalent to applying one filter: a * (b4 * b, * by)

Slhide credit; S. Marschner

And In pseudocode...

function convolve2d(filter2d a, filter2d b, int ¢, int 7)
8 =il)
r = a.radius
for i/ = —rtordo
for ;' = —rtordo
s = 5+ alf][§']bli — 15 —
return s

Slhide credit; S. Marschner

Moving Average In 2D

Flz,y] B Glz,y]

Shlide credit: S. Seitz

Moving Average In 2D

Flz,y] Glz,y]

Shlide credit: S. Seitz

Moving Average In 2D

Flz,y]

Shlide credit: S. Seitz

Averaging filter

« \What values belong in the kernel H for the moving
average example?

Flz,y] ® Hlu,v] Glz, y]

1 1 1 0 |1020 30!r.i.!
“l1 (21
1111

“box filter”

G=HQF

Slide credit; K. Grauman

Smoothing by averaging

depicts box filter:
< white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 37
Slide credit: K. Grauman

Boundary issues

« What is the size of the output?
e MATLAB: output size / “shape” options

— Shape = ‘full’: output size is sum of sizes of f and g
— Shape = ‘same’: output size is same as f
— Shape = ‘valid’: output size is difference of sizes of f and g

full same valid

Shide credit: S. Lazebnik

Boundary issues

« \What about near the edge?
— the filter window falls off the edge of the image
— need to extrapolate
— methods:
« clip filter (black) '
* wrap around
e COpy edge
» reflectacross edge

Slhide credit; S. Marschner

Boundary issues

« \What about near the edge?
— the filter window falls off the edge of the image

— need to extrapolate

— methods (MATLAB):
« clip filter (black): imfilter (£, g, 0)
e wrap around: imfilter(f, g, ‘circular’)
e COpYy edge: imfilter(f, g, ‘replicate’)

(
(
(
 reflectacross edge: imfilter (f, g, ‘symmetric’)

Slide credit: S. Marschner

Gaussian filter

« What if we want nearest neighboring pixels to have the
most influence on the output?

This kernel is an
approximation of a 2d
Gaussian function:

1|21 1 u? 42
1 PP =gl
16 To

121

Hlu,]

Flz,y]

Removes high-frequency components from the image

(|OW_paSS fllter) Shide credit: S. Seitz

Smoothing with a Gaussian

Slide credit: K. Grauman

Gaussian filters

» \What parameters matter here?

e Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete
filters use finite kernels

o = 5 with 0 = 5 with
10 x 10 kernel 30 x 30 kernel

Slide credit; K. Grauman

Gaussian filters

» \What parameters matter here?

 Variance of Gaussian: determines extent of

smoothing

0.02
0.01

o =2 with o = 5 with
30 x 30 kernel 30 x 30 kernel

Slide credit; K. Grauman

Matlab

>>

>>

>>

>>

>>

>>
>>

hsize = 10;

sigma = 5;

h = fspecial (‘gaussian’ hsize, sigma);
mesh (h);

imagesc (h) ; E

outim = 1Imfilter(im, h),; % correlation

imshow (outim) ;

outim

Slide credit; K. Grauman

Smoothing with a Gaussian

Parameter o is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

o o o
10
20
30

0 10 20 30 0 10 20 30 0 10 20 30

for sigma=1:3:10
h = fspecial ('gaussian', fsize, sigma);
out = imfilter (im, h);
imshow (out) ;
pause;
end
Shide credit: K. Grauman

Properties of smoothing filters

« SMOOothing
— Values positive
— Sum to 1 - constant regions same as input
— Amount of smoothing proportional to mask size
— Remove “high-frequency” components; “low-pass” filter

Slide credit; K. Grauman

Linear Diffusion

« Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x,0) = u9(x) = fx).
* The linear diffusion process can be defined by the equation:
ou

o V- (Vu) =V-u

where V - denotes the divergence operator. Thus,

ou ?u o%u

T Y2

Linear Diffusion (cont’d.)

 Diffusion process as an evolution process.
* Artificial time variable t denotes the diffusion time

* |nput image Is smoothed at a constant rate in all
directions.
— u9(x): initial image,
— u(x, t): the evolving images under the governed equation

representing the successively smoothed versions of the
initial input image 1 (x).

» Diffusion process creates a scale space representation
of the given image f, with t > O being the scale.

Heat equation: O

Linear Diffusion

(cont’d.)
Bu B o 2
a =V - (VU) = V~-°u

red: active areas
blue: inactive area

gray-levelimage
Intensity Diffusion

influence of the central pixel
<— on the other pixels
(red: high, blue: low)

Credit: S. Paris

Linear Diffusion (cont’d.)

