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» Active Contours

Edges useful signal to
indicate occluding
boundaries, shape.

Here the raw edge
output is not so bad...

Images from D. Jacobs

...but quite often boundaries of interest are
fragmented, and we have extra “clutter” edge
points.




Fitting: Edges vs. boundaries

Given a model of interest,
we can overcome some of
the missing and noisy edges
using fitting techniques.

~ With voting methods like the

Hough transform, detected
points vote on possible
model parameters.

Deformable contours
a.k.a. active contours, snakes

Given: initial contour (model) near desired object

Goal: evolve the contour to fit exact object boundary

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987]

Main idea: elastic band is

iteratively adjusted so as to

* be near image positions with
high gradients, and

* satisfy shape “preferences” or
contour priors

Figure credit: Yuri Boykov

Deformable contours: intuition

Image from http://www.healthline.com/blogs/exercise_fitness/up loaded_images/H and Band 2- 795868.J PG

Deformable contours vs. Hough

Like generalized Hough transform, useful for shape fitting; but

Hough
Rigid model shape

Single voting pass can
detect multiple instances

Fq? eviilee
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initial intermediate final

Deformable contours

Prior on shape types, but shape
iteratively adjusted (deforms)

Requires initialization nearby

One optimization “pass” to fit a
single contour




Why do we want to fit deformable
shapes?

+ Some objects have similar basic form but
some variety in the contour shape.

Why do we want to fit deformable
shapes?

e Non-rigid, deformable objects can change their shape
over time.

Figure credit: Julien Jomier

Aspects we need to consider

* Representation of the contours

+ Defining the energy functions
— External
— Internal

* Minimizing the energy function

Representation

* We’'ll consider a discrete representation of the contour,
consisting of a list of 2d point positions (“vertices”).

(x4, Yo Vi =(xl.,yl-),
for i=0, 1,...,7’1—1
(X195 V19)
e At each iteration, we’ll have the option

to move each vertex to another
nearby location (“state”).




Fitting deformable contours Energy function

How should we adjust the current contour to form the new contour at each The total energy (cost) of the current snake is
fteration? defined as: @
+ Define a cost function (“energy” function) that says how good a
candidate configuration is. E =F + F
total intemal external

» Seek next configuration that minimizes that cost function.

Internal energy: encourage prior shape preferences: e.g.,
smoothness, elasticity, particular known shape.

PR External energy (‘image” energy): encourage contour to fit on
K ) K : K places where image structures exist, e.g., edges.

1 )
\/\, ”) \/\ ). u\ ) A good fit between the current deformable contour and
initial intermediate final . . o
the target shape in the image will yield a low value for
this cost function.
External energy: intuition External image energy

How do edges affect
“snap” of rubber
band?

Think of external
energy from image
as gravitational pull
towards areas of
high contrast

» Measure how well the curve matches the image data

+ “Attract” the curve toward different image features
— Edges, lines, texture gradient, etc.

Magnitude of gradient
Gx([)2 + Gy(])2

- (Magnitude of gradient)
—(Gu(1)* + Gu(1)?)




External image energy

- Gradientimages G, (x,y) and G (x,y)

> N
5005

» External energy at a point on the curve is:
2 2
Eexterna] (V) = _( | Gx (V) ‘ + | Gy (V) ‘ )

» External energy for the whole curve:

n-1

Eaxtemal= _2|Gx(xi’yi)|2+|Gy(xi9yi)|2

Internal energy: intuition

What are the underlying
boundaries in this fragmented
edge image?

And in this one?

Internal energy: intuition

A priori, we want to favor smooth shapes, contours with

low curvature, contours similar to a known shape, etc. to

balance what is actually observed (i.e., in the gradient
image).

Internal energy

For a continuous curve, a common internal energy term is
the “bending energy”.

