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Fitting: Edges vs. boundaries

Edges useful signal to 
indicate occluding 
boundaries, shape.

Here the raw edge 
output is not so bad…

…but quite often boundaries of interest are 
fragmented, and we have extra “clutter” edge 
points.

Images from D. Jacobs



Given a model of interest, 
we can overcome some of 
the missing and noisy edges 
using fitting techniques.  

With voting methods like the 
Hough transform, detected 
points vote on possible 
model parameters.

Fitting: Edges vs. boundaries Deformable contours

Given: initial contour (model) near desired object 

a.k.a. active contours, snakes

Figure credit: Yuri Boykov

Goal: evolve the contour to fit exact object boundary   

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987]

Main idea: elastic band is 
iteratively adjusted so as to
• be near image positions with 

high gradients, and
• satisfy shape “preferences” or 

contour priors

Deformable contours: intuition

Image from http://www.healthline.com/blogs/ex ercis e_f itness/up loaded_ images/H and Band 2-795868.JPG

Deformable contours vs. Hough

initial intermediate final

Like generalized Hough transform, useful for shape fitting; but

Hough
Rigid model shape
Single voting pass can 
detect multiple instances

Deformable contours
Prior on shape types, but shape 
iteratively adjusted (deforms)
Requires initialization nearby
One optimization “pass” to fit a 
single contour



Why do we want to fit deformable 
shapes?

• Some objects have similar basic form but 
some variety in the contour shape.

Figure credit: Julien Jomier

Why do we want to fit deformable
shapes?

• Non-rigid, deformable objects can change their shape 
over time.

Aspects we need to consider

• Representation of the contours
• Defining the energy functions

– External
– Internal

• Minimizing the energy function

Representation

• We’ll consider a discrete representation of the contour, 
consisting of a list of 2d point positions (“vertices”).
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• At each iteration, we’ll have the option 
to move each vertex to another 
nearby location (“state”).
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Fitting deformable contours

initial intermediate final

How should we adjust the current contour to form the new contour at each 
iteration?

• Define a cost function (“energy” function) that says how good a 
candidate configuration is.

• Seek next configuration that minimizes that cost function.

Energy function

The total energy (cost) of the current snake is 
defined as:

externalinternaltotal EEE +=

A good fit between the current deformable contour and 
the target shape in the image will yield a low value for 
this cost function.

Internal energy: encourage prior shape preferences: e.g., 
smoothness, elasticity, particular known shape.
External energy (“image” energy): encourage contour to fit on 
places where image structures exist, e.g., edges.

External energy: intuition

• Measure how well the curve matches the image data
• “Attract” the curve toward different image features

– Edges, lines, texture gradient, etc.

External image energy

Magnitude of gradient
- (Magnitude of gradient)
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How do edges affect 
“snap” of rubber 
band?
Think of external 
energy from image 
as gravitational pull 
towards areas of 
high contrast



• Gradient images                 and

• External energy at a point on the curve is:

• External energy for the whole curve:
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Internal energy: intuition

What are the underlying 
boundaries in this fragmented 
edge image?

And in this one?

A priori, we want to favor smooth shapes, contours with 
low curvature, contours similar to a known shape, etc. to 
balance what is actually observed (i.e., in the gradient 
image).

Internal energy: intuition Internal energy

For a continuous curve, a common internal energy term is 
the “bending energy”.  

At some point v(s) on the curve, this is:

Tension,
Elasticity

Stiffness,
Curvature
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• For our discrete representation, 

• Internal energy for the whole curve:
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Internal energy

Note these are derivatives relative to position---not spatial 
image gradients.

Why do these reflect tension and curvature?

Example: compare curvature

(1,1) (1,1)

(2,2)

(3,1)(3,1)

(2,5)
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Penalizing elasticity

• Current elastic energy definition uses a discrete estimate 
of the derivative:

What is the possible problem 
with this definition?
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Penalizing elasticity

• Current elastic energy definition uses a discrete estimate 
of the derivative:
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where d is the average distance between pairs 
of points – updated at each iteration.

Instead:



Dealing with missing data
• The preferences for low-curvature, smoothness help deal 

with missing data:

[Figure from Kass et al. 1987]

Illusory contours found!

Extending the internal energy: 
capture shape prior

• If object is some smooth variation on a 
known shape, we can use a term that will 
penalize deviation from that shape:

where           are the points of the known shape.
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Fig from  Y. Boykov

Total energy: function of the weights
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• e.g.,    weight controls the penalty for internal elasticity

Fig from  Y. Boykov

Total energy: function of the weights



Recap: deformable contour

• A simple elastic snake is defined by:
– A set of n points,
– An internal energy term (tension, bending, 

plus optional shape prior)
– An external energy term (gradient-based) 

• To use to segment an object:
– Initialize in the vicinity of the object
– Modify the points to minimize the total 

energy

Energy minimization

• Several algorithms have been proposed to fit 
deformable contours:  
– Greedy search
– Dynamic programming (for 2d snakes)
– etc.

Energy minimization: greedy

• For each point, search window around it 
and move to where energy function is 
minimal
– Typical window size, e.g., 5 x 5 pixels

• Stop when predefined number of points 
have not changed in last iteration, or 
after max number of iterations

• Note:
– Convergence not guaranteed
– Need decent initialization

1v
2v

3v

4v
6v

5v

With this form of the energy function, we can minimize 
using dynamic programming, with the Viterbi algorithm.

Iterate until optimal position for each point is the center of 
the box, i.e., the snake is optimal in the local search space 
constrained by boxes.

[Amini, Weymouth, Jain, 1990]
Fig from  Y. Boykov

Energy minimization: dynamic programming



Energy minimization: 
dynamic programming
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• Possible because snake energy can be rewritten as a sum of 
pair-wise interaction potentials:

• Or sum of triple-interaction potentials.
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Re-writing the above with                      
:
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Kristen Grauman
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DP can be applied to optimize an open ended snake 

For a closed snake, a “loop” is introduced into the total energy.
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Work around: 
1) Fix v1 and solve for 

rest .
2) Fix an intermediate 

node at its position 

Energy minimization: 
dynamic programming

• May over-smooth the boundary

• Cannot follow topological changes of objects

Limitations



Limitations

• External energy: snake does not really “see” object 
boundaries in the image unless it gets very close to it.

image gradients
are large only directly on the boundary

I∇

Distance transform
• External image can instead be taken from the distance 

transform of the edge image. 

original -gradient distance transform

edges

Value at (x,y) tells how far 
that position is from the 
nearest edge point (or other 
binary mage structure) 

>> help bwdist

Deformable contours: pros and cons

Pros:
• Useful to track and fit non-rigid shapes
• Contour remains connected
• Possible to fill in “subjective” contours
• Flexibility in how energy function is defined, weighted.

Cons:
• Must have decent initialization near true boundary, may 

get stuck in local minimum
• Parameters of energy function must be set well based on 

prior information

Summary

• Deformable shapes and active contours are useful for
– Segmentation: fit or “snap” to boundary in image
– Tracking: previous frame’s estimate serves to initialize the next

• Fitting active contours:
– Define terms to encourage certain shapes, smoothness, low 

curvature, push/pulls, …
– Use weights to control relative influence of each component cost 
– Can optimize 2d snakes with Viterbi algorithm.

