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A little bit of history 
   Gaussian Filtering / linear diffusion - the most widely used method 
 

 

  mid 80’s – unified formulations – a breakthrough! 
  methods that combine smoothing and edge detection  

(Geman & Geman’84, Mumford & Shah’89, Perona & Malik’90) 

A little bit of (personal) history 
  Gaussian Filtering / linear diffusion - the most widely used method 

 

 

  mid 80’s – unified formulations – a breakthrough! 
  methods that combine smoothing and edge detection  

(Geman & Geman’84, Mumford & Shah’89, Perona & Malik’90) 

 
Standard unified formulations (nonlinear filters) 
fail to capture some details, e.g. due to texture! 

 

Some seminal works 

Total Variation 
Rudin et al. 1992 

Fast Cartoon + Texture 
Buades et al. 2010 

L0 Smoothing 
Xu et al. 2011 

Relative Total Variation 
Xu et al. 2012 

Bilateral Filter 
Tomasi and Manduchi 1998 

Durand and Dorsey 2002 

WLS Filter 
Farbman et al. 2008 

Envelope Extraction 
Subr et al. 2009 

Context-guided Filtering 
Erdem and Tari 2009 78 J Math Imaging Vis (2009) 33: 67–84

Fig. 10 Coalition of three feedback measures. (a) Source image. (b) Reconstruction result with contextual feedback. (c) Final edge indicator
function. (d) Texture edges measure φte . (e) Reconstruction using Shah’s modification. (f) Reconstruction using the ROF model

Fig. 11 Texture preserving denoising with local scale measure φls . (a) Source image. (b)–(c) Reconstructions using AT with different choices of
smoothing levels. (d) Reconstruction result with contextual feedback. Notice that texture in the fabric is preserved. (e) Local scale measure φls

pixels whereas the source image is denoised while preserv-
ing textures in Fig. 11(d). Increasing the level of smoothing
in the AT model results in noise-free results as presented in
Fig. 11(c), however the textured regions are also smoothed

out during the process. Figure 12 illustrates the results of
two more texture preserving denoising experiments. Fig-
ures 12(c) and (d) are obtained using the parameters α = 20,
β = 0.1, ρ = 0.001, εls = 0.125, n = 15 and α = 4, β = 0.1,

78 J Math Imaging Vis (2009) 33: 67–84

Fig. 10 Coalition of three feedback measures. (a) Source image. (b) Reconstruction result with contextual feedback. (c) Final edge indicator
function. (d) Texture edges measure φte . (e) Reconstruction using Shah’s modification. (f) Reconstruction using the ROF model

Fig. 11 Texture preserving denoising with local scale measure φls . (a) Source image. (b)–(c) Reconstructions using AT with different choices of
smoothing levels. (d) Reconstruction result with contextual feedback. Notice that texture in the fabric is preserved. (e) Local scale measure φls

pixels whereas the source image is denoised while preserv-
ing textures in Fig. 11(d). Increasing the level of smoothing
in the AT model results in noise-free results as presented in
Fig. 11(c), however the textured regions are also smoothed

out during the process. Figure 12 illustrates the results of
two more texture preserving denoising experiments. Fig-
ures 12(c) and (d) are obtained using the parameters α = 20,
β = 0.1, ρ = 0.001, εls = 0.125, n = 15 and α = 4, β = 0.1,

RegCov Smoothing 
Karacan et al. 2013 

Rolling Guidance Filter 
Zhang et al. 2014 
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RegCov Smoothing 
Karacan et al. 2013 

Rolling Guidance Filter 
Zhang et al. 2014 

Context-guided filtering 

  Contextual knowledge extracted from local image regions guides 
the regularization process. 
  E. Erdem, A. Sancar-Yilmaz, and S. Tari, “Mumford-Shah Regularizer with 

Spatial Coherence”, In SSVM 2007 
  E. Erdem and S. Tari, “Mumford-Shah Regularizer with Contextual Feedback”, 

JMIV 2009 
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Structure-Texture Decomposition  
  Decomposing an image into structure and texture components 

