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Image segmentation

• Goal: identify groups of pixels that go together 

Slide credit: S. Seitz, K. Grauman

The goals of segmentation
• Separate image into coherent “objects”

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation

Slide credit: S. Lazebnik

The goals of segmentation
• Separate image into coherent “objects”
• Group together similar-looking pixels for efficiency of 

further processing

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

“superpixels”

Slide credit: S. Lazebnik



Segmentation

• Compact representation for image data in terms of a set of 
components 

• Components share “common” visual properties
• Properties can be defined at different level of abstractions

Slide credit: Fei-Fei Li

Segmentation methods
• K-means clustering
• Graph-theoretic segmentation
• Boundary Detection
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• These intensities define the three groups.
• We could label every pixel in the image according to 

which of these primary intensities it is.
• i.e., segment the image based on the intensity feature.

• What if the image isn’t quite so simple?
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Image segmentation: toy example

Slide credit: K. Grauman
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• Now how to determine the three main intensities that 
define our groups?

• We need to cluster.

Slide credit: K. Grauman

0 190 255

• Goal: choose three “centers” as the representative
intensities, and label every pixel according to which 
of these centers it is nearest to.

• Best cluster centers are those that minimize SSD 
between all points and their nearest cluster center 
ci:
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intensity

Slide credit: K. Grauman

Clustering
• With this objective, it is a “chicken and egg” problem:

– If we knew the cluster centers, we could allocate points 
to groups by assigning each to its closest center.

– If we knew the group memberships, we could get the 
centers by computing the mean per group.

Slide credit: K. Grauman

Common similarity/distance measures
• P-norms

– City Block (L1)
– Euclidean (L2)
– L-infinity

• Mahalanobis
– Scaled Euclidean

• Cosine distance

Here xi is the 
distance btw.
two points

Slide credit: D. Hoiem



K-means clustering

• Basic idea: randomly initialize the k cluster centers, and 
iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c1, ..., cK
2. Given cluster centers, determine points in each cluster

• For each point p, find the closest ci.  Put p into cluster i
3. Given points in each cluster, solve for ci

• Set ci to be the mean of points in cluster i
4. If ci have changed, repeat Step 2

Properties
• Will always converge to some solution
• Can be a “local minimum”

• does not always find the global minimum of objective function:

Slide credit: S. Seitz Slide credit: K Grauman, A. Moore

Slide credit: K Grauman, A. Moore Slide credit: K Grauman, A. Moore



Slide credit: K Grauman, A. Moore Slide credit: K Grauman, A. Moore

K-means: pros and cons
Pros
• Simple, fast to compute
• Converges to local minimum of 

within-cluster squared error

Cons/issues
• Setting k?
• Sensitive to initial centers
• Sensitive to outliers
• Detects spherical clusters
• Assuming means can be 

computed
Slide credit: K Grauman

An aside: Smoothing out cluster assignments

• Assigning a cluster label per pixel may yield outliers:

1 2
3

?
original labeled by cluster 

center’s intensity

• How to ensure they are 
spatially smooth?

Slide credit: K Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we 
can group pixels in different ways.

Grouping pixels based 
on intensity similarity 

Feature space: intensity value (1-d) 

Slide credit: K Grauman

K=2

K=3
quantization of the feature 
space; segmentation label map

Slide credit: K Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we can 
group pixels in different ways.

R=255
G=200
B=250

R=245
G=220
B=248
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G=189
B=2

R=3
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G
B

Grouping pixels based 
on color similarity 

Feature space: color value (3-d) 
Slide credit: K Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we 
can group pixels in different ways.

Grouping pixels based 
on intensity similarity 

Clusters based on intensity 
similarity don’t have to be spatially 
coherent.

Slide credit: K Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we can 
group pixels in different ways.

X

Grouping pixels based on 
intensity+position similarity 

Y
Intensity

Both regions are black, but if we 
also include position (x,y), then we 
could group the two into distinct 
segments; way to encode both 
similarity & proximity.Slide credit: K Grauman

Segmentation as clustering
• Color, brightness, position alone are not enough to 

distinguish all regions…

Slide credit: K Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we can 
group pixels in different ways.