At some point v(s) on the curve, this is:

2 7 I
‘d % ‘d %
Eintemal (V(S)) = + ﬁ 2
‘ ds ‘ ‘ d’s ‘
Tension, Stiffness,
Elasticity Curvature

"7‘
™

gri !/: '8




Internal energy

» For our discrete representation,

Vi =(xi9yi) [=0-..

dv d*v
g =Vig~Vi F =V =V) =V, =V )=V, -2V, +v,
Note these are derivatives relative to position---not spatial
image gradients.

* Internal energy for the whole curve:

n-1

Einlemal = 2 a‘
i=

Why do these reflect tension and curvature?

Via ~ 2Vi + Vi—1H2

Vii _Viuz + /3‘

Example: compare curvature

Ecurvature (vi) = H/VHI - 2Vi +Vi—1“2
= (X =2+ X)) + (Vi =20+ ¥y’

@ (29
(2,2)

o
© o
(1) By 2D

Penalizing elasticity

» Current elastic energy definition uses a discrete estimate
of the derivative:

—_

n-

vV _ViH2

i+1

a|

E

elastic  ~

Il |
L

I
S

n-1
) Z(XM _xi)2 +(yi+1 _yi)2

(X0, Vo . g

What is the possible problem
with this definition?

(x3, ¥3)
(X17, 17)

Penalizing elasticity

» Current elastic energy definition uses a discrete estimate
of the derivative:

n-1 )
Eelaslic - i+l Vi
=0
Instead: n-l ) R
= O"Z((xm_xi) + (Vi = V) _d)

where d is the average distance between pairs
of points — updated at each iteration.




Dealing with missing data

» The preferences for low-curvature, smoothness help deal

with missing data:

(D)

Z v 9
’ \ . ‘ lllusory contours found!
Y L

L N Y

[Figure from Kass et al. 1987]

Extending the internal energy:
capture shape prior

+ |If object is some smooth variation on a
known shape, we can use a term that will
penalize deviation from that shape:

n-1
A N2
Eintemal t=a 2 (Vi _Vi)
i=

where are the points of the known shape.

v}

Fig from Y. Boykov

Total energy: function of the weights

Etotal = Eintemal +®Eextemal

n-1
Eooma = — 2' Gx(xiayi”z +| Gy(xi:yi)|2

Eema = S @(‘?_‘VM‘VI'H)Z + @‘

Vi ~ 2Vi + Vi—lHZ

Total energy: function of the weights

* e.g.,a weight controls the penalty for internal elasticity

o0 60 @9

large medium small &

Fig from Y. Boykov




Recap: deformable contour

* A simple elastic snake is defined by:
— A set of n points,

— An internal energy term (tension, bending,
plus optional shape prior)

— An external energy term (gradient-based)

* To use to segment an object:
— Initialize in the vicinity of the object

— Modify the points to minimize the total
energy

Energy minimization

» Several algorithms have been proposed to fit
deformable contours:

— Greedy search

— Dynamic programming (for 2d snakes)
— etc.

Energy minimization: greedy

» For each point, search window around it
and move to where energy function is
minimal
— Typical window size, e.g., 5 x 5 pixels

» Stop when predefined number of points
have not changed in last iteration, or
after max number of iterations

* Note:

— Convergence not guaranteed
— Need decent initialization

Energy minimization: dynamic programming

With this form of the energy function, we can minimize
using dynamic programming, with the Viterbi algorithm.

lterate until optimal position for each point is the center of
the box, i.e., the snake is optimal in the local search space

constrained by boxes. g from Y. Boykor
[Amini, Weymouth, Jain, 1990]




Energy minimization:
dynamic programming

* Possible because snake energy can be rewritten as a sum of
pair-wise interaction potentials:

n-1

Etotal(vl""’vn) = E Ei(vi’viH)

i=]

+ Or sum of triple-interaction potentials.