• Image structure (esp. gradients) can act as attraction force 
for interactive segmentation methods.



Today

• Active Contours
• Variational Segmentation Models

Review – Nonlinear Diffusion

• use nonlinear PDEs to create a scale space 
representation 
– consists of gradually simplified images
– some image features such as edges are maintained or 

even enhanced. 

• Perona-Malik Type Nonlinear Diffusion (1990)
• Total Variation (TV) Regularization (1992)
• Weickert’s Edge Enhancing Diffusion (1994)

Review - Perona-Malik Type Nonlinear 
Diffusion
• Perona-Malik equation is: 

with homogeneous Neumann boundary conditions and the 
initial condition u0(x) = f (x), f denoting the input image. 

• Constant diffusion coefficient of linear equation is replaced 
with a smooth non-increasing diffusivity function g satisfying
– g(0) = 1, 
– g(s) ≥ 0, 
– lims→∞ g(s) = 0 

• The diffusivities become variable in both space and time. 

NONLINEAR DIFFUSION

Erkut Erdem⇤

Hacettepe University

March 9th, 2013
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1 PERONA-MALIK TYPE NONLINEAR DIFFUSION

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create
a scale space representation that consists of gradually simplified images where some
image features such as edges are maintained or even enhanced. The earliest nonlinear
diffusion model proposed in image processing is the so-called anisotropic diffusion1

by Perona and Malik [4].
In their formulation, they replaced the constant diffusion coefficient of linear equa-

tion by a smooth nonincreasing diffusivity function g with g(0) = 1, g(s) � 0, and
lim

s!• g(s) = 0. As a consequence, the diffusivities become variable in both space
and time. The Perona-Malik equation is

(1)
∂u

∂t

= r · (g(|ru|)ru)

with homogeneous Neumann boundary conditions and the initial condition u

0(x) =
f (x), f denoting the input image.

Perona and Malik suggested two different choices for the diffusivity function:

g(s) =
1

1 + s

2/l2 ,(2)

g(s) = e

� s

2
l2(3)

⇤erkut@cs.hacettepe.edu.tr
1In fact, Perona-Malik equation is an isotropic nonhomogeneous equation as it uses a scalar-valued dif-

fusivity. A true example of anisotropic diffusion model, edge-enhancing diffusion [6], will be summarized
in Section 3.

1

Review - Perona-Malik Type Nonlinear 
Diffusion
• Smoothing process diminishes noise while retaining or 

enhancing edges
1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

T = 0 T = 50 T = 100

T = 200 T = 400 T = 800

Figure 3: Reg. Perona-Malik results for different diffusion time (l = 1, s = 1).

T = 0 T = 100 T = 200

T = 400 T = 800 T = 1600

Figure 4: Reg. Perona-Malik results for different diffusion times (l = 1, s = 1).

This results in the following space-discrete equation:
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Review - Total Variation (TV) 
Regularization
• Rudin et al. (1992) formulated image restoration as 

minimization of the total variation (TV) of a given image under 
certain assumptions on the noise.

• Total Variation (TV) regularization model is generally defined 
as:

– Ω� R2 is connected, bounded, open subset representing the image 
domain, 

– f is an image defined on Ω,
– u is the smooth approximation of f ,
– α > 0 is a scalar. 
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Figure 5: Discretization grid used in (Equation 7).

This discretization scheme requires the diffusivities to be estimated at mid-pixel
points (Figure 5). They are simply computed by taking averages of the diffusivities
over neighboring pixels:
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The time derivative in (Equation 7) can be discretized using forward difference.
This yields an iterative scheme with an explicit time discretization, where homoge-
neous Neumann boundary condition is imposed along the image boundary

u

k+1
i,j � u

k

i,j

Dt

= g

k

i+ 1
2 ,j · u

k

i+1,j + g

k

i� 1
2 ,j · u

k

i�1,j + g

k

i,j+ 1
2
· u

k

i,j+1 + g

k

i,j� 1
2
· u

k

i,j�1

�
⇣

g

k

i+ 1
2 ,j + g

k

i� 1
2 ,j + g

k

i,j+ 1
2
+ g

k

i,j� 1
2

⌘
· u

k

i,j(9)

with Dt denoting the time step. For the Perona-Malik diffusion, the stability require-
ment is again Dt  0.25.

2 TOTAL VARIATION (TV) REGULARIZATION

Rudin et al. [5] formulated image restoration as minimization of the total variation
(TV) of a given image under certain assumptions on the noise. The Total Variation
(TV) regularization model is generally defined as:

(10) E

TV

(u) =
Z

W

✓
1
2
(u � f )2 + a|ru|

◆
dx

where

• W ⇢ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on W,

• u is the restored version of g,
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Review - Total Variation (TV) 
Regularization
• Total Variation (TV) regularization model:

• The gradient descent equation for Equation (10) is defined 
by: 

• The value of α specifies the relative importance of the fidelity 
term.

• It can be interpreted as a scale parameter that determines 
the level of smoothing. 
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2. TOTAL VARIATION (TV) REGULARIZATION

• a > 0 is a scalar.

The gradient descent equation for Equation (10) is defined by

(11)
∂u

∂t

= r ·
✓

ru

|ru|

◆
� 1

a
(u � f );

∂u

∂n

����
∂W

= 0 .

Since the value of a specifies the relative importance of the fidelity term, it can be
interpreted as a scale parameter that determines the level of smoothing. In Figure 6, the
role of this parameter is illustrated. The restored images are given in Figure 6(b)-(d).
As it can be clearly seen, level of smoothing increases with increasing a.

In the original formulation of Rudin et al., the observed image f was assumed to be
degraded by additive Gaussian noise with zero mean and known variance s2. Hence,
in order to restore a given image, they propose to solve the constrained optimization
problem

(12) min
u

Z

W

|ru|dx

subject to

(13)
Z

W

(u � f )2
dx = s2 .

When TV regularization is defined as a constrained optimization problem, 1
a can be

considered as a Lagrange multiplier, which has to be determined by taking the given
constraint into account.

TV regularization can be associated with a nonlinear diffusion filter, the so-called
TV flow [1, 3]. Ignoring the fidelity term in Equation (11) leads to the PDE

(14)
∂u

∂t

= r · (g(|ru|)ru)

with u

0 = f and the diffusivity function g(|ru|) = 1
|ru| . Notice that this diffusiv-

ity function has no additional contrast parameter as compared with the Perona-Malik
diffusivities. Figure 7 and Figure 8 depict TV scale space examples sampled at dif-
ferent diffusion times for two different images. It is evident from these images that the
corresponding smoothing process yields segmentation-like, piecewise constant images.