F24

Grouping pixels based 
on texture similarity 

F2

Feature space: filter bank responses (e.g., 24-d) 

F1

…

Filter bank 
of 24 filters

Slide credit: K Grauman

Texture representation example

statistics to 
summarize patterns 
in small windows 

mean 
d/dx
value 

mean 
d/dy
value 

Win. #1 4 10

Win.#2 18 7

Win.#9 20         20

…

…
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Windows with 
small gradient 
in both 
directions

Windows with 
primarily 
vertical edges

Windows with 
primarily 
horizontal 
edges

Both

Slide credit: K Grauman



Segmentation with texture features
• Find “textons” by clustering vectors of filter bank outputs
• Describe texture in a window based on texton histogram 

Malik, Belongie, Leung and Shi. IJCV 2001.
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Slide credit: K Grauman, L. Lazebnik

Image segmentation example

Slide credit: K Grauman

Segmentation methods
• K-means clustering
• Graph-theoretic segmentation
• Boundary Detection

Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image

V: image pixels
E: connections 

between pairs of 
nearby pixels

Wij: probability that i & j 
belong to the same 
region

Segmentation = graph partition
Slide credit: B. Freeman and A. Torralba



Graphs Representations
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Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Slide credit: B. Freeman and A. Torralba

A Weighted Graph and its 
Representation
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Affinity Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Slide credit: B. Freeman and A. Torralba

Wij: probability that i & j 
belong to the same 
region

Segmentation by graph partitioning

• Break graph into segments
– Delete links that cross between segments
– Easiest to break links that have low affinity

• similar pixels should be in the same segments
• dissimilar pixels should be in different segments

A B C

wij
i

j

Slide credit: S. Seitz

Affinity between pixels

Similarities among pixel descriptors
Wij = exp(-|| zi – zj ||2 / σ2)

σ = Scale factor… 
it will hunt us later

Slide credit: B. Freeman and A. Torralba



Affinity between pixels

Interleaving edges
Wij = 1 - max Pb

Line between i and j

With Pb = probability of boundary

Slide credit: B. Freeman and A. Torralba

Similarities among pixel descriptors
Wij = exp(-|| zi – zj ||2 / σ2)

σ = Scale factor… 
it will hunt us later

Scale affects affinity

• Small σ: group only nearby points
• Large σ: group far-away points

Slide credit: S. Lazebnik

Three points in feature space

Wij = exp(-|| zi – zj ||2 / s2)
With an appropriate s

W=

The eigenvectors of W are:

The first 2 eigenvectors group the points
as desired…

British Machine Vision Conference, pp. 103-108, 1990

Slide credit: B. Freeman and A. Torralba

Example eigenvector

points

Affinity matrix

eigenvector

Slide credit: B. Freeman and A. Torralba



Example eigenvector

points

eigenvector

Affinity matrix

Slide credit: B. Freeman and A. Torralba

Graph cut

• Set of edges whose removal makes a graph 
disconnected

• Cost of a cut: sum of weights of cut edges
• A graph cut gives us a segmentation

– What is a “good” graph cut and how do we find one?

A B

Slide credit: S. Seitz

Minimum cut

€ 

cut(A,B) = W(u,v),
u∈A,v∈B
∑

                     with A ∩ B = ∅

Cut: sum of the weight of the cut edges:

A cut of a graph G is the set of edges S such that 
removal of S from G disconnects G.

Slide credit: B. Freeman and A. Torralba

Minimum cut

• We can do segmentation by finding the minimum cut in a 
graph
– Efficient algorithms exist for doing this

Minimum cut example

Slide credit: S. Lazebnik



Minimum cut

• We can do segmentation by finding the minimum cut in a 
graph
– Efficient algorithms exist for doing this

Slide credit: S. Lazebnik

Minimum cut example

Drawbacks of Minimum cut

• Weight of cut is directly proportional to the number of edges 
in the cut.

Ideal Cut

Cuts with 
lesser weight
than the 
ideal cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003Slide credit: B. Freeman and A. Torralba

Normalized cuts

assoc(A,V) is sum of all edges with one end in A.

cut(A,B) is sum of weights with one end in A and one end in B

Write graph as V, one cluster as A and the other as B

cut(A,B)
assoc(A,V)

cut(A,B)
assoc(B,V)

+Ncut(A,B) = 

€ 

cut(A,B) = W(u,v),
u∈A,v∈B
∑

                     with A ∩ B = ∅

€ 

assoc(A,B) = W(u,v)
u∈A,v∈B
∑

                     A and B not necessarily disjoint

Slide credit: B. Freeman and A. Torralba
J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Normalized cut
• Let W be the adjacency matrix of the graph
• Let D be the diagonal matrix with diagonal entries 

D(i, i) = Σj W(i, j) 
• Then the normalized cut cost can be written as

where y is an indicator vector whose value should be 1 
in the ith position if the ith feature point belongs to A and 
a negative constant otherwise
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Slide credit: S. LazebnikJ. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000



