
BIL 717
Image Processing
Feb. 15, 2016

Linear Filtering
Edge Detection

Erkut Erdem
Hacettepe University

Computer Vision Lab (HUCVL)

Today

• Linear Filtering
– Review
– Gauss filter
– Linear diffusion

• Edge Detection
– Review
– Derivative filters
– Laplacian of Gaussian
– Canny edge detector

Today

• Linear Filtering
– Review
– Gauss filter
– Linear diffusion

• Edge Detection
– Review
– Derivative filters
– Laplacian of Gaussian
– Canny edge detector

Filtering

• The name “filter” is borrowed from frequency domain
processing

• Accept or reject certain frequency components
• Fourier (1807):

Periodic functions
could be represented
as a weighted sum of
sines and cosines

Image courtesy of Technology Review

Signals

• A signal is composed of low and high frequency
components

low frequency components: smooth /
piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points

Signals – Examples

Motivation: noise reduction

• Assume image is degraded with an additive model.
• Then,

Observation = True signal + noise
Observed image = Actual image + noise

low-pass
filters

smooth the image

Common types of noise

– Salt and pepper noise:
random occurrences of
black and white pixels

– Impulse noise:
random occurrences of
white pixels

– Gaussian noise:
variations in intensity
drawn from a Gaussian
normal distribution

Slide credit: S. Seitz

Gaussian noise

Slide credit: M. Hebert

>> noise = randn(size(im)).*sigma;
>> output = im + noise;

What is the impact of the sigma?

Motivation: noise reduction

• Make multiple observations of the same static scene
• Take the average
• Even multiple images of the same static scene will not be

identical.

Adapted from: K. Grauman

Motivation: noise reduction

• Make multiple observations of the same static scene
• Take the average
• Even multiple images of the same static scene will not be

identical.
• What if we can’t make multiple observations?

What if there’s only one image? Adapted from: K. Grauman

Image Filtering

• Idea: Use the information coming from the
neighboring pixels for processing

• Design a transformation function of the local
neighborhood at each pixel in the image
– Function specified by a “filter” or mask saying how to

combine values from neighbors.

• Various uses of filtering:
– Enhance an image (denoise, resize, etc)
– Extract information (texture, edges, etc)
– Detect patterns (template matching)

Adapted from: K. Grauman

Filtering

• Processing done on a function
– can be executed in continuous form (e.g. analog circuit)
– but can also be executed using sampled representation

• Simple example: smoothing by averaging

Slide credit: S. Marschner

Linear filtering

• Filtered value is the linear combination of neighboring
pixel values.

• Key properties
– linearity: filter(f + g) = filter(f) + filter(g)
– shift invariance: behavior invariant to shifting the input

• delaying an audio signal
• sliding an image around

• Can be modeled mathematically by convolution

Adapted from: S. Marschner

First attempt at a solution

• Let’s replace each pixel with an average of all the values in
its neighborhood

• Assumptions:
– Expect pixels to be like their neighbors (spatial regularity in images)
– Expect noise processes to be independent from pixel to pixel

Slide credit: S. Marschner, K. Grauman

First attempt at a solution

• Let’s replace each pixel with an average of all the values in
its neighborhood

• Moving average in 1D:

Slide credit: S. Marschner

Discrete convolution

• Simple averaging:

– every sample gets the same weight

• Convolution: same idea but with weighted average

– each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a moving weighted average

Slide credit: S. Marschner

Filters

• Sequence of weights a[j] is called a filter
• Filter is nonzero over its region of support
– usually centered on zero: support radius r
• Filter is normalized so that it sums to 1.0
– this makes for a weighted average, not just any

old weighted sum
• Most filters are symmetric about 0
– since for images we usually want to treat

left and right the same
a box filter

Slide credit: S. Marschner

Convolution and filtering

• Can express sliding average as convolution with a box filter
• abox = […, 0, 1, 1, 1, 1, 1, 0, …]

Slide credit: S. Marschner

Example: box and step

Slide credit: S. Marschner

Convolution and filtering

• Convolution applies with any sequence of weights
• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16

Slide credit: S. Marschner

And in pseudocode…

Slide credit: S. Marschner

Key properties

• Linearity: filter(f1 + f2) = filter(f1) + filter(f2)
• Shift invariance: filter(shift(f)) = shift(filter(f))

• same behavior regardless of pixel location, i.e. the value of the output
depends on the pattern in the image neighborhood, not the position
of the neighborhood.