Numerical Implementation

The evolution equation of u (11) can be discretized by using standard finite differences.
An important point is that the solution of TV regularization or equivalently TV flow
leads to singular diffusivities as shown in Equation (14). In numerical implementations
based on standard discretization, this leads to stability problems as the image gradient
tends to zero. A common solution to this problem is to add a small positive constant e
to image gradients.

After e-regularization, the space-discrete version of Equation (11) can be written
as:

6

Review - TV Restoration results
3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],
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• The value of α specifies the relative importance of the fidelity 
term and thus the level of smoothing. 

Review - TV Regularization and TV 
Flow
• TV regularization can be associated with a nonlinear diffusion 

filter, the so-called TV flow 

• Ignoring the fidelity term in the TV regularization model 
leads to the PDE: 

with                and the diffusivity function

• Notice that this diffusivity function has no additional contrast 
parameter as compared with the Perona-Malik diffusivities. 

2. TOTAL VARIATION (TV) REGULARIZATION

• a > 0 is a scalar.

The gradient descent equation for Equation (10) is defined by

(11)
∂u

∂t

= r ·
✓

ru

|ru|

◆
� 1

a
(u � f );

∂u

∂n

����
∂W

= 0 .

Since the value of a specifies the relative importance of the fidelity term, it can be
interpreted as a scale parameter that determines the level of smoothing. In Figure 6, the
role of this parameter is illustrated. The restored images are given in Figure 6(b)-(d).
As it can be clearly seen, level of smoothing increases with increasing a.

In the original formulation of Rudin et al., the observed image f was assumed to be
degraded by additive Gaussian noise with zero mean and known variance s2. Hence,
in order to restore a given image, they propose to solve the constrained optimization
problem

(12) min
u

Z

W

|ru|dx

subject to

(13)
Z

W

(u � f )2
dx = s2 .

When TV regularization is defined as a constrained optimization problem, 1
a can be

considered as a Lagrange multiplier, which has to be determined by taking the given
constraint into account.

TV regularization can be associated with a nonlinear diffusion filter, the so-called
TV flow [1, 3]. Ignoring the fidelity term in Equation (11) leads to the PDE

(14)
∂u

∂t

= r · (g(|ru|)ru)

with u

0 = f and the diffusivity function g(|ru|) = 1
|ru| . Notice that this diffusiv-

ity function has no additional contrast parameter as compared with the Perona-Malik
diffusivities. Figure 7 and Figure 8 depict TV scale space examples sampled at dif-
ferent diffusion times for two different images. It is evident from these images that the
corresponding smoothing process yields segmentation-like, piecewise constant images.

Numerical Implementation

The evolution equation of u (11) can be discretized by using standard finite differences.
An important point is that the solution of TV regularization or equivalently TV flow
leads to singular diffusivities as shown in Equation (14). In numerical implementations
based on standard discretization, this leads to stability problems as the image gradient
tends to zero. A common solution to this problem is to add a small positive constant e
to image gradients.

After e-regularization, the space-discrete version of Equation (11) can be written
as:
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Review - Sample TV Flow results

• Corresponding smoothing process yields segmentation-like, 
piecewise constant images. 
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T = 100 T = 200 T = 400

Figure 8: TV flow results for different diffusion times.

Weickert suggested an alternative approach that additionally takes direction of the im-
age gradients into account. The suggested model is an anisotropic nonlinear diffusion
model with better edge enhancing capabilities.

In general, any anisotropic nonlinear diffusion can be described by the equation

(18)
∂u

∂t

= r · (D(ru)ru)

where u is the smoothed image that is initialized with the input image f (that is
u

0(x) = f (x)), and D represents a matrix-valued diffusion tensor that describes the
smoothing directions and the corresponding diffusivities. One can easily observe that
for linear diffusion the diffusion tensor can be defined as D(ru) = I, which results
in a constant diffusion coefficient for all image points in all directions. Similarly, for
Perona-Malik type nonlinear diffusion, D(ru) = g(|rus|)I. Such a choice reduces
the amount of smoothing at image edges, but in an equal amount in all directions. In
actual anisotropic setting, the diffusion tensor D is defined as a function of the structure
tensor given by

(19) J(ru) = ruru

T =


u

2
x

u

x

u

y

u

x

u

y

u

2
y

�
.

The structure tensor J(ru) can be interpreted as an image feature describing the
local orientation information. It has an orthonormal basis of eigenvectors v1 and v2
with v1 k ru and v2 ? ru, and the corresponding eigenvalues l1 = |ru|2 and
l2 = 0. It is important to note that noise significantly affects the tensor estimation.
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Review - Edge Enhancing Diffusion

• Proposed by Weickert (1994)
• an anisotropic nonlinear diffusion model with better edge 

enhancing capabilities than the Perona-Malik model
• can be described by the equation: 

where 
– u is the smoothed image, 
– f is the input image (u0(x) = f(x)), 
– D represents a matrix-valued diffusion tensor that describes the 

smoothing directions and the corresponding diffusivities 
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Figure 8: TV flow results for different diffusion times.
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Review - Edge Enhancing Diffusion

• Suggested eigenvalues are

where λ denotes the contrast parameter.
• preserves and enhances image edges by reducing the 

diffusivity λ1 perpendicular to edges for sufficiently large values 
of |�uσ|.

• Specifically, the diffusion tensor is given by the formula: 

3. EDGE ENHANCING DIFFUSION
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Figure 9: Edge enhancing diffusion results for different diffusion times (l = 2, s = 1).

Thus the given image u is usually convolved with a Gaussian kernel Gs with a relatively
small standard deviation s as a presmoothing step and the structure tensor is computed
accordingly by using rus = r(Gs ⇤ u) instead of ru.

The main idea behind edge enhancing diffusion is to use the structure tensor as
an image/edge descriptor to construct a diffusion tensor that reduces the amount of
smoothing across the edges while smoothing is still carried out along the edges. In
order to perform this, Weickert proposed to utilize same orthonormal basis of eigen-
vectors v1 k rus and v2 ? rus estimated from the structure tensor J(rus) with the
following choice of eigenvalues satisfying l1(|rus |)

l2(|rus |) ! 0 for |rus| ! •

l1(|rus|) =

(
1 if |rus| = 0
1 � exp

⇣
� 3.31488

(|rus |/l)8

⌘
otherwise,(20)

l2(|rus|) = 1(21)

where l denotes the contrast parameter.
Such a choice preserves and enhances image edges by reducing the diffusivity l1

perpendicular to edges for sufficiently large values of |rus|. Specifically, the diffusion
tensor is given by the formula

(22)

D =

"
(us)

x

� (us)
y

(us)
y

(us)
x

#
·


l1(|rus|) 0
0 l2(|rus|)

�
·
"

(us)
x

� (us)
y

(us)
y

(us)
x

#�1

.

Figure 9 and Figure 10 illustrate example results of edge enhancing diffusion filter
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Review - Sample Results of Edge 
Enhancing Diffusion 
• Smoothing process diminishes noise and fine image details 

while retaining and enhancing edges as in the Perona-Malik 
type nonlinear diffusion. 

3. EDGE ENHANCING DIFFUSION
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Variational Segmentation Models

• Segmentation is formalized as a functional 
minimization.