Normalized cut

• Finding the exact minimum of the normalized cut cost is NP-
complete, but if we relax y to take on arbitrary values, then 
we can minimize the relaxed cost by solving the generalized 
eigenvalue problem (D − W)y = λDy

• The solution y is given by the generalized eigenvector 
corresponding to the second smallest eigenvalue

• Intitutively, the ith entry of y can be viewed as a “soft” 
indication of the component membership of the ith feature
– Can use 0 or median value of the entries as the splitting point 

(threshold), or find threshold that minimizes the Ncut cost

Slide credit: S. LazebnikJ. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Normalized cut algorithm

Slide credit: B. Freeman and A. Torralba

Global optimization

• In this formulation, the segmentation becomes a global 
process. 

• Decisions about what is a boundary are not local (as in 
Canny edge detector)

Slide credit: B. Freeman and A. Torralba

Boundaries of image regions defined 
by a number of attributes

– Brightness/color
– Texture
– Motion
– Stereoscopic depth
– Familiar configuration

[Malik] Slide credit: B. Freeman and A. Torralba



N pixels = ncols * nrows

W = 

N

N

brightness Location

Affinity:

Example

Slide credit: B. Freeman and A. Torralba Slide credit: B. Freeman and A. Torralba

Brightness Image Segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf Slide credit: B. Freeman and A. Torralba Slide credit: B. Freeman and A. Torralba

Brightness Image Segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



Slide credit: B. Freeman and A. Torralbahttp://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Example results

Slide credit: S. Lazebnik

Results: Berkeley Segmentation Engine

http://www.cs.berkeley.edu/~fowlkes/BSE/
Slide credit: S. Lazebnik

• Pros
– Generic framework, can be used with many 

different features and affinity formulations
• Cons

– High storage requirement and time complexity
– Bias towards partitioning into equal segments

Normalized cuts: Pro and con

Slide credit: S. Lazebnik



Segmentation methods
• K-means clustering
• Graph-theoretic segmentation
• Boundary Detection

62

Berkeley Segmentation Data Set
David Martin, Charless Fowlkes, Doron Tal, Jitendra
Malik

Slide credit: J. Hays
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Berkeley Segmentation Data Set
David Martin, Charless Fowlkes, Doron Tal, Jitendra
Malik

Slide credit: J. Hays
64

Berkeley Segmentation Data Set
David Martin, Charless Fowlkes, Doron Tal, Jitendra
Malik

Slide credit: J. Hays
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Protocol

You will be presented a photographic image.  Divide the 
image into some number of segments, where the segments 
represent “things” or “parts of things” in the scene.  The 
number of segments is up to you, as it depends on the 
image.  Something between 2 and 30 is likely to be 
appropriate.  It is important that all of the segments have 
approximately equal importance.

• Custom segmentation tool
• Subjects obtained from work-study program 

(UC Berkeley undergraduates)

Slide credit: J. Hays
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Slide credit: J. Hays

67
Slide credit: J. Hays

Segmentations are Consistent
A

B C

• A,C are refinements of B
• A,C are mutual refinements 
• A,B,C represent the same percept

• Attention accounts for differences

Image

BG L-bird R-bird

grass bush

headeye

beakfar body

headeye

beak body

Perceptual organization forms a 
tree:

Two segmentations are 
consistent when they can be
explained by the same
segmentation tree (i.e. they
could be derived from a single 
perceptual organization).

Slide credit: J. Hays



69
Slide credit: J. Hays
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Dataset Summary

• 30 subjects, age 19-23
– 17 men, 13 women
– 9 with artistic training

• 8 months
• 1,458 person hours
• 1,020 Corel images
• 11,595 Segmentations

– 5,555 color, 5,554 gray, 486 inverted/negated

Slide credit: J. Hays

Pb Detector
Image

Boundary Cues

Model

Pb

Brightness

Color

Texture

Challenges:  texture cue, cue combination
Goal: learn the posterior probability of a boundary 
Pb from local information only

Cue Combination

Slide credit: J. Hays
72

Brightness and Color Features

• 1976 CIE L*a*b* colorspace
• Brightness Gradient (B)

– Chi2 difference in L* distribution

• Color Gradient (C)
– Chi2 difference in a* and b* 

distributions
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Slide credit: J. Hays
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Texture Feature

• Texture Gradient (T)
• Chi2 difference of texton histograms

– Textons are vector-quantized filter outputs

Texton
Map

Slide credit: J. Hays

Non-Boundaries Boundaries

I

T

B

C

Slide credit: J. Hays
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Cue Combination Models