n-1

Etotal(vl9"'9vn) = 2 Ei(vi—19vi’vi+1)
=

Snake energy: pair-wise interactions
Epy (XX Yrseeny,) = —zlGx<xf,yi>|2+|Gy<xi,yi>|2

n-1
+ a 2(xi+l _xi)2 +(yi+l _yi)2

Re-writing the above with(x,,,)
. n-1

n-1
E,uW.v,) = - 1G(,) I” + a 2 [V =V, ||2
=1 i=

[i

Epus..v,) =E,v)+EW,,v)+.+E _(v,_,v,)

where E.(v,,v,,)= - | G(Vi) Hz +a v -V, HZ

i+1

Kristen Grauman

Energy minimization:
dynamic programming
DP can be applied to optimize an open ended snake

EW,v,)+E,(vy,v;)+..+E _(v,_,v,)

For a closed snake, a “loop” is introduced into the total energy.

EW,v))+E,(v,,v,)+..+E (v, _,v)HE (v,,v)

Vn—l ° o o
y o e « Work around:
n
V“- e o o 1) Fix v and solve for
1 O o v
Vo v, T4 rest .

2) Fix an intermediate

Limitations

* May over-smooth the boundary

o9

» Cannot follow topological changes of objects




Limitations

» External energy: snake does not really “see” object
boundaries in the image unless it gets very close to it.

|
image gradients VI
are large only directly on the boundary

Distance transform

» External image can instead be taken from the distance
transform of the edge image.

.

distance transform

T

Value at (x,y) tells how far
that position is from the
nearest edge point (or other
binary mage structure)

>> help bwdist

Deformable contours: pros and cons

Pros:

» Useful to track and fit non-rigid shapes

+ Contour remains connected

» Possible to fill in “subjective” contours

+ Flexibility in how energy function is defined, weighted.

Cons:

* Must have decent initialization near true boundary, may
get stuck in local minimum

+ Parameters of energy function must be set well based on
prior information

Summary

» Deformable shapes and active contours are useful for

— Segmentation: fit or “snap” to boundary in image
— Tracking: previous frame’s estimate serves to initialize the next

+ Fitting active contours:
— Define terms to encourage certain shapes, smoothness, low
curvature, push/pulls, ...
— Use weights to control relative influence of each component cost
— Can optimize 2d snakes with Viterbi algorithm.

» Image structure (esp. gradients) can act as attraction force
for interactive segmentation methods.




Today

* Active Contours

 Variational Segmentation Models

Review - Nonlinear Diffusion

» use nonlinear PDEs to create a scale space
representation

— consists of gradually simplified images

— some image features such as edges are maintained or
even enhanced.

* Perona-Malik Type Nonlinear Diffusion (1990)
» Total Variation (TV) Regularization (1992)
» Weickert’s Edge Enhancing Diffusion (1994)

Review - Perona-Malik Type Nonlinear
Diffusion
» Perona-Malik equation is:
ou
5 = V- (g(|Vu))Vu)
with homogeneous Neumann boundary conditions and the
initial condition uO(x) = f (x), f denoting the input image.

» Constant diffusion coefficient of linear equation is replaced
with a smooth non-increasing diffusivity function g satisfying
- Q(O) = 17
- 9(s) =0,
— limg..g(s) = 0

« The diffusivities become variable in both space and time.

Review - Perona-Malik Type Nonlinear
Diffusion

« Smoothing process diminishes noise while retaining or
enhancing edges

T =50 T =100




Review - Total Variation (TV)
Regularization

Rudin et al. (1992) formulated image restoration as
minimization of the total variation (TV) of a given image under
certain assumptions on the noise.

Total Variation (TV) regularization model is generally defined
as:

Erv(u) zz <%(u —f)? —i—zx\Vu]) dx

— Q C R?is connected, bounded, open subset representing the image
domain,

fis an image defined on Q,
u is the smooth approximation of f,
a> 0is a scalar.

Review - Total Variation (TV)
Regularization

+ Total Variation (TV) regularization model:

Erv(u) = [ (%(u £y +0¢|Vu|> dx

QO
» The gradient descent equation for Equation (10) is defined

by:
ou Vu 1 Jdu
a =V (Wuy> R L

» The value of a specifies the relative importance of the fidelity
term.