• Mumford-Shah Model (1989)
• Ambrosio-Tortorelli Model (1990)
• Shah’s Model (1996)
• Chan-Vese Model (2001)

• Context-guided Mumford-Shah Model (2009)

Mumford-Shah (MS) Segmentation 
Model
• Mumford & Shah, Comm. Pure Appl. Math., 1989
• Segmentation is formalized as a functional minimization:

Given an image f, compute a piecewise smooth image u and 
an edge set Γ

– Ω� R2 is connected, bounded, open subset representing the image 
domain, 

– f is an image defined on Ω,
– Γ� Ω is the edge set segmenting Ω,
– u is the piecewise smooth approximation of f ,
– α, β > 0 are the scale space parameters.
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1 MUMFORD-SHAH (MS) FUNCTIONAL

The formulation of Mumford and Shah [6] is based on a functional minimization via
which a piecewise smooth approximation of a given image and an edge set are to be
recovered simultaneously. In this unified formulation, smoothing and edge detection
processes work jointly to partition an image into segments. The Mumford-Shah (MS)
model is:

(1) EMS(u, G) = b
Z

W

(u � f )2dx + a
Z

W\G

|ru|2dx + length(G)

where

• W ⇢ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on W,

• G ⇢ W is the edge set segmenting W,

• u is the piecewise smooth approximation of f ,

• a, b > 0 are the scale space parameters of the model.
⇤erkut@cs.hacettepe.edu.tr
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Mumford-Shah (MS) Segmentation 
Model

• Smoothing and edge detection processes work jointly to 
partition an image into segments.

• Unknown edge set Γ of a lower dimension makes the 
minimization of the MS model very difficult. 

• In literature several approaches for approximating 
the MS model are suggested.
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data fidelity term regularization or smoothness term

Ambrosio-Tortorelli (AT) 
Approximation

• Unknown edge set Γis
replaced with a continuous 
function v(x)
– v ≈ 0 along image edges
– v grows rapidly towards 1

away from edges

• The function v can be interpreted 
as a blurred version of the edge set. 

• The parameter ρ specifies 
the level of blurring. 

length(Γ)

2. AMBROSIO-TORTORELLI (AT) APPROXIMATION OF THE MS FUNCTIONAL

The first term in EMS is the data fidelity term which forces u to be close to the
original image f . The next two terms are the generic priors that provide certain knowl-
edge about the solution. Specifically, the second term, the so-called regularization or
smoothness term, gives preference to piecewise smooth images by penalizing high gra-
dients. Since the integral is over W\G, this prior is turned off at image boundaries, and
thus it excludes image edges to be smoothed out. The third term is a penalty term on
total edge length which prevents the image to be split into many regions. Additionally,
it implicitly imposes smoothness of the boundaries.

Generally, the unknown edge set G of a lower dimension makes the minimization of
the MS model very difficult. Hence, in literature several approaches for approximating
the MS model are suggested [1, 4]. In the next section, the approximation proposed by
Ambrosio and Tortorelli [1] will be reviewed.

2 AMBROSIO-TORTORELLI (AT) APPROXIMATION OF THE MS
FUNCTIONAL

Ambrosio and Tortorelli [1] suggested an approximation for the MS model by follow-
ing the G convergence framework [2]. The basic idea is to introduce a smooth edge
indicator function v which is more convenient than using the characteristic function cG
as the edge indicator. The new function v depends on a parameter r, and as r ! 0,
v ! 1 � cG. That is, v(x) ⇡ 0 if x 2 G and v(x) ⇡ 1 otherwise. The result is the
functional

(2) EAT(u, v) =
Z

W

✓
b(u � f )2 + a(v2|ru|2) + 1

2

✓
r|rv|2 + (1 � v)2

r

◆◆
dx .

In the Ambrosio-Tortorelli (AT) model, the continuous function v encodes the
boundary information. The value of v at a point can be interpreted as a measure of
boundaryness where the low values indicate the edge points. That is, v ⇡ 0 along the
boundaries and grows rapidly away from them. Thus, the function v may be thought as
a blurred version of the edge set. The parameter r specifies the level of blurring (Fig-
ure 1), and as r ! 0, 1

2
R

W

⇣
r|rv|2 + (1�v)2

r

⌘
dx approximates the cardinality of the

edge set G.

! ⇢2

! ⇢1

edge point

⇢1 < ⇢2

Figure 1: An example 1D edge strength function (1 � v) for two different values of r.
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1+2ar|ru|2 with
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Relating with the Perona-Malik Diffusion

• Replacing v with                           , PDE for the process u 
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diffusion:

with

• as a contrast parameter
• Relative importance of the regularization term (scale) 

depends on the ratio betweenα and β.
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Numerical Implementation

• Original model:

• Space discrete version:

with and 

Piecewise smooth image u and the edge strength function v are simultaneously
computed via the solution of the following system of coupled PDEs:
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where ∂W denotes the boundary of W and n denotes the outer unit normal vector to ∂W.

Notice that PDE for each variable can be interpreted as a biased diffusion equation
that minimizes a convex quadratic functional in which the other variable is kept fixed:

Keeping v fixed, Equation (3) minimizes a convex quadratic functional given by
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The data fidelity term in Equation (3) provides a bias that forces u to be close to the
original image f . In the regularization term, the edge strength function v specifies the
boundary points and guides the smoothing accordingly. Since v ⇡ 0 along the bound-
aries, no smoothing is carried out at the boundary points, thus the edges are preserved.
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The reciprocal relationship between v and |ru|2 can be clearly observed in the above
functional. It asserts that the function v is nothing but a smoothing of 1

1+2ar|ru|2 with
a blurring radius proportional to r and reciprocal to |ru|. Ignoring the smoothness
term r|rv|2, which mildly forces some spatial organization by requiring the edges to
be smooth, and by letting r ! 0 [3, 9], v ⇡ 1

1+2ar|ru|2 .

Considering this approximation and the relation between variational regularization
and diffusion equations, Equation (3) can be interpreted as a Perona-Malik type nonlin-
ear diffusion at a specific scale. Replacing v in Equation (3) with 1/(1 + 2ar|ru|2)
yields
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Since the parameters a and b define the relative importance of the regularization
term, the scale is determined by the ratio a/b. Keeping the value of a fixed, decreasing
the value of b results in more simplified results (Figure 2(b)-(c)). Moreover, the scale
space parameters a and b also define the detail level in segmentation. With the ratio
a/b fixed, the level of detail increases with the increasing a (Figure 2(b)-(d)).
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Numerical Implementation

Equations (3) and (4) can be simultaneously solved for u and v using standard nu-
merical discretization techniques such as finite differences. The coupled system is first
discretized with respect to spatial variables. This leads to the following space-discrete
system of equations:
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As in the discretization of the Perona-Malik equation, the diffusivities represented
by the edge strength function v at mid-pixel points can be computed by taking averages
over neighboring pixels:

(10) vi± 1
2 ,j =

vi±1,j + vi,j

2
, vi,j± 1

2
=

vi,j±1 + vi,j

2
.