« As we move to coarser scales,
— Evolving images become more and more simplified

— Diffusion process removes the image structures at finer scales.
T=0 T=1.25 T=25

Linear Diffusion (cont’d.)

« As we move to coarser scales,
— Evolving images become more and more simplified

— Diffusion process removes the image structures at finer scales.
T=0 T=5 T =10

Linear Diffusion and Gaussian Filtering

« The solution of the linear diffusion can be explicitly estimated
as:

u(x, T) = (G\/ﬁ*f) (x)

" 1 x|
With Go (x) = 27102 exp 202

« Solution of the linear diffusion equation is equivalent to a
proper convolution of the input image with the Gaussian
kernel G,(x) with standard deviation o = /2T

* The higher the value of T, the higher the value of o, and the
more smooth the image becomes.

Numerical Implementation

« Solving the linear diffusion equation requires discretization in
both spatial and time coordinates.

« Central differences for the spatial derivatives:

dzui,]' Hithyj 2”1’,]' =+ Wihy,i
dx2 h%
dzui,]' _ Wijtny, — 2Uij+ Ui j—p,
diy2 ™ h%

where u;; denotes the gray value or the brightness of the
evolving image at pixel location (/, j).

« We take h, = h, =1 for a regular grid.

Numerical Implementation (cont’d.)

« Qriginal model:
du d*u du

ot 92 ap
« Space discrete version:
dui,]-

= Wit Ui e U — A

e Space-time discrete version:
k+1 _ k

u. u. .
L] Lk k k k k
IV S R Y R PR T Rl
homogeneous Neumannboundary condition At <0.25 is required for

along the image boundary numerical stability

Variational Regularization

« Variational regularization models formulate smoothing
process as a functional minimization via which a noise-free
approximation of a given image is to be estimated.

« With an additive model, fix) = u(x) + n(x)
— 1(x): original image
— u(x): smoothed image
— n(x): noise component

« An example: Tikhonov energy functional

E(u) = / ((u— £ +a|Vul?) dx

QO

Tikhonov energy functional

E(u) = / ((u— £ +a|Vul?) dx
(O v)\ v J
data fidelity regularization
term term

(2 C R2is connected, bounded, open subset representing
the image domain,

« fis animage defined on ¢,
* U Is the smooth approximation of f,

 a >0 isthe scale parameter.

Variational Regularization and
Diffusion Equations

« A strong relation between variational regularization methods
and diffusion equations.

* The minimizing function u of the Tikhonov energy functional
formally satisfies the Euler-Lagrange equation:

(u—f)—aViu=0

with the Neumann boundary condition g—” — 0
190y
e can be rewritten as:
_ 0
e “u = Vu with u’ = f

implicit time discretization of the linear diffusion

equation with a single time step (7T = Q)

Today

« Edge Detection
— Review
— Derivative filters
— Laplacian of Gaussian
— Canny edge detector

Signals and Images

« A signal is composed of low and high frequency
components

low frequency components: smooth/
piecewise smooth

Neighboring pixels have similar brightness values
You’re within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values
You’re either at the edges or noise points

Edge detection

e Goal: |dentify sudden changes

(discontinuities) in an image // ™
— Intuitively, most semantic and shape P J
information from the image canbe /[

encoded in the edges
— More compact than pixels

e |deal: artist’s line drawing (but
artist is also using object-level
knowledge)

Slide credit: D. Lowe

Why do we care about edges?

« Extract information, recognize
objects

« Recover geometry and viewpoint # Vertical vanishing
B O S R L A (at ?rfl)fli:tity)
Vanishing [x
\
V\ ishi e /
anishing Vanishing
point point

Source: J. Hays

Closeup of edges

Shide credit: D. Hoiem

What causes an edge?

Depth discontinuity:
Reflectance change: object boundary
appearance

information, texture

Cast shadows

Change in surface
orientation: shape

Shide credit: K. Grauman

Characterizing edges

e An edge is a place of rapid change in the image

Intensity function
intensity function

image (along horizontal scanline) first derivative

\ |

edges correspond to
extrema of derivative
Shde credit: K. Grauman

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

af(xay) =1imf(x+gay)_f(xay)

0x £—0 £

For discrete data, we can approximate using finite
differences:

af(xay) - f(x'l'lay)_f(xay)
0x 1

To implement above as convolution, what would be the
associated filter?

Shide credit: K. Grauman

Partial derivatives of an image

Which shows changes with respect to x?