Input Image 
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Texture Component 

Structure-Texture Decomposition 
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Input Image 

  Decomposing an image into structure and texture components 

Region Covariances as Region Descriptors 
Tuzel et al., ECCV 2006 
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)
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Figure 2: Region covariance descriptors for different regions of
the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix C

R

of the feature points:

C
R

=

1

n� 1

nX

i=0

(z
k

� µ)(z
k

� µ)T (2)

with z
k=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {s

i

}, referred to as Sigma Points, can be computed as:

s
i

=

⇢
↵
p
dL

i

if 1  i  d

�↵
p
dL

i

if d+ 1  i  2d
(3)

where L
i

is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1

Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q

wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Motivation 

1
2

  Region covariances capture local structure 
and texture information. 

Similar regions have similar statistics. 



RegCov Smoothing - Formulation 
  Structure-texture decomposition via 

smoothing  

  Smoothing as weighted averaging   
  Different kernels (wpq) result in different 

types of filters. 

  Three novel patch-based kernels for 
structure texture decomposition. 

  L. Karacan, A. Erdem, E. Erdem, “Structure 
Preserving Image Smoothing via Region 
Covariances”, ACM TOG 2013  
(SIGGRAPH Asia 2013) 
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Figure 2: Region covariance descriptors for different regions of
the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).
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Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:
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A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires
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2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
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scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1

Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q

wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:
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The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
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Model 1 
  Depends on sigma-points representation of covariance matrices 

(Hong et al.,CVPR’09) 
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Figure 2: Region covariance descriptors for different regions of
the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).
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from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)
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with z
k=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {s
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where L
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is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
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q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q

wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
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the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).
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is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
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this descriptor has a minor drawback that it falls short on explain-
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statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:
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Figure 2: Region covariance descriptors for different regions of
the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).

2.2 Region covariances
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from the pixels within it, known as the region covariance descriptor,
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let F denote the feature image extracted from an image I:
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where � defines a mapping function that extracts an d-dimensional
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ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires
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scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
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and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
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where N(p, r) denotes a squared neighborhood centered at p and
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between k ⇥ k patches centered on these pixels, and Zp=
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The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an
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image pixel is represented with a 7-dimensional feature vector:
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
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(µp � µq)C�1
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with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)
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image pixel is represented with a 7-dimensional feature vector:
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)

176:4        •        L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

Resulting kernel 

Model 3  
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  We use Kullback-Leibler(KL)-Divergence measure from probability 
theory. 

  A KL-Divergence form  is used to calculate statistical distance 
between two multivariate normal distribution 
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Algorithm 1 Structure preserving image smoothing
Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.( 28) (Model 1), Eq.( 30) (Model 2),or

Eq.( 32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.
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Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).
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Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp
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6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.( 28) (Model 1), Eq.( 30) (Model 2),or

Eq.( 32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.
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Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).
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FIGURE 3.2.: Our filtering kernels consider local image geometry on calculation of filtering
weights by capturing texture information.

[�1 2 � 1], and (x, y) denotes the pixel location. Hence, the covariance descriptor of an
image patch is computed as a 7⇥ 7 matrix. Including (x, y) into the feature set is important
since it allows us to encode the correlation of other features with the spatial coordinates. The
feature set can be extended to include other features, like for example rotationally invariant
forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch similarity weights wpq

using the intensity information and taking the weighted average over the corresponding RGB
vectors rather than the intensity values in Equation 23. We empirically found that including
RGB components to the feature set does not change the results much but increases the run-
ning times.

3.3. Model 1

Using the set S defined by Equation (21), a vectorial representation of a covariance matrix
can be obtained by simply concatenating the elements of S . Moreover, first-order statistics
can be easily incorporated to this representation scheme by including the mean vector of the
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Where we are going 
  Linear filtering 
  Nonlinear filtering (unified formulations) 
  Pixels to Patches (context is more important than content) 

  New patch representations may reveal new smoothing behaviors 
  Better the smoothing, better the applications! 

  Clearly, we have a long way to go to solve the problem of image 
smoothing! 