The time derivatives in Equations (8) and (9) can be discretized using forward dif-
ferences, where regularization terms and the bias terms on the right hand side of each
equation are evaluated at times k and k + 1, respectively.
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where Dt denotes the time step.
Although the suggested scheme is neither fully explicit nor fully implicit, it still al-

lows us to compute uk+1 and vk+1 by using forward recursion as in an explicit scheme.
A numerical stopping criteria for the iterative scheme can be defined in the sense that
the rate of change of u is less than a threshold (Algorithm 1).
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The time derivatives in Equations (8) and (9) can be discretized using forward dif-
ferences, where regularization terms and the bias terms on the right hand side of each
equation are evaluated at times k and k + 1, respectively.
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where Dt denotes the time step.
Although the suggested scheme is neither fully explicit nor fully implicit, it still al-

lows us to compute uk+1 and vk+1 by using forward recursion as in an explicit scheme.
A numerical stopping criteria for the iterative scheme can be defined in the sense that
the rate of change of u is less than a threshold (Algorithm 1).
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• Space discrete version:

Piecewise smooth image u and the edge strength function v are simultaneously
computed via the solution of the following system of coupled PDEs:

∂u
∂t

= r · (v2ru)� b

a
(u � f );

∂u
∂n

����
∂W

= 0 ,(3)

∂v
∂t

= r2v � 2a|ru|2v
r

� (v � 1)
r2 ;

∂v
∂n

����
∂W

= 0(4)

where ∂W denotes the boundary of W and n denotes the outer unit normal vector to ∂W.

Notice that PDE for each variable can be interpreted as a biased diffusion equation
that minimizes a convex quadratic functional in which the other variable is kept fixed:

Keeping v fixed, Equation (3) minimizes a convex quadratic functional given by

(5)
Z

W

⇣
av2|ru|2 + b(u � f )2

⌘
dx .

The data fidelity term in Equation (3) provides a bias that forces u to be close to the
original image f . In the regularization term, the edge strength function v specifies the
boundary points and guides the smoothing accordingly. Since v ⇡ 0 along the bound-
aries, no smoothing is carried out at the boundary points, thus the edges are preserved.

Keeping u fixed, Equation (4) minimizes a convex quadratic functional given by

(6)
r

2

Z

W

 
|rv|2 + 1 + 2ar|ru|2

r2

✓
v � 1

1 + 2ar|ru|2

◆2
!

dx .

The reciprocal relationship between v and |ru|2 can be clearly observed in the above
functional. It asserts that the function v is nothing but a smoothing of 1

1+2ar|ru|2 with
a blurring radius proportional to r and reciprocal to |ru|. Ignoring the smoothness
term r|rv|2, which mildly forces some spatial organization by requiring the edges to
be smooth, and by letting r ! 0 [3, 9], v ⇡ 1

1+2ar|ru|2 .

Considering this approximation and the relation between variational regularization
and diffusion equations, Equation (3) can be interpreted as a Perona-Malik type nonlin-
ear diffusion at a specific scale. Replacing v in Equation (3) with 1/(1 + 2ar|ru|2)
yields

(7)
∂u
∂t

= r · (g(|ru|)ru)� b

a
(u � f )

where g(|ru|) =
⇣

1
1+|ru|2/l2

⌘2
with l2 = 1/ (2ar). Thus,

p
1/ (2ar) can be seen

as a contrast parameter.

Since the parameters a and b define the relative importance of the regularization
term, the scale is determined by the ratio a/b. Keeping the value of a fixed, decreasing
the value of b results in more simplified results (Figure 2(b)-(c)). Moreover, the scale
space parameters a and b also define the detail level in segmentation. With the ratio
a/b fixed, the level of detail increases with the increasing a (Figure 2(b)-(d)).

3

Numerical Implementation

Equations (3) and (4) can be simultaneously solved for u and v using standard nu-
merical discretization techniques such as finite differences. The coupled system is first
discretized with respect to spatial variables. This leads to the following space-discrete
system of equations:

dui,j

dt
= v2

i+ 1
2 ,j ·

�
ui+1,j � ui,j

�
� v2

i� 1
2 ,j ·

�
ui,j � ui�1,j

�

+ v2
i,j+ 1

2
·
�
ui,j+1 � ui,j

�
� v2

i,j� 1
2
·
�
ui,j � ui,j�1

�

� b

a

�
ui,j � fi,j

�
,(8)

dvi,j

dt
= vi+1,j + vi�1,j + vi,j+1 + vi,j�1 � 4vi,j

�
2a|rui,j|2vi,j

r
�

�
vi,j � 1

�

r2 .(9)

As in the discretization of the Perona-Malik equation, the diffusivities represented
by the edge strength function v at mid-pixel points can be computed by taking averages
over neighboring pixels:

(10) vi± 1
2 ,j =

vi±1,j + vi,j

2
, vi,j± 1

2
=

vi,j±1 + vi,j

2
.

The time derivatives in Equations (8) and (9) can be discretized using forward dif-
ferences, where regularization terms and the bias terms on the right hand side of each
equation are evaluated at times k and k + 1, respectively.

uk+1
i,j � uk

i,j

Dt
=

⇣
vk

i+ 1
2 ,j

⌘2
· uk

i+1,j +
⇣

vk
i� 1

2 ,j

⌘2
· uk

i�1,j

+
⇣

vk
i,j+ 1

2

⌘2
· uk

i,j+1 +
⇣

vk
i,j� 1

2

⌘2
· uk

i,j�1

�
✓⇣

vk
i+ 1

2 ,j

⌘2
+

⇣
vk

i� 1
2 ,j

⌘2
+

⇣
vk

i,j+ 1
2

⌘2
+

⇣
vk

i,j� 1
2

⌘2
◆
· uk

i,j

� b

a

⇣
uk+1

i,j � fi,j

⌘
,(11)

vk+1
i,j � vk

i,j

Dt
= vk

i+1,j + vk
i�1,j + vk

i,j+1 + vk
i,j�1 � 4vk

i,j

�
a

✓⇣
uk

i+1,j � uk
i�1,j

⌘2
+

⇣
uk

i,j+1 � uk
i,j�1

⌘2
◆

vk+1
i,j

2r
�

⇣
vk+1

i,j � 1
⌘

r2(12)

where Dt denotes the time step.
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A numerical stopping criteria for the iterative scheme can be defined in the sense that
the rate of change of u is less than a threshold (Algorithm 1).
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A Common Framework for Curve Evolution, 
Segmentation and Anisotropic Diffusion
• Quadratic cost functions in the data fidelity and the 

smoothing terms are replaced with L1-functions (Shah, 
CVPR 1996): 

• As ρ → 0, this energy functional converges to the following 
functional: 

with                         indicating the jump in u across Γ, and 
u+ and u− denote inten-sity values on two sides of Γ

3. A COMMON FRAMEWORK FOR CURVE EVOLUTION, SEGMENTATION AND
ANISOTROPIC DIFFUSION

Algorithm 1 Minimization of the Ambrosio-Tortorelli Model
1: Initialize the variables with u0 = f , v0 = 1