Shde credit: K. Grauman

Assorted finite difference filters

11011 111 1
Prewitt: M, = |-1]0]1 s M, = ol ol o
-1 10 -1 -1 -1
-1|10]1 1| 211
Sobel: M, = [-2]0]2 | My = [0] 0O
11011 -1 1-2]-1

o
[

Roberts: M, =

>> My = fspecial(‘sobel’);

>> outim = imfilter (double(im), My)
>> imagesc (outim) ;

>> colormap gray;

Shde credit: K. Grauman

Image gradient

* The gradient of an image: Vf — [gi’ g}i]

e T N TR
. I_ vf:[o 8_f] k

The gradient points in the direction of most rapid increase in

intensity
How does this directionrelate to the direction of the edge?

The gradient direction is given by # = tan—1 (g—i/g—i)

The edge strength is given by the gradient magnitude

1971 = /(GD)° + (G

Slide credit: S. Seitz

Original Image

Shide credit: K. Grauman

Gradient magnitude image

Shide credit: K. Grauman

Thresholding gradient
with a lower threshold

Shide credit: K. Grauman

Thresholding gradient
with a higher threshold

Shide credit: K. Grauman

0.8

Intensity profile yTy .

05k .

04t t

03F .

02t]
01} L/‘)/\J“\JL]
N «]

0 100 200 300 400 500 600

0.4

03F .

0 /r»q (\»A»I»MA—-
01k i

02F .

03

1 1 1 1 1
0 100 200 300 400 500 600

Shide credit: D. Hoiem

With a little Gaussian noise

3

- %

- : # ' 4
i i & g

8 5

0.4

03F .

;:,:S.'

EisiElelad.

01F i

> :%.‘,‘_; j:;_:—\.’.._“:_f, i, Ny e 02F .

03 1 1 1 1 1
0 100 200 300 400 500 600

Gradient

Shde credit: D. Holem

Effects of noise

« (Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

f@l

I I I I I I I I

I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

I I I I ; I I I

()

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Shide credit: S. Seitz

Effects of noise

¢ Difference filters respond strongly to noise

— Image noise results in pixels that look very different from their
neighbors

— Generally, the larger the noise the stronger the response

e \What can we do about it?

Shide credit: D. Forsyth

Solution: smooth first

Sigma = 50

0 200 400 600 800 1000

T T T T T T l I l
- : . .
=
é; G
X
0
c ',
ke’ :
3k 3 :
) : : : : :
f g N ; : : : :
Q : U S
O | | | | 1 | 1 | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
c T T T T T T T T T
O : : : 0 : 0
d 5 5 s 5 5 5 s
—(f*g) 5 SN
dx & s 5 s s 5 s
o0 i 1 I R [| I - AR
0 200 400 600 800 1000 1200 1400 1600 1800 2000

. . d
To find edges, look for peaks in a(f*g)

Shide credit: S. Seitz

Smoothing with a Gaussian

Recall: parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.

H -
10
20
30

0 10 20 30 0 10 20 30 0 10 20 30

Shide credit: K. Grauman

Effect of o on derivatives

o = 3 pixels

The apparent structures differ depending on
Gaussian’ s scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

Shide credit: K. Grauman

So, what scale to choose?

It depends what we're looking for.

Shide credit: K. Grauman

Smoothing and Edge Detection

« While eliminating noise via smoothing, we also lose some of
the (important) image details.
— Fine details
— Image edges
— etc.

« What can we do to preserve such details?
— Use edge information during denoising!
— This requires a definition for image edges.

Chicken-and-egg dilemmal!

« Edge preserving image smoothing (Next week’s topic!)

Derivative theorem of convolution

e Differentiation is convolution, and convolution

e [his saves us one operation:i(f*g) = f*ig

dx dx

IS associative:

Sigma = 50
T

...

T
- 5
c O R S S S S
> :
S |
; . ; . —— —— —— e
0 200 400 600 800 1000 1200 1400 1600 1800 2000
d 5
- P S S |
g
dx
; ; ; ; ; ; ; ; ;
0 200 400 600 800 1000 1200 1400 1600 1800 2000
d - s ; :
e} : : :
% —— 3 : s :
f g S ; : 5
dx 8 : : :
obF----- : | 1 : 1 | e |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Shide credit: S. Seitz

Derivative of Gaussian filter

1t
IR

XU BHK ARSI
A

‘\
R
i \ PN
Ty o
) ' ‘ R 9sesisss
i * NS
A 1 -1 = N
T S
AN -
U R SIS IEIS IS
ik
(

Shide credit: S. Lazebnik

Derivative of Gaussian filter

22

x-direction y-direction

« Which one finds horizontal/vertical edges”?
Shde credit: S. Lazebnik

Smoothing vs. derivative filters

Smoothing filters

— Gaussian: remove “high-frequency” components;
“low-pass” filter

— Can the values of a smoothing filter be negative?

