BIL 717 Image Processing Mar. 21, 2016

Modern Image Smoothing

Erkut Erdem Hacettepe University Computer Vision Lab (HUCVL)

A little bit of (personal) history

Standard unified formulations (nonlinear filters) fail to capture some details, e.g. due to texture!

- mid 80's unified formulations a breakthrough!
 - methods that combine smoothing and edge detection (Geman & Geman'84, Mumford & Shah'89, Perona & Malik'90)

A little bit of history

▶ Gaussian Filtering / linear diffusion - the most widely used method

- mid 80's unified formulations a breakthrough!
 - methods that combine smoothing and edge detection (Geman & Geman'84, Mumford & Shah'89, Perona & Malik'90)

Some seminal works

Context-guided filtering

- Contextual knowledge extracted from local image regions guides the regularization process.
 - E. Erdem, A. Sancar-Yilmaz, and S. Tari, "Mumford-Shah Regularizer with Spatial Coherence", In SSVM 2007
 - E. Erdem and S. Tari, "Mumford-Shah Regularizer with Contextual Feedback", JMIV 2009

Structure-Texture Decomposition

> Decomposing an image into structure and texture components

Input Image

Structure-Texture Decomposition

> Decomposing an image into structure and texture components

Structure Component

Structure-Texture Decomposition

> Decomposing an image into structure and texture components

Texture Component

Structure-Texture Decomposition

> Decomposing an image into structure and texture components

Texture

Region Covariances as Region Descriptors

Motivation

- Region covariances capture local structure and texture information.
- Similar regions have similar statistics.

RegCov Smoothing - Formulation

I = S + T

$$S(\mathbf{p}) = \frac{1}{Z_{\mathbf{p}}} \sum_{\mathbf{q} \in N(\mathbf{p}, r)} w_{\mathbf{p}\mathbf{q}} I(\mathbf{q})$$

- Structure-texture decomposition via smoothing
- Smoothing as weighted averaging
- Different kernels (w_{pq}) result in different types of filters.
- Three novel patch-based kernels for structure texture decomposition.
- L. Karacan, A. Erdem, E. Erdem, "Structure Preserving Image Smoothing via Region Covariances", ACM TOG 2013 (SIGGRAPH Asia 2013)

Model 1

 Depends on sigma-points representation of covariance matrices (Hong et al., CVPR'09)

 $\mathbf{C} = \mathbf{L}\mathbf{L}^T$ Cholesky Decomposition $\mathcal{S} = \{\mathbf{s}_i\}$ Sigma Points

$$\mathbf{s}_{i} = \begin{cases} \alpha \sqrt{d} \mathbf{L}_{i} & \text{if } 1 \leq i \leq d \\ -\alpha \sqrt{d} \mathbf{L}_{i} & \text{if } d+1 \leq i \leq 2d \end{cases}$$

$$\Psi(\mathbf{C}) = (\mu, \mathbf{s}_1, \dots, \mathbf{s}_d, \mathbf{s}_{d+1}, \dots, \mathbf{s}_{2d})^T$$

Resulting kernel function

Final representation

$$w_{\mathbf{pq}} \propto \exp\left(-\frac{\|\Psi(\mathbf{C_p}) - \Psi(\mathbf{C_q})\|^2}{2\sigma^2}\right)$$

Model 2

- > An alternative way is to use statistical similarity measures.
- A Mahalanobis-like distance measure to compare to image patches.

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(\mu_{\mathbf{p}} - \mu_{\mathbf{q}})\mathbf{C}^{-1}(\mu_{\mathbf{p}} - \mu_{\mathbf{q}})^{T}}$$

$$\mathbf{C} = \mathbf{C}_{\mathbf{p}} + \mathbf{C}_{\mathbf{q}}$$

Resulting kernel $w_{\mathbf{pq}} \propto \exp\left(-rac{d(\mathbf{p},\mathbf{q})^2}{2\sigma^2}
ight)$

Model 3

resulted from a discussion with Rahul Narain (Berkeley University)

- We use Kullback-Leibler(KL)-Divergence measure from probability theory.
- A KL-Divergence form is used to calculate statistical distance between two multivariate normal distribution

Smoothing Kernels

Input

BLF 1998

Envelope Extraction Subr et al. 2009

LO Xu et al. 2011

Detail Boosting

Image Composition

Inverse Halftoning

Image Retargeting

Retargeting Results Avidan and Shamir 2007

Where we are going

- Linear filtering
- Nonlinear filtering (unified formulations)
- > Pixels to Patches (context is more important than content)
- ▶ New patch representations may reveal new smoothing behaviors
- Better the smoothing, better the applications!
- Clearly, we have a long way to go to solve the problem of image smoothing!