1+2ar|ru0|2
2: for k = 0 to kmax do

3: Solve Equation (11) for uk+1

4: if |uk+1 � uk| < e|uk| then

5: stop iterations
6: end if

7: Solve Equation (12) for vk+1

8: end for

3 A COMMON FRAMEWORK FOR CURVE EVOLUTION,
SEGMENTATION AND ANISOTROPIC DIFFUSION

The key idea of the Ambrosio-Tortorelli approximation of the Mumford-Shah func-
tional (Section 2) is to utilize a continuous edge strength function v. The value of v
approaches to 0 at the object boundaries and grows rapidly as image gradients become
small. In [9], Shah suggested a modification to the Ambrosio-Tortorelli model Equa-
tion (2), where the quadratic cost functions in both the data fidelity and the smoothing
terms are replaced with L1-functions. The modified energy is:
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As r ! 0, this energy functional converges to the following functional:

(14) ES2(u, G) =
b

a

Z

W

|u � f |dx +
Z

W\G

|ru|dx +
Z

G

Ju

1 + aJu
ds

with Ju = |u+ � u�| indicating the jump in u across G. u+ and u� denote inten-
sity values on two sides of G, respectively, and thus each boundary point is weighted
according to its level of contrast.

Minimizing ES corresponds to the gradient descent equations:
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The Equation (16) is very similar to the evolution equation of v Equation (4) in the
AT model; only |ru|2 is replaced with |ru|. The determining factor of the model is
the new evolution equation of u Equation (15). Replacing L2-norms in both the data
fidelity and the smoothness terms by their L1-norms generates shocks in u and thus
object boundaries are recovered as actual discontinuities. As it can be clearly seen
from Figure 3, the suggested smoothing process of u gives rise to more cartoon-like,
piecewise constant images (these results are obtained by using a half-quadratic approx-
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fidelity and the smoothness terms by their L1-norms generates shocks in u and thus
object boundaries are recovered as actual discontinuities. As it can be clearly seen
from Figure 3, the suggested smoothing process of u gives rise to more cartoon-like,
piecewise constant images (these results are obtained by using a half-quadratic approx-
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Sample Results of Shah (CVPR96)

• Smoothing 
process of u gives 
rise to more 
cartoon-like, 
piecewise 
constant images 

but with some 
unintuitive regions

4. ACTIVE CONTOURS WITHOUT EDGES

(a)

(b)

(c)

(d)

Figure 3: Example segmentation results (u and 1 � v). (a) Source image. (b)-(d) Cor-
responding segmentations obtained with parameters (b) a = 1, b = 0.01, r = 0.01,
(c) a = 1, b = 0.001, r = 0.01, and (d) a = 4, b = 0.04, r = 0.01.
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2. AMBROSIO-TORTORELLI (AT) APPROXIMATION OF THE MS FUNCTIONAL

(a)

(b)

(c)

(d)

Figure 2: Example segmentation results (u and 1� v). (a) Source image. (b)-(d) Corre-
sponding segmentations obtained with the parameters (b) a = 1, b = 0.01, r = 0.01,
(c) a = 1, b = 0.001, r = 0.01, and (d) a = 4, b = 0.04, r = 0.01, respectively.
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Challenging Cases

• E. Erdem, A. Sancar-Yilmaz, and S. Tari, 
“Mumford-Shah Regularizer with Spatial Coherence”, 
International Conference on Scale Space and Variational Methods 
(SSVM) 2007

• E. Erdem and S. Tari, 
“Mumford-Shah Regularizer with Contextual Feedback”, 
Journal of Mathematical Imaging and Vision, 
Vol. 33, No.1, pp. 67-84, January 2009

• Contextual knowledge extracted from local image 
regions guides the regularization process.

Context-Guided Image Smoothing
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• Contextual knowledge extracted from local image 
regions guides the regularization process.

Context-Guided Image Smoothing Context-Guided Image Smoothing

pixel level

local 
neighborhood

contextual
measure 

local
context

Context-Guided Image Smoothing

• 2 coupled processes (u and v modules)

φ�[0,1] V�{0,1} 

The Roles of φ and V

1. Eliminating an accidentally occurring event
– e.g., a high gradient due to noise
– V=1, φ is low for accidental occurrences

2. Preventing an accidental elimination of a feature 
of interest
– e.g., encourage edge formation
– V=0, φ is low for meaningful occurrences 



Experimental Results

• Suggested contextual measures: 
1. Directional consistency of edges

• shapes have smooth boundaries
2. Edge Continuity

• gap filling
3. Texture Edges

• boundary between different textured regions
4. Local Scale

• Resolution varies throughout the image

Directional Consistency
Approximate MS

Context guided filtering result

Directional Consistency

Approximate MS

Context guided 
filtering result

Edge Continuity

Approximate MS Context guided 
filtering result



Coalition of Directional Consistency 
and Texture Edges

φte

Coalition of Directional Consistency, Edge 
Continuity and Texture Edges

Local Scale
Approximate MS

φls

Context guided 
filtering result

Active Contours Without Edges

• A level-set based approximation of the Mumford-Shah model 
proposed by Chan and Vese (2001).

• Level sets provide an implicit contour representation where 
an evolving curve is represented with the zero-level line of a 
level set function. 

(a) (b) (c)

Figure 4: Segmentation of a noisy image degraded with 5% salt and pepper noise.
(a) Source image. (b) Reconstruction using AT model. (c) Reconstruction using Shah’s
modified functional (both results are obtained with a = 1, b = 0.01, r = 0.01).

Figure 5: A curve can be represented as the zero-level line of a level set function (image
taken from [4]).

and f < 0, respectively. Thus, the CV model can be seen as a two-phase piecewise
constant approximation of the MS model, which can theoretically be obtained by let-
ting the weight a of the smoothness term tend to infinity, and forcing a two-region
segmentation.

To segment a given image, the functional (17) needs to be minimized with respect
to c1, c2, and f. Keeping f fixed, the average gray values c1 and c2 can be easily
estimated by

c1 =

R
W f (x)H(f(x))dxR

W H(f(x))dx
,(19)

c2 =

R
W f (x)(1 � H(f(x)))dxR

W(1 � H(f(x)))dx
.(20)

Keeping c1 and c2 fixed and using the calculus of variations for the functional (17),
the gradient descent equation for the evolution of f is derived as

(21)
∂f

∂t
= d(f)


µ r ·

✓
rf

|rf|

◆
� l1( f � c1)

2 + l2( f � c2)
2
�

.
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Image credit: Chan & Vese, 2001



Active Contours Without Edges

• Basic idea: Fitting term

• Minimize: the Fitting term + Length(C)
Slide credit: L. Vese

Active Contours Without Edges

• A level-set based approximation of the Mumford-Shah model 
proposed by Chan and Vese (2001):

where λ1, λ2 > 0 and μ ≥ 0 are fixed parameters. 
• Length parameter μ can be interpreted as a scale parameter. 