• Classification Trees
– Top-down splits to maximize entropy, error bounded

• Density Estimation
– Adaptive bins using k-means

• Logistic Regression, 3 variants
– Linear and quadratic terms
– Confidence-rated generalization of AdaBoost (Schapire&Singer)

• Hierarchical Mixtures of Experts (Jordan&Jacobs)
– Up to 8 experts, initialized top-down, fit with EM

• Support Vector Machines (libsvm, Chang&Lin)

• Range over bias, complexity, parametric/non-parametric
Slide credit: J. Hays

Computing Precision/Recall

Recall = Pr(signal|truth) = fraction of ground truth found by the signal
Precision = Pr(truth|signal) = fraction of signal that is correct
• Always a trade-off between the two
• Standard measures in information retrieval (van Rijsbergen XX)
• ROC from standard signal detection the wrong approach

Strategy
• Detector output (Pb) is a soft boundary map
• Compute precision/recall curve:

– Threshold Pb at many points t in [0,1]
– Recall = Pr(Pb>t|seg=1)
– Precision = Pr(seg=1|Pb>t)

Slide credit: J. Hays
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Cue Calibration

• All free parameters optimized on training data
• All algorithmic alternatives evaluated by experiment

• Brightness Gradient
– Scale, bin/kernel sizes for KDE

• Color Gradient
– Scale, bin/kernel sizes for KDE, joint vs. marginals

• Texture Gradient
– Filter bank: scale, multiscale?
– Histogram comparison
– Number of textons, Image-specific vs. universal textons

• Localization parameters for each cue
Slide credit: J. Hays

Dataflow
Image

Optimized Cues

Model

Pb

Brightness

Color

Texture

Benchmark

Human Segmentations

Cue Combination

Slide credit: J. Hays
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Pb Images
Canny 2MM Us HumanImage

Slide credit: J. Hays
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Pb Images II
Canny 2MM Us HumanImage

Slide credit: J. Hays
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Pb Images III
Canny 2MM Us HumanImage

Slide credit: J. Hays

Findings

1. A simple linear model is sufficient for cue combination
– All cues weighted approximately equally in logistic

2. Proper texture edge model is not optional for complex 
natural images

– Texture suppression is not sufficient!

3. Significant improvement over state-of-the-art in boundary 
detection

4. Empirical approach critical for both cue calibration and cue 
combination

Slide credit: J. Hays

Sketch Tokens (J. Lim et al., CVPR 
2013)

Slide credit: J. Hays

Sketch Tokens (J. Lim et al., CVPR 
2013)

Slide credit: J. Hays



Image Features – 21350 dimensions!

• 35x35 patches centered at every pixel
• 35x35 “channels” of many types:

– Color (3 channels)
– Gradients (3 unoriented + 8 oriented channels)

• Sigma = 0, T   heta = 0, pi/2, pi, 3pi/2
• Sigma = 1.5, Theta = 0, pi/2, pi, 3pi/2
• Sigma = 5

– Self Similarity
• 5x5 maps of self similarity within the above channels for a particular 

anchor point.

Slide credit: J. Hays

Self-similarity features

Self-similarity features: The L1 distance from the anchor cell (yellow 
box) to the other 5 x 5 cells are shown for color and gradient 
magnitude channels. The original patch is shown to the left.

Slide credit: J. Hays

Learning

• Random Forest Classifiers, one for each sketch token + 
background, trained 1-vs-all

• Advantages:
– Fast at test time, especially for a non-linear classifier.
– Don’t have to explicitly compute independent descriptors for every 

patch. Just look up what the decision tree wants to know at each 
branch.

Slide credit: J. Hays

Learning

Frequency of example features being selected by the random 
forest: (first row) color channels, (second row) gradient 
magnitude channels, (third row) selected orientation 
channels.

Slide credit: J. Hays



Detections of individual sketch tokens

Slide credit: J. Hays

Detections of individual sketch tokens

Slide credit: J. Hays

Combining sketch token detections

• Simply add the probability of all non-background sketch 
tokens

• Free parameter: number of sketch tokens
– k = 1 works poorly, k = 16 and above work OK.

Slide credit: J. Hays

Input Image             Ground Truth             Sketch Tokens
Slide credit: J. Hays



Evaluation on BSDS

Slide credit: J. Hays

Evaluation on BSDS

Slide credit: J. Hays

Summary

• Distinct from previous work, cluster the human annotations
to discover the mid-level structures that you want to detect.

• Train a classifier for every sketch token.
• Is as accurate as any other method while being 200 times 

faster and using no global information.

Slide credit: J. Hays