• Theoretical result: any linear shift-invariant operator can be
represented as a convolution

Slide credit: S. Lazebnik

Properties in more detail

• Commutative: a * b = b * a
– Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
– Often apply several filters one after another: (((a * b1) * b2) * b3)
– This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)
• Scalars factor out: ka * b = a * kb = k (a * b)
• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],

a * e = a

Slide credit: S. Lazebnik

Discrete filtering in 2D

• Same equation, one more index

– now the filter is a rectangle you slide around over a grid of numbers

• Usefulness of associativity
– often apply several filters one after another: (((a * b1) * b2) * b3)
– this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner

And in pseudocode…

Slide credit: S. Marschner

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Slide credit: S. Seitz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Slide credit: S. Seitz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Slide credit: S. Seitz

Averaging filter
• What values belong in the kernel H for the moving

average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111
111
111

“box filter”

?

Slide credit: K. Grauman

Smoothing by averaging

depicts box filter:
white = high value, black = low value

original filtered
What if the filter size was 5 x 5 instead of 3 x 3?

Slide credit: K. Grauman

Boundary issues

• What is the size of the output?
• MATLAB: output size / “shape” options

– shape = ‘full’: output size is sum of sizes of f and g
– shape = ‘same’: output size is same as f
– shape = ‘valid’: output size is difference of sizes of f and g

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Slide credit: S. Lazebnik

Boundary issues

• What about near the edge?
– the filter window falls off the edge of the image
– need to extrapolate
– methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge

Slide credit: S. Marschner

Boundary issues

• What about near the edge?
– the filter window falls off the edge of the image
– need to extrapolate
– methods (MATLAB):

• clip filter (black): imfilter(f, g, 0)
• wrap around: imfilter(f, g, ‘circular’)
• copy edge: imfilter(f, g, ‘replicate’)
• reflect across edge: imfilter(f, g, ‘symmetric’)

Slide credit: S. Marschner

Gaussian filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want nearest neighboring pixels to have the
most influence on the output?

• Removes high-frequency components from the image
(“low-pass filter”).

This kernel is an
approximation of a 2d
Gaussian function:

Slide credit: S. Seitz

Smoothing with a Gaussian

Slide credit: K. Grauman

Gaussian filters
• What parameters matter here?
• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete
filters use finite kernels

σ = 5 with
10 x 10 kernel

σ = 5 with
30 x 30 kernel

Slide credit: K. Grauman

Gaussian filters
• What parameters matter here?
• Variance of Gaussian: determines extent of

smoothing

σ = 2 with
30 x 30 kernel

σ = 5 with
30 x 30 kernel

Slide credit: K. Grauman

Matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation
>> imshow(outim);

outim
Slide credit: K. Grauman

Smoothing with a Gaussian

for sigma=1:3:10
h = fspecial('gaussian‘, fsize, sigma);
out = imfilter(im, h);
imshow(out);
pause;

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

Slide credit: K. Grauman

Properties of smoothing filters

• Smoothing
– Values positive
– Sum to 1 à constant regions same as input
– Amount of smoothing proportional to mask size
– Remove “high-frequency” components; “low-pass” filter

Slide credit: K. Grauman

Linear Diffusion

• Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x,0) = u0(x) = f(x).

• The linear diffusion process can be defined by the equation:

where ∇· denotes the divergence operator. Thus,

LINEAR DIFFUSION

Erkut Erdem∗

Hacettepe University

February 24th, 2012

CONTENTS

1 Linear Diffusion 1

2 Appendix - The Calculus of Variations 5

References 6

1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1) ∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2) ∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.

∗erkut@cs.hacettepe.edu.tr

1

LINEAR DIFFUSION

Erkut Erdem∗

Hacettepe University

February 24th, 2012

CONTENTS

1 Linear Diffusion 1

2 Appendix - The Calculus of Variations 5

References 6

1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1) ∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2) ∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.

∗erkut@cs.hacettepe.edu.tr

1

Linear Diffusion (cont’d.)

• Diffusion process as an evolution process.
• Artificial time variable t denotes the diffusion time
• Input image is smoothed at a constant rate in all

directions.
– u0(x): initial image,
– u(x, t): the evolving images under the governed equation

representing the successively smoothed versions of the
initial input image f (x).