=0
o0

+ |t can be interpreted as a scale parameter that determines
the level of smoothing.

Review - TV Restorationresults

x = 50 « =100 a =200

The value of a specifies the relative importance of the fidelity
term and thus the level of smoothing.

Review - TV Regularization and TV
Flow

* TV regularization can be associated with a nonlinear diffusion
filter, the so-called TV flow

 Ignoring the fidelity term in the TV regularization model
leads to the PDE:

W=V (s(IVul) V)

with u® = fand the diffusivity function g(|Vul) = 7

» Notice that this diffusivity function has no additional contrast
parameter as compared with the Perona-Malik diffusivities.




Review - Sample TV Flow results

» Corresponding smoothing process yields segmentation-like,

piecewise constant images.
T=0 T=25

o

T =100 T =200 T = 400

Review - Edge Enhancing Diffusion

* Proposed by Weickert (1994)

* an anisotropic nonlinear diffusion model with better edge
enhancing capabilities than the Perona-Malik model

» can be described by the equation:

ou

< = V- (D(Vu)Vu)

where

— uis the smoothed image,

— fis the input image (U0(x) = fix)),

— D represents a matrix-valued diffusion tensor that describes the
smoothing directions and the corresponding diffusivities

Review - Edge Enhancing Diffusion

» Suggested eigenvalues are

{ 1 if [V, =0

3.31488 :
1—exp <— W) otherwise,

M([Vuel) =
L(|Vig|) = 1

where A denotes the contrast parameter.

* preserves and enhances image edges by reducing the
diffusivity Ay perpendicular to edges for sufficiently large values
of [Vuyl.

. cifically, the diffusion tensor is given by the formula:

o utfgx y ue)y | [ M(|Vuel) % y (o), ug) !
(uﬂ')y (uo), 0 A2(|Vug|) (”U)y (”v)x

Review - Sample Results of Edge
Enhancing Diffusion

» Smoothing process diminishes noise and fine image details
while retaining and enhancing edges as in the Perona-Malik
type nonlinear diffusion.

T=0




Variational Segmentation Models

+ Segmentation is formalized as a functional
minimization.

» Mumford-Shah Model (1989)

» Ambrosio-Tortorelli Model (1990)
+ Shah’s Model (1996)

* Chan-Vese Model (2001)

» Context-guided Mumford-Shah Model (2009)

Mumford-Shah (MS) Segmentation
Model

* Mumford & Shah, Comm. Pure Appl. Math., 1989

« Segmentation is formalized as a functional minimization:
Given an image f, compute a piecewise smooth image u and
an edge set I

Eyms(u,T) = ,B/(u — f)?dx +a / |Vu|?dx + length(T)
Q O\T

— Q C R?is connected, bounded, open subset representing the image
domain,

— fis animage defined on Q,

— [ € Qs the edge set segmenting Q,

— u is the piecewise smooth approximation of f,
— a, B> 0 are the scale space parameters.

Mumford-Shah (MS) Segmentation
Model

Eyms(u,T) = ,B/(u — f)?dx+a / |Vu|?dx + length(T)
Q

O\T
H_/

data fidelity term  regularization or smoothness term

+ Smoothing and edge detection processes work jointly to
partition an image into segments.

» Unknown edge set [ of a lower dimension makes the
minimization of the MS model very difficult.

* Inliterature several approaches for approximating
the MS model are suggested.

Ambrosio-Tortorelli (AT)
Approximation

Exru,0) = [ (pu— 7 +a@ 0+ 5 (o7 + S0 ) ) aa

Q
- )

~
length(r)

* Unknown edge set lis
replaced with a continuous
function v(x)

— v =0 along image edges
— v grows rapidly towards 1
away from edges

» The function v can be interpreted
as a blurred version of the edge set.