It determines the relative importance of the length term. 
• Possibility of detecting smaller objects/regions increases with 

decreasing μ. 

imation of Shah’s modified energy proposed in [5]). However, the robust norms utilized
attract the image towards the cartoon limit and catch unintuitive regions such as the one
at the man’s right shoulder and the ones on the floor. It is important to remark that the
effect of the scale space parameters a and b on segmentation results is similar com-
pared to the one in AT model (cf. Figure 2). The amount of smoothing is determined
by the ratio a/b, and increasing the value of a while keeping a/b fixed leads to more
detailed segmentations.

One of the underlying assumptions of the original MS model and AT approxima-
tion is that the filtered image varies from the observed image by Gaussian noise. Hence,
when a source image is corrupted by impulse noise, the corresponding smoothing pro-
cess produces inadequate results. However, replacing the L2-norm with the L1 in the
modified model yields to a robust data fidelity term that can cope with impulse noise.
For example, consider the noisy image given in Figure 4(a), which is degraded with
5% salt and pepper noise. Figure 4(b) and (c) depict the outcomes of the AT approxi-
mation and the modified model, respectively. As they demonstrate, the modified model
eliminates the impulse noise during smoothing, however, noise still present in the AT
result.

4 ACTIVE CONTOURS WITHOUT EDGES

Chan and Vese [4] proposed an approximation for the MS segmentation model by
following the level-set based curve evolution formulation [7, 8]. Level sets provide an
implicit contour representation where an evolving curve is represented with the zero-
level line of a level set function (Figure 5). The basic aim of Chan and Vese (CV) model
is to partition a given image into two regions that are likely to correspond object and
background regions by embedding the object boundary by the zero-level curve of a 3D
level set function.

Let f be a level set function. Then, the Chan-Vese functional is

ECV(c1, c2, f) = l1

Z

W

( f � c1)
2H(f)dx + l2

Z

W

( f � c2)
2(1 � H(f))dx

+ µ
Z

W

|rH(f)|dx(17)

where l1, l2 > 0 and µ � 0 are fixed parameters. The length parameter µ can be
interpreted as a scale parameter since it determines the relative importance of the length
term. The possibility of detecting smaller objects/regions increases with decreasing µ.

The model represents the segmented image with the variables c1, c2 and H(f),
where H(f) denotes the Heaviside function of the level set function f defined by

(18) H(z) =
⇢

1 if z � 0
0 if z < 0 .

The Heaviside function of the level set function, H(f), specifies object and back-
ground regions in the observed image f , while the last term in (17),

R
W |rH(f)|,

expresses the length of the object boundary. On top of that, the scalars c1 and c2 de-
note the average gray values of object and background regions indicated by f � 0

7
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• A level-set based approximation of the Mumford-Shah model 
proposed by Chan and Vese (2001):

• c1 and c2 denote the average gray values of object and 
background regions indicated by φ ≥ 0 and φ < 0, 
respectively. 

• Chan-Vese model can be seen as a two-phase piecewise 
constant approximation of the MS model.
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pared to the one in AT model (cf. Figure 2). The amount of smoothing is determined
by the ratio a/b, and increasing the value of a while keeping a/b fixed leads to more
detailed segmentations.

One of the underlying assumptions of the original MS model and AT approxima-
tion is that the filtered image varies from the observed image by Gaussian noise. Hence,
when a source image is corrupted by impulse noise, the corresponding smoothing pro-
cess produces inadequate results. However, replacing the L2-norm with the L1 in the
modified model yields to a robust data fidelity term that can cope with impulse noise.
For example, consider the noisy image given in Figure 4(a), which is degraded with
5% salt and pepper noise. Figure 4(b) and (c) depict the outcomes of the AT approxi-
mation and the modified model, respectively. As they demonstrate, the modified model
eliminates the impulse noise during smoothing, however, noise still present in the AT
result.

4 ACTIVE CONTOURS WITHOUT EDGES

Chan and Vese [4] proposed an approximation for the MS segmentation model by
following the level-set based curve evolution formulation [7, 8]. Level sets provide an
implicit contour representation where an evolving curve is represented with the zero-
level line of a level set function (Figure 5). The basic aim of Chan and Vese (CV) model
is to partition a given image into two regions that are likely to correspond object and
background regions by embedding the object boundary by the zero-level curve of a 3D
level set function.

Let f be a level set function. Then, the Chan-Vese functional is

ECV(c1, c2, f) = l1

Z

W

( f � c1)
2H(f)dx + l2

Z

W

( f � c2)
2(1 � H(f))dx

+ µ
Z

W

|rH(f)|dx(17)

where l1, l2 > 0 and µ � 0 are fixed parameters. The length parameter µ can be
interpreted as a scale parameter since it determines the relative importance of the length
term. The possibility of detecting smaller objects/regions increases with decreasing µ.

The model represents the segmented image with the variables c1, c2 and H(f),
where H(f) denotes the Heaviside function of the level set function f defined by

(18) H(z) =
⇢

1 if z � 0
0 if z < 0 .

The Heaviside function of the level set function, H(f), specifies object and back-
ground regions in the observed image f , while the last term in (17),

R
W |rH(f)|,

expresses the length of the object boundary. On top of that, the scalars c1 and c2 de-
note the average gray values of object and background regions indicated by f � 0
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Active Contours Without Edges

• Segmentation involves minimizing the energy functional with 
respect to c1, c2, and φ.

• Keeping φ fixed, the average gray values c1 and c2 can be 
estimated as follows:

(a) (b) (c)

Figure 4: Segmentation of a noisy image degraded with 5% salt and pepper noise.
(a) Source image. (b) Reconstruction using AT model. (c) Reconstruction using Shah’s
modified functional (both results are obtained with a = 1, b = 0.01, r = 0.01).

Figure 5: A curve can be represented as the zero-level line of a level set function (image
taken from [4]).

and f < 0, respectively. Thus, the CV model can be seen as a two-phase piecewise
constant approximation of the MS model, which can theoretically be obtained by let-
ting the weight a of the smoothness term tend to infinity, and forcing a two-region
segmentation.

To segment a given image, the functional (17) needs to be minimized with respect
to c1, c2, and f. Keeping f fixed, the average gray values c1 and c2 can be easily
estimated by

c1 =

R
W f (x)H(f(x))dxR

W H(f(x))dx
,(19)

c2 =

R
W f (x)(1 � H(f(x)))dxR

W(1 � H(f(x)))dx
.(20)

Keeping c1 and c2 fixed and using the calculus of variations for the functional (17),
the gradient descent equation for the evolution of f is derived as

(21)
∂f

∂t
= d(f)


µ r ·

✓
rf

|rf|

◆
� l1( f � c1)

2 + l2( f � c2)
2
�

.
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Sample result of the Chan-Vese Model
• As the zero-level line of the evolving level set function φ is attracted to 

object boundaries, a more accurate piecewise constant approximations 
of the original image f is recovered. 