• Diffusion process creates a scale space representation
of the given image f , with t > 0 being the scale.

Linear Diffusion
(cont’d.)

LINEAR DIFFUSION

Erkut Erdem∗

Hacettepe University

February 24th, 2012

CONTENTS

1 Linear Diffusion 1

2 Appendix - The Calculus of Variations 5

References 6

1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1) ∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2) ∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.

∗erkut@cs.hacettepe.edu.tr

1

red: active areas
blue: inactive area

influence of the central pixel
on the other pixels
(red: high, blue: low)

gray-level image

Credit: S. Paris

Linear Diffusion (cont’d.)

• As we move to coarser scales,
– Evolving images become more and more simplified
– Diffusion process removes the image structures at finer scales.

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2

Linear Diffusion (cont’d.)

• As we move to coarser scales,
– Evolving images become more and more simplified
– Diffusion process removes the image structures at finer scales.

T = 0 T = 5 T = 10

T = 20 T = 40 T = 80

Figure 2: Linear diffusion results for different diffusion times.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) and u(x) respectively denote the given noisy image and the desired de-
noised image, and n(x) represents the additive noise.

3

Linear Diffusion and Gaussian Filtering

• The solution of the linear diffusion can be explicitly estimated
as:

with

• Solution of the linear diffusion equation is equivalent to a
proper convolution of the input image with the Gaussian
kernel Gσ(x) with standard deviation

• The higher the value of T, the higher the value of σ, and the
more smooth the image becomes.

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2

Numerical Implementation

• Solving the linear diffusion equation requires discretization in
both spatial and time coordinates.

• Central differences for the spatial derivatives:

where ui,j denotes the gray value or the brightness of the
evolving image at pixel location (i, j).
• We take hx = hy = 1 for a regular grid.

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to

2

Numerical Implementation (cont’d.)

• Original model:

• Space discrete version:

• Space-time discrete version:

LINEAR DIFFUSION

Erkut Erdem∗

Hacettepe University

February 24th, 2012

CONTENTS

1 Linear Diffusion 1

2 Appendix - The Calculus of Variations 5

References 6

1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1) ∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2) ∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.

∗erkut@cs.hacettepe.edu.tr

1

T = 0 T = 5 T = 10

T = 20 T = 40 T = 80

Figure 2: Linear diffusion results for different diffusion times.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) and u(x) respectively denote the given noisy image and the desired de-
noised image, and n(x) represents the additive noise.

3

T = 0 T = 5 T = 10

T = 20 T = 40 T = 80

Figure 2: Linear diffusion results for different diffusion times.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) and u(x) respectively denote the given noisy image and the desired de-
noised image, and n(x) represents the additive noise.

3

homogeneous Neumann boundary condition
along the image boundary

∆t ≤ 0.25 is required for
numerical stability

Variational Regularization

• Variational regularization models formulate smoothing
process as a functional minimization via which a noise-free
approximation of a given image is to be estimated.

• With an additive model, f(x) = u(x) + n(x)
– f(x): original image
– u(x): smoothed image
– n(x): noise component

• An example: Tikhonov energy functional

1. LINEAR DIFFUSION

Consider the Tikhonov energy functional [5] as an illustrative example:

(8) E(u) =
∫

Ω

(

(u − f)2 + α|∇u|2
)

dx

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the smooth approximation of f ,

• α > 0 is the scale parameter.

The first term in E(u) is the data fidelity term that penalizes the deviations between
u and f , and thus forces the restored image to be close to the original image. The
second term is called the regularization or smoothness term which penalizes the high
gradients, and gives preference to smooth approximations. The relative importance of
these two terms are defined by the scale parameter α.

The minimizing function u formally satisfies the Euler-Lagrange equation

(9) (u − f)− α∇2u = 0

with the Neumann boundary condition ∂u
∂n

∣

∣

∣

∂Ω
= 0.

It is possible to rewrite (9) as

(10) u − u0

α
= ∇2u with u0 = f ,

whichmay be regarded as an implicit time discretization of the linear diffusion equation
(1) where a single time step (T = α) is used. Note that diffusion time (scale selection)
problem is not really eliminated by the variational regularization, it is replaced with a
new parameter α that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that the smoothing process does
not consider information regarding important image features such as edges. It follows
that same amount of smoothing to be applied at every image location. As a result, the
diffusion process does smooth not only noise, but also image edges.