* The parameter p specifies
the level of blurring.

edge point




Ambrosio-Tortorelli (AT)
Approximation: u and v processes

» Piecewise smooth image u and the edge strength function v
are simultaneously computed via the solution of the following
system of coupled PDEs:

ou 2 B ~ou|
Fri V- (v°Vu) a(u 1) ol 0

2 —
v U2y 2a|Vulv (v 21); v _0
ot o o I |50

Ambrosio-Tortorelli (AT)
Approximation: u and v processes

fraw image “u: smooth image Vi e>d§e strength function

Ambrosio-Tortorelli (AT)
Approximation: u and v processes

» Piecewise smooth image u and the edge strength function v
are simultaneously computed via the solution of the following
system of coupled PDEs:

ou 5 B ~ du B
§ = V (U Vu) E(I/l f), % . =0
2 _
v U2y 2a|Vul‘v (v 21); | 0
ot 0 0 on |30

» PDE for each variable can be interpreted as a biased
diffusion equation that minimizes a convex quadratic
functional in which the other variable is kept fixed.

Ambrosio-Tortorelli (AT)
Approximation: u process

* Keeping v fixed, PDE for the process u minimizes the
following convex quadratic functional:

/(ocvz|Vu|2 + B(u — f)2>dx

Q

» Data fidelity term provides a bias that forces u to be close to
the original image 7.

+ In the regularization term, the edge strength function v
specifies the boundary points and guides the smoothing
accordingly.

» Since v = 0 along the boundaries, no smoothing is carried
out at the boundary points, thus the edges are preserved.




Ambrosio-Tortorelli (AT)
Approximation: v process

» Keeping u fixed, PDE for the process v minimizes the
following convex quadratic functional:

P » 14 2ap|Vul? B 1 2
2({('%}” e " Trwgvap) )™

+ The function v is nothing but a smoothing of —1+sz;|Vu\2

* The smoothness term forces some spatial organization by
requiring the edges to be smooth.
 Ignoring the smoothness term and letting p go to O, we have

(]

1
14+2ap|Vu|?

Relating with the Perona-Malik Diffusion

+ Replacing v with 1/(1 + 2ap|Vu|?) , PDE for the process u
can be interpreted as a biased Perona-Malik type nonlinear
diffusion:

W=V (s(Vu) V) B p)

with 5
_ 1
g(’vu’) - (l+\Vu|2/A2)
A% =1/ (2ap)

e /1/(2ap) as a contrast parameter

» Relative importance of the regularization term (scale)
depends on the ratio betweena and 3.

x=18=0.01p=001

a=1,8=0001,p =001

a=4,8=004p=001

Numerical Implementation

 Original model:

ou B ou
— = V- (*Vu)-Eu—-f); =—| =0
ot ( ) tx( f) oM |50
» Space discrete version:
dui i
J 2 2
T, — UH—%,]' . (”iJrl,j — 1/[1',]') — ’01,_%,], . (ui,]‘ — le;ll]')
+ Uf,]-+% : (ui,j+1 - ”i,j) - Uf,]-,% : (ui,j - ”z’,j—l)
- Bl
. . + Vi ; V: ,‘+U‘,‘
with o, 3 = LT gng o,y =

ij+3 2 +5] 2




Numerical Implementation

 Original model:

2 _
v 2y 20|Vul*v (v 21),_ o _0
ot p P 9 |50

» Space discrete version:

dUi,]'
dt

Vit1,j + Vic1,j + Vijp1 + Vi1 — 4vi

ZDC‘VMI"]‘PZJI"]' . (vi,j — 1)
o p*

Numerical Implementation

» Space-time discrete versions:

k1 k

Mj,]- u

F 2 2
i _ (o k(o s
At (”z‘+%4> Miv1,jt (vi*%,i) Hiz1

k1l
ij Yij
At

A Common Framework for Curve Evolution,
Segmentation and Anisotropic Diffusion
» Quadratic cost functions in the data fidelity and the

smoothing terms are replaced with L1-functions (Shah,
CVPR 1996):

Es(u,v) :(Z <ﬁ lu— f| +a v*|Vul +% (p]Vv[2+ (1_;02)) dx

* As p = 0, this energy functional converges to the following
functional:

Eep(u,T) = §/|u—f|dx+ / |Vu|dx+/1+]”“]uds
QO T

O\r

with Ju = |u" —u~|indicating the jump in u across I, and
u+ and u— denote inten-sity values on two sides of I

A Common Framework for Curve Evolution,
Segmentation and Anisotropic Diffusion

* Minimizing the energy functional results in the following
system of coupled PDEs:

u B (u—f) oul _
§ = 2Vv-Vu +U‘vu| CHT"U(M) M)|VM| ’l/l _f‘ ’ on 20 =0
W _ g 2NV oD )

of Iy p2 on Q)

with curo(u) = V- (\%ﬁl)

* Replacing L2-norms in both the data fidelity and the
smoothness terms by their L1-norms generates shocks in u
and thus object boundaries are recovered as actual
discontinuities.




Smoothing
process of u gives
rise to more
cartoon-like,
piecewise
constant images

i =1, = 0.001, p =0.01

but with some
unintuitive regions

Challenging Cases

.H_n- '._'. ;
Jfetue o

Context-Guided Image Smoothing

» E. Erdem, A. Sancar-Yilmaz, and S. Tari,
“Mumford-Shah Regularizer with Spatial Coherence”,
International Conference on Scale Space and Variational Methods
(SSVM) 2007

e E. Erdem and S. Tari,
“Mumford-Shah Regularizer with Contextual Feedback”,
Journal of Mathematical Imaging and Vision,
Vol. 33, No.1, pp. 67-84, January 2009

« Contextual knowledge extracted from local image
regions guides the regularization process.

Context-Guided Image Smoothing

« E. Erdem, A. Sancar-Yiimaz, and S. Tari,
“Mumford-Shah Regularizer with Spatial Coherence”,
International Conference on Scale Space and Variational Methods
(SSVW™) 2007

 E. Erdem and S. Tari,
“Mumford-Shah Regularizer with Contextual Feedback”,
Journal of Mathematical Imaging and Vision,
Vol. 33, No.1, pp. 67-84, January 2009

» Contextual knowledge extracted from local image
regions guides the regularization process.




Context-Guided Image Smoothing

» Contextual knowledge extracted from local image
regions guides the regularization process.

Context-Guided Image Smoothing

contextual
measure

local
context

local
neighborhood

pixel level

Context-Guided Image Smoothing

* 2 coupled processes (u and v modules)

2 _
v L u2y 2a|Vul*v (v 1); [ _0
ot p P> on |4
3’& . ) /8 . a'U/ .
5 = Velervi-Su-p g <o

cv = v+ (1—9)V

d<[0,1] ve{0,1}

The Roles of  and V

1. Eliminating an accidentally occurring event
— e.g., a high gradient due to noise
- V=1, ¢ is low for accidental occurrences

(cv)? = (divi + (1 — ¢4) 1)

2. Preventing an accidental elimination of a feature
of interest
- e.g., encourage edge formation
- V=0, ¢ is low for meaningful occurrences

(cv)? = (¢iv; + (1 — ¢;) 0)°




Experimental Results Directional Consistency

~ Approximate MS

» Suggested contextual measures: . ~ 28

1. Directional consistency of edges
»  shapes have smooth boundaries
2. Edge Continuity
+ gapfilling
3. Texture Edges
*  boundary between different textured regions
4. Local Scale
. Resolution varies throughout the image

Directional Consistency
Context guided
filtering result

biApproximate MS bontext guided

Approximate MS filtering result




Coalition of Directional Consistency
and Texture Edges

q)te

Coalition of Directional Consistency, Edge
Continuity and Texture Edges

Local Scale

Context guided

Approximate MS filtering result

%%

Active Contours Without Edges

» A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001).

* Level sets provide an implicit contour representation where
an evolving curve is represented with the zero-level line of a
level set function.