REFERENCES

In Figure 6, we illustrate segmentation of a sample noisy image which contains
several objects of different shapes and sizes. We initialiaze the level set function f with
f0 = �

p
(x � 100)2 + (y � 100)2 + 90. As the zero-level line of the evolving level

set function f is attracted to object boundaries, a more accurate piecewise constant
approximations of the original image f is recovered. Although some of the objects
in the image have holes, they can be automatically detected by the CV model without
considering additional curves since the level set formulation allows change of topology.

Numerical Implementation

In the numerical approximation of the CV model, generally, a regularized Heaviside
function is used. For the remainder of this thesis, the following regularization is con-
sidered:

H#(z) =
1
2

✓
1 +

2
p

arctan
⇣ z

#

⌘◆
,(22)

d#(z) =
dH#(z)

dz
=

1
p

#

#2 + z2 .(23)

The evolution equation of f (21) can be discretized by using standard finite differ-
ences as

fk+1
i,j � fk

i,j

Dt
= d(fk

i,j)

2

4µDx
� ·

0

@
Dx
+fk+1

i,jq
(Dx

+fk
i,j)

2 + (fk
i,j+1 � fk

i,j�1)
2/4

1

A

+ µDy
� ·

0

@
Dy
+fk+1

i,jq
(fk

i+1,j � fk
i�1,j)

2/4 + (Dy
+fk

i,j)
2

1

A

� l1

⇣
fi,j � c1(f

k)
⌘2

+ l2

⇣
fi,j � c2(f

k)
⌘2

�
(24)

where (i, j) denotes the pixel position, Dt is the time step, and forward and backward
differences are defined as

Dx
�fi,j = fi,j � fi�1,j, Dx

+fi,j = fi+1,j � fi,j,

Dy
�fi,j = fi,j � fi,j�1, Dy

+fi,j = fi,j+1 � fi,j.

The minimization procedure is summarized in Algorithm 2. Keeping f fixed, first
the average gray values of object and background regions c1 and c2 are estimated. Next,
the level set function f is evolved according to (24). A numerical stopping criteria can
be defined in the sense that the rate of change of f or the overall energy (17) is less
than a threshold.
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43(8):999–1036, 1990.
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Figure 6: Example segmentation results (evolving contour f superimposed on the orig-
inal image f and the corresponding piecewise constant approximations of f ). The pa-
rameters and the initial level set function are chosen as l1 = l2 = 1, µ = 0.5 · 2552,
# = 1, and f0 = �

p
(x � 100)2 + (y � 100)2 + 90.
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Fig. 5. Detection of three blurred objects of distinct intensities. Size
, , , no

reinitialization, cpu s.

Fig. 6. Detection of lines and curves not necessarily closed. Size ,
, , no

reinitialization, cpu s.

while with and , the algorithm has the tendency to com-
pute a global minimizer. One of the reasons is that the Euler–La-
grange equation for acts only locally, on a few level curves

Fig. 7. Grouping based on Kanizsa’s “proximity rule.” Size: 64 64,
, , no

reinitialization, cpu s.

Fig. 8. Grouping based on chromatic identity. Size: 64 64,
, , no reinitialization, cpu

s.

around using and ; but using and
, the equation acts on all level curves. In this way, in practice,

we can obtain a global minimizer, independently of the position
of the initial curve; moreover, this allows to automatically de-
tect interior contours (see Section IV).Wemention that, in order
to extend the evolution to all level sets of , another possibility
is to replace by (see [27]). In our paper, we work
with , to remain close to the initial minimization problem.
The problem of extending the evolution to all level sets of
was solved here using the approximation of , which is
different of zero everywhere.
To discretize the equation in , we use a finite differences

implicit scheme. We recall first the usual notations: let be the
space step, be the time step, and be the
grid points, for . Let be an
approximation of , with , . The finite
differences are

The algorithm is as follows (we essentially adopt the method
from [23] for the discretization of the divergence operator and
the iterative algorithm from [1]): knowing , we first compute

and using (6) and (7), respectively. Then, we
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Fig. 10. Detection of a simulated minefield, with contour without gradient.
Size , ,

, no reinitialization, cpu s.

points, due to the noise), then has to be larger. We will give
the exact value of each time, together with the initial level set
function , and the cpu time, in seconds, of our calculations,
performed on a 140 MHz Sun Ultra 1 with 256 MB of RAM.
In Fig. 4, we show how our model works on a noisy synthetic

image, with various shapes and an interior contour, which is au-
tomatically detected, without considering a second initial curve.
Due to the level set implementation, the model allows automat-
ical change of topology.
In Fig. 5, we show that our model can detect different objects

of different intensities, and with blurred boundaries. Again, the
interior contour of the torus is automatically detected. This is
also due to the fact that the velocity has a global dependence, and
the curve is automatically attracted toward the objects. In this
example we also show that the initial curve does not necessarily
surround the objects.
In Fig. 6, we show how we can detect lines and curves (not

necessarily closed) in a noisy image. The final level set function
is zero on the curves and negative outside the curves.

Fig. 11. Europe night-lights. Size ,
, , five iterations

of reinitialization, cpu s.

In the next examples (Figs. 7 and 8) we consider images with
“contours without gradient” or “cognitive contours” (see [8]).
We also illustrate here the role of the length term as a scale
parameter: if is small, then also smaller objects will be de-
tected; if is larger, then only larger objects are detected, or ob-
jects formed by grouping. In Fig. 7, we show that our algorithm
can detect objects defined by grouping according to Kanizsa’s
“proximity rule.” In Fig. 8 we show how the grouping is based
on the chromatic resemblance or identity, among objects of the
same shape.
We next consider an image with very smooth contours. In

Fig. 9 top, we show results obtained using our model, while
in Fig. 9 bottom, we show the results obtained with a classical
active contour model based on the edge-function [here
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Numerical Implementation

• In the numerical approximation, regularized form of the 
Heaviside function is used:
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In Figure 6, we illustrate segmentation of a sample noisy image which contains
several objects of different shapes and sizes. We initialiaze the level set function f with
f0 = �

p
(x � 100)2 + (y � 100)2 + 90. As the zero-level line of the evolving level

set function f is attracted to object boundaries, a more accurate piecewise constant
approximations of the original image f is recovered. Although some of the objects
in the image have holes, they can be automatically detected by the CV model without
considering additional curves since the level set formulation allows change of topology.

Numerical Implementation

In the numerical approximation of the CV model, generally, a regularized Heaviside
function is used. For the remainder of this thesis, the following regularization is con-
sidered:
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The evolution equation of f (21) can be discretized by using standard finite differ-
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where (i, j) denotes the pixel position, Dt is the time step, and forward and backward
differences are defined as

Dx
�fi,j = fi,j � fi�1,j, Dx

+fi,j = fi+1,j � fi,j,

Dy
�fi,j = fi,j � fi,j�1, Dy

+fi,j = fi,j+1 � fi,j.

The minimization procedure is summarized in Algorithm 2. Keeping f fixed, first
the average gray values of object and background regions c1 and c2 are estimated. Next,
the level set function f is evolved according to (24). A numerical stopping criteria can
be defined in the sense that the rate of change of f or the overall energy (17) is less
than a threshold.
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