4

Tikhonov energy functional

• Ω⊂ R2 is connected, bounded, open subset representing
the image domain,

• f is an image defined on Ω,
• u is the smooth approximation of f ,
• α > 0 is the scale parameter.

1. LINEAR DIFFUSION

Consider the Tikhonov energy functional [5] as an illustrative example:

(8) E(u) =
∫

Ω

(

(u − f)2 + α|∇u|2
)

dx

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the smooth approximation of f ,

• α > 0 is the scale parameter.

The first term in E(u) is the data fidelity term that penalizes the deviations between
u and f , and thus forces the restored image to be close to the original image. The
second term is called the regularization or smoothness term which penalizes the high
gradients, and gives preference to smooth approximations. The relative importance of
these two terms are defined by the scale parameter α.

The minimizing function u formally satisfies the Euler-Lagrange equation

(9) (u − f)− α∇2u = 0

with the Neumann boundary condition ∂u
∂n

∣

∣

∣

∂Ω
= 0.

It is possible to rewrite (9) as

(10) u − u0

α
= ∇2u with u0 = f ,

whichmay be regarded as an implicit time discretization of the linear diffusion equation
(1) where a single time step (T = α) is used. Note that diffusion time (scale selection)
problem is not really eliminated by the variational regularization, it is replaced with a
new parameter α that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that the smoothing process does
not consider information regarding important image features such as edges. It follows
that same amount of smoothing to be applied at every image location. As a result, the
diffusion process does smooth not only noise, but also image edges.

4

data fidelity
term

regularization
term

Variational Regularization and
Diffusion Equations
• A strong relation between variational regularization methods

and diffusion equations.
• The minimizing function u of the Tikhonov energy functional

formally satisfies the Euler-Lagrange equation:

with the Neumann boundary condition
• can be rewritten as:

1. LINEAR DIFFUSION

Consider the Tikhonov energy functional [5] as an illustrative example:

(8) E(u) =
∫

Ω

(

(u − f)2 + α|∇u|2
)

dx

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the smooth approximation of f ,

• α > 0 is the scale parameter.

The first term in E(u) is the data fidelity term that penalizes the deviations between
u and f , and thus forces the restored image to be close to the original image. The
second term is called the regularization or smoothness term which penalizes the high
gradients, and gives preference to smooth approximations. The relative importance of
these two terms are defined by the scale parameter α.

The minimizing function u formally satisfies the Euler-Lagrange equation

(9) (u − f)− α∇2u = 0

with the Neumann boundary condition ∂u
∂n

∣

∣

∣

∂Ω
= 0.

It is possible to rewrite (9) as

(10) u − u0

α
= ∇2u with u0 = f ,

whichmay be regarded as an implicit time discretization of the linear diffusion equation
(1) where a single time step (T = α) is used. Note that diffusion time (scale selection)
problem is not really eliminated by the variational regularization, it is replaced with a
new parameter α that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that the smoothing process does
not consider information regarding important image features such as edges. It follows
that same amount of smoothing to be applied at every image location. As a result, the
diffusion process does smooth not only noise, but also image edges.

4

1. LINEAR DIFFUSION

Consider the Tikhonov energy functional [5] as an illustrative example:

(8) E(u) =
∫

Ω

(

(u − f)2 + α|∇u|2
)

dx

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the smooth approximation of f ,

• α > 0 is the scale parameter.

The first term in E(u) is the data fidelity term that penalizes the deviations between
u and f , and thus forces the restored image to be close to the original image. The
second term is called the regularization or smoothness term which penalizes the high
gradients, and gives preference to smooth approximations. The relative importance of
these two terms are defined by the scale parameter α.

The minimizing function u formally satisfies the Euler-Lagrange equation

(9) (u − f)− α∇2u = 0

with the Neumann boundary condition ∂u
∂n

∣

∣

∣

∂Ω
= 0.

It is possible to rewrite (9) as

(10) u − u0

α
= ∇2u with u0 = f ,

whichmay be regarded as an implicit time discretization of the linear diffusion equation
(1) where a single time step (T = α) is used. Note that diffusion time (scale selection)
problem is not really eliminated by the variational regularization, it is replaced with a
new parameter α that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that the smoothing process does
not consider information regarding important image features such as edges. It follows
that same amount of smoothing to be applied at every image location. As a result, the
diffusion process does smooth not only noise, but also image edges.