N Oubs'é%e

Outsid o
utside
9<0

Image credit: Chan & Vese, 2001




Active Contours Without Edges

» Basic idea: Fitting term

2 2
— dxd — dxd
-/inside(C’) |U() c1|drdy + Joutside(C') [uo C2| vy

c1 = average of ug inside C
where .
co = average of ug outside C

Fit >0 Fit >0 Fit >0 Fit ~0
@« & & §

* Minimize: the Fitting term + Length(C)

Slide credit: L. Vese

Active Contours Without Edges

» A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001):

Ecvlencad) = M [(f— el H(p)dx+ A [ (f - e22(1 = H())dx
Q

Q
+ u [ IVH(@)ldx
Q

where A4, A, > 0 and p = 0 are fixed parameters.

* Length parameter p can be interpreted as a scale parameter.
It determines the relative importance of the length term.

» Possibility of detecting smaller objects/regions increases with
decreasing u.

Active Contours Without Edges

* A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001):

Ecv(ci,c2,¢) = )\1/(f—Cl)ZH(4’)dx+)\2/(f—Cz)2(1 — H(¢))dx

Q Q
+ u [ IVH(g)lax
Q

Model represents the segmented image with the variables

C4, Co and H(d), where H(¢b) denotes the Heaviside function
of the level set function ¢:

1 ifz>0
H(Z)_{ 0 ifz<0

Active Contours Without Edges

» A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001):

Ecv(ci,c2,¢) = M /(f—Cl)zH(¢)dx+)\2/(f— c2)*(1 — H(¢))dx
Q

Q
+ u [ IVH(g)dx
Q

¢4 and ¢, denote the average gray values of object and
background regions indicated by ¢ > 0 and ¢ < O,
respectively.

Chan-Vese model can be seen as a two-phase piecewise
constant approximation of the MS model.




Active Contours Without Edges

» A level-set based approximation of the Mumford-Shah model
proposed by Chan and Vese (2001):

Ecvlencad) = A [(f= el H()dx+ Az [ (f = 221~ H())dx

Q Q
+ u [ IVH(@)ldx
Q

where A4, A, > 0 and p = 0 are fixed parameters.

(A ]~

Active Contours Without Edges

« Segmentation involves minimizing the energy functional with
respect to ¢4, ¢y, and ¢.

» Keeping ¢ fixed, the average gray values ¢4 and ¢, can be
estimated as follows:

Jo f(x)H(p(x))dx
JoH(¢(x))dx

Jo f(x)(1 — H(¢(x)))dx
Jo(1— H(¢(x)))dx

2

Active Contours Without Edges

» Segmentation involves minimizing the energy functional with
respect to ¢4, C,, and ¢.

» Keeping ¢4 and ¢, fixed and using the calculus of variations
for the given functional, the gradient descent equation for the
evolution of ¢ is derived as:

) 17 () - ntr -+ - P

Sample result of the Chan-Vese Model

As the zero-level line of the evolving level set function ¢ is attracted to
object boundaries, a more accurate piecewise constant approximations
of the original image f is recovered.
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Sample result of the Chan-Vese Model

* As the zero-levelline of the evolving level set function ¢ is attracted to
object boundaries, a more accurate piecewise constant approximations
of the original image f is recovered.
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Sample result of the Chan-Vese Model

* As the zero-levelline of the evolving level set function ¢ is attracted to
object boundaries, a more accurate piecewise constant approximations
of the original image f is recovered.

Numerical Implementation

* In the numerical approximation, regularized form of the
Heaviside function is used:

He(z) = % (1 + %arctun (;))
dH.(z) 1 ¢
%(2) = dz  mel+z2

Numerical Implementation

» Space-time discrete version:

A gk Lm( = )
At ! VBLRE)2 + (9, — 9k, 1)2/4

+ A - ( AL )
: \/(¢z+1] ¢ )2 4+ (DL g2

M <fi,j - C1(<Pk)) + A2 (fi,j - Cz(‘Pk))?

with
Ngii=¢ij—i1j, DLdij = Piv1j— i
N ii=¢ii—pij1, ANodij=ije1 — i