— What should the values sum to?
» One: constant regions are not affected by the filter

Derivative filters
— Derivatives of Gaussian
— Can the values of a derivative filter be negative?

— What should the values sum to?
« Zero: no response in constant regions

— High absolute value at points of high contrast

Shide credit: S. Lazebnik

Laplacian of Gaussian
Consider 53—;(h x f)

Sigma = 50
I

0 200 400 600 800 1000 1200 1400 1600 1800 2000

/A B operator -

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution
()
f

(8x2h) * f

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge”? Zero-crossings of bottom graph

Shide credit: K. Grauman

2D edge detection filters

AN

NN
S SINES555
SN
OSSN

2erttogtosdy S
S
SRS

oS

Gaussian derivative of Gaussian

1 _u2—|—v2 0
ho(u,v) = ——=e 202 —ho(u,v)

2mo2 ox

e [he Laplacian operator:

o2 o2
V2 =5+ 5k

Shide credit: K. Grauman

Laplacian of Gaussian

original image

Source: D. Marr and E. Hildreth (1980)

Laplacian of Gaussian

convolution with
VZhe(u,v)

Source: D. Marr and E. Hildreth (1980)

Laplacian of Gaussian

convolution with

VZhe(u,v)
(pos. values — white, neg. values — black)

Source: D. Marr and E. Hildreth (1980)

Laplacian of Gaussian

ZEro-Ccrossings

Source: D. Marr and E. Hildreth (1980)

Designing an edge detector

e (Criteria for a good edge detector:

— Good detection: the optimal detector should find all real edges,
ignoring noise or other artifacts

— Good localization
» the edges detected must be as close as possible to the true edges
» the detector must return one point only for each true edge point

« (Cues of edge detection

— Differences in color, intensity, or texture across the boundary
— Continuity and closure
— High-level knowledge

Slide credit; L. Fei-Fei

The Canny edge detector

original image (Lena)

Shide credit: K. Grauman

The Canny edge detector

thresholding

Shide credit: K. Grauman

The Canny edge detector

ft)
M;e.
> {

Shide credit: K. Grauman

How to turn
these thick
regions of the
gradient into
curves?

Non-maximum suppression

® ® ® o o
P
] ® @
_ q
Gradient /
® ® O o ®
r
® @ ® ®

Check if pixel is local maximum along gradient direction,
select single max across width of the edge
— requires checking interpolated pixels p and r

Shide credit: K. Grauman

The Canny Edge Detector

Problem: pixels along

this edge didn’t

survive the
thresholding

thinning
(non-maximum suppression)

Shide credit: K. Grauman

Hysteresis thresholding

« Threshold at low/high levels to get weak/strong edge pixels
* Do connected components, starting from strong edge pixels

—— e

i
I

Shide credit: J. Hays

Hysteresis thresholding

» Check that maximum value of gradient value is
sufficiently large

— drop-outs? use hysteresis

» use a high thresholdto start edge curves and a low threshold to
continue them.

Shide credit: S. Seitz

Hysteresis thresholding

high threshold low threshold hysteresis threshold

(strong edges) (weak edges)
Shide credit: L. Fei-Fel

Hysteresis thresholding

e,

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Shde credit; L. Fei-Fei

Recap: Canny edge detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
— Thin wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):
— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them

« MATLAB: edge(image, ‘canny’);

Shde credit: D. Lowe, L. Fei-Fel

Effect of 0 (Gaussian kernel spread/size)

original Cannywith 0 = 1 Canny witho = 2

The choice of o depends on desired behavior
¢ |large o detects large scale edges
e small o detects fine features
Slide credit: S. Seitz

Low-level edges vs. perceived contours

Background Texture Shadows
Shide credit: K. Grauman

Edge detection is just the beginning...

image human segmentation gradient magnitude

TS S

s

NNy e
A e s) N
R v By b T

| g \ j e
e Ly b
‘ DA AT

w

N
L)

DR S iy LY
Beeitsls [ENRT
T O AN R l
} / \@ / /,"' /) £
C. / \ |

» Berkeley segmentation database:
http://www.eecs.berkeley.edu/Besearch/Projects/CS/vision/grouping/segbench/

Source: S. Lazebnik

Learn from

humans which
combination of §
features is
most indicative
of a “good”

contour?
[D. Martin et al.

PAMI 2004]

Slide credit: K. Grauman Human-marked segment boundaries