4

1. LINEAR DIFFUSION

Consider the Tikhonov energy functional [5] as an illustrative example:

(8) E(u) =
∫

Ω

(

(u − f)2 + α|∇u|2
)

dx

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the smooth approximation of f ,

• α > 0 is the scale parameter.

The first term in E(u) is the data fidelity term that penalizes the deviations between
u and f , and thus forces the restored image to be close to the original image. The
second term is called the regularization or smoothness term which penalizes the high
gradients, and gives preference to smooth approximations. The relative importance of
these two terms are defined by the scale parameter α.

The minimizing function u formally satisfies the Euler-Lagrange equation

(9) (u − f)− α∇2u = 0

with the Neumann boundary condition ∂u
∂n

∣

∣

∣

∂Ω
= 0.

It is possible to rewrite (9) as

(10) u − u0

α
= ∇2u with u0 = f ,

whichmay be regarded as an implicit time discretization of the linear diffusion equation
(1) where a single time step (T = α) is used. Note that diffusion time (scale selection)
problem is not really eliminated by the variational regularization, it is replaced with a
new parameter α that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that the smoothing process does
not consider information regarding important image features such as edges. It follows
that same amount of smoothing to be applied at every image location. As a result, the
diffusion process does smooth not only noise, but also image edges.

4

implicit time discretization of the linear diffusion
equation with a single time step (T = α)

Today

• Linear Filtering
– Review
– Gauss filter
– Linear diffusion

• Edge Detection
– Review
– Derivative filters
– Laplacian of Gaussian
– Canny edge detector

Signals and Images

• A signal is composed of low and high frequency
components

low frequency components: smooth /
piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points

Edge detection

• Goal: Identify sudden changes
(discontinuities) in an image
– Intuitively, most semantic and shape

information from the image can be
encoded in the edges

– More compact than pixels

• Ideal: artist’s line drawing (but
artist is also using object-level
knowledge)

Slide credit: D. Lowe

Why do we care about edges?

• Extract information, recognize
objects

• Recover geometry and viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

Source: J. Hays

Closeup of edges

Slide credit: D. Hoiem

What causes an edge?

Depth discontinuity:
object boundary

Change in surface
orientation: shape

Cast shadows

Reflectance change:
appearance
information, texture

Slide credit: K. Grauman

Characterizing edges

• An edge is a place of rapid change in the image
intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Slide credit: K. Grauman

Derivatives with convolution
For 2D function f(x,y), the partial derivative is:

For discrete data, we can approximate using finite
differences:

To implement above as convolution, what would be the
associated filter?

ε
ε

ε

),(),(lim),(
0

yxfyxf
x
yxf −+
=

∂

∂
→

1
),(),1(),(yxfyxf

x
yxf −+
≈

∂

∂

Slide credit: K. Grauman

Partial derivatives of an image

-1
1-1 1

x
yxf

∂

∂),(
y
yxf

∂

∂),(

Which shows changes with respect to x?
Slide credit: K. Grauman

Assorted finite difference filters

>> My = fspecial(‘sobel’);
>> outim = imfilter(double(im), My);
>> imagesc(outim);
>> colormap gray;

Slide credit: K. Grauman

The gradient points in the direction of most rapid increase in
intensity

Image gradient
• The gradient of an image:

•

The gradient direction is given by

Slide credit: S. Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?

Original Image

Slide credit: K. Grauman

Gradient magnitude image

Slide credit: K. Grauman

Thresholding gradient
with a lower threshold

Slide credit: K. Grauman

Thresholding gradient
with a higher threshold

Slide credit: K. Grauman

Intensity profile

Slide credit: D. Hoiem

With a little Gaussian noise

Gradient

Slide credit: D. Hoiem

Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Slide credit: S. Seitz

Effects of noise

• Difference filters respond strongly to noise
– Image noise results in pixels that look very different from their

neighbors
– Generally, the larger the noise the stronger the response

• What can we do about it?

Slide credit: D. Forsyth

Solution: smooth first

• To find edges, look for peaks in)(gf
dx
d

∗

f

g

f * g

)(gf
dx
d

∗

Slide credit: S. Seitz

Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.

…

Slide credit: K. Grauman

Effect of σ on derivatives

The apparent structures differ depending on
Gaussian’s scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Slide credit: K. Grauman

So, what scale to choose?
It depends what we’re looking for.

Slide credit: K. Grauman

Smoothing and Edge Detection

• While eliminating noise via smoothing, we also lose some of
the (important) image details.
– Fine details
– Image edges
– etc.

• What can we do to preserve such details?
– Use edge information during denoising!
– This requires a definition for image edges.

• Edge preserving image smoothing (Next week’s topic!)

Chicken-and-egg dilemma!

• Differentiation is convolution, and convolution is associative:

• This saves us one operation: g
dx
dfgf

dx
d

∗=∗)(

Derivative theorem of convolution

g
dx
df ∗

f

g
dx
d

Slide credit: S. Seitz

Derivative of Gaussian filter

x-direction y-direction

Slide credit: S. Lazebnik

* [1 -1] =

Derivative of Gaussian filter

• Which one finds horizontal/vertical edges?

x-direction y-direction

Slide credit: S. Lazebnik

Smoothing vs. derivative filters
• Smoothing filters

– Gaussian: remove “high-frequency” components;
“low-pass” filter

– Can the values of a smoothing filter be negative?
– What should the values sum to?

• One: constant regions are not affected by the filter

• Derivative filters
– Derivatives of Gaussian
– Can the values of a derivative filter be negative?
– What should the values sum to?

• Zero: no response in constant regions
– High absolute value at points of high contrast

Slide credit: S. Lazebnik

Laplacian of Gaussian
Consider

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph
Slide credit: K. Grauman

2D edge detection filters

• The Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Slide credit: K. Grauman

Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from

original image

Source: D. Marr and E. Hildreth (1980)

Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from

convolution with

Source: D. Marr and E. Hildreth (1980)

Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from

convolution with

(pos. values – white, neg. values – black)

Source: D. Marr and E. Hildreth (1980)

Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from

zero-crossings

Source: D. Marr and E. Hildreth (1980)

Designing an edge detector

• Criteria for a good edge detector:
– Good detection: the optimal detector should find all real edges,

ignoring noise or other artifacts
– Good localization

• the edges detected must be as close as possible to the true edges
• the detector must return one point only for each true edge point

• Cues of edge detection
– Differences in color, intensity, or texture across the boundary
– Continuity and closure
– High-level knowledge

Slide credit: L. Fei-Fei

The Canny edge detector

original image (Lena)

Slide credit: K. Grauman

The Canny edge detector

norm of the gradientthresholding

Slide credit: K. Grauman

The Canny edge detector

thresholding

How to turn
these thick
regions of the
gradient into
curves?

Slide credit: K. Grauman

Non-maximum suppression

Check if pixel is local maximum along gradient direction,
select single max across width of the edge

– requires checking interpolated pixels p and r

Slide credit: K. Grauman

The Canny Edge Detector

thinning
(non-maximum suppression)

Problem: pixels along
this edge didn’t
survive the
thresholding

Slide credit: K. Grauman

Hysteresis thresholding

• Threshold at low/high levels to get weak/strong edge pixels
• Do connected components, starting from strong edge pixels

Slide credit: J. Hays

Hysteresis thresholding
• Check that maximum value of gradient value is

sufficiently large
– drop-outs? use hysteresis

• use a high threshold to start edge curves and a low threshold to
continue them.

Slide credit: S. Seitz

Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Slide credit: L. Fei-Fei

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Slide credit: L. Fei-Fei

Hysteresis thresholding

Recap: Canny edge detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

– Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):

– Define two thresholds: low and high
– Use the high threshold to start edge curves and

the low threshold to continue them
• MATLAB: edge(image, ‘canny’);

Slide credit: D. Lowe, L. Fei-Fei

Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original

The choice of σ depends on desired behavior
• large σ detects large scale edges
• small σ detects fine features

Slide credit: S. Seitz

Background Texture Shadows

Low-level edges vs. perceived contours

Slide credit: K. Grauman

Edge detection is just the beginning…

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Source: S. Lazebnik

[D. Martin et al.
PAMI 2004]

Human-marked segment boundaries

Learn from
humans which
combination of
features is
most indicative
of a “good”
contour?

Slide credit: K. Grauman

