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Noise Removal?

Remove
Additive
Noise

Important: (i) Practical application; (ii) A convenient platform
(being the simplest inverse problem) for testing basic ideas in image
processing, and then generalizing to more complex problems.

Many Considered Directions: Partial differential equations, Statistical
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, [Sparse representations, ...

Denoising By Energy Minimization

Many of the proposed image denoising algorithms are related to
the minimization of an energy function of the form

f(x)

y : Given measurements

X : Unknown to be recovered

+ This is in-fact a Bayesian point of view, adopting ﬁ
the Maximum-A-posteriori Probability (MAP)
estimation.

Thomas Bayes
. . . L 1702 - 1761
Clearly, the wisdom in such an approach is within the "

choice of the prior — modeling the images of interest.

The Evolution of G(x)

During the past several decades we have made all sort of
guesses about the prior G(x) for images:

Gx)=ALe;  6(x)=A[Lxl, Gx)=ApiLx)

dapt+ Robust
L Smooth £\ Statistics

¢ Hidden Markov Models,

* Compression algorithms as
priors,




Sparse Modeling of Signals

Every column in
D (dictionary) is

a prototype signal
(atom).

« Thevectorais
generated
randomly with few
(say L) non-zeros at

A fixed Dictionary A sparse X random locations

& random — and with random
D vector values.
*  We shall refer to

u

this model as
Sparseland

Sparse & Redundant Rep. Modeling?

Oursignal y — pg where o is sparse
model is thus:

Sparseland Signals are Special

Interesting Model:

Every generated signal is
built as a linear combination of
few atoms from our dictionary D

A general model: the
obtained signals are a union of

Multiol - many low-dimensional
glytgy ‘ Gaussians.
. We have been using

this model in other context for a
while now (wavelet, JPEG, ...).

Sparse & Redundant Rep. Modeling?

f(x)=xP

lodp

p—>0

>

Oursignal y _ po, where o is sparse
model is thus:




Sparse & Redundant Rep. Modeling? Back to Our MAP Energy Function

fx)=x" * L, norm effectively
Asp > 0we get counts the number of
a count Jelf non-zeros in a.

1 2
S| x -yl
of the non-zeros 50
in the vector P The vector a is the

0 representation ( % )
- of the desired
||g||0 signal x. DO._y —

-1

: The core idea: while few (L out of K) atoms can be merged
Our §Ignal X = Do, where ”o(”O <L to form the true signal, the noise cannot be fitted well. Thus,
model is thus: = - Y we obtain an effective projection of the noise onto a very
low-dimensional space, thus getting denoising effect.

Wait! There are Some Issues To Summarize So Far ...

Numerical Problems: How should we solve or approximate the solution —
of the problem Image denoising (and Use a model for
many other problems signals/images
. 2 0 . 0 2 _ 2 in image processing) based on sparse
min Do, — st [of <L or min st. [Da-y|  <e . p
o |po X"z s b lofg st [Pa-yl requires a model for and redundant

the desired image representations

o min g} + [Py

There are some issues:

Theoretical Problems: Is there a unigue sparse representation? If we 1. Theoretical

t imate th uti how, h [ il 17? .
are to approximate the solution somehow, how close will we ge 2. How to approximate?

3. What about D?

Practical Problems: What dictionary D should we use, such that all this
leads to effective denoising? Will all this work in applications?




Lets Start with the Noiseless Problem Matrix “Spark”

Suppose we build a signal
by the relation

Do.=X

We aim to find the signal’s
representation:

& = ArgMin|o. st. x = Do

*
— Definition: Given a matrix D, o =Spark{D} is the smallest
number of columns that are linearly dependent.

Example: I Rank = 4
Spark =3

Why should we necessarily get a=q ?
Uniqueness .

A0 0 "
It might happen that eventually [|&, < [, . e et

similar already in 1989.

Unigueness Rule Our Goal

Suppose this problem has been solved somehow

A . 0 problem, proven to be
o = Arg MII’]”QQ”O s.t. Xx=Do o NP-Hardl
o

Here is a recipe for solving this problem:

. 0 2 2 " -
t Do - < Th binatorial
I'T(l)lcn ||g(||0 ) H o XHZ € is is a combinatoria

Uniqueness If we found a representation that satisfy Gather all the Solve the LS problem

||€_x||0 <8 supports (S}, | il Ipa-y[> st supp(a)=Si—| LS error < €27

P of cardinality L
o : for each support
Then necessarily it is unique (the sparsest).
ST

Set L=L+1

This result implies that if M| generates signals
using “sparse enough” g, the solution of the Assume: K=1000, L=10 (known!), 1 nano-sec per each LS

above will find it exactly.




Lets Approximate Relaxation — The Basis Pursuit (BP)

Instead of solving Solve Instead

10 ol < 2
o oy st Do XHZ G Min Jefo st. [po- yl, <e Min [of, st [Pa -y, <e

This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders (195)].

y A The newly defined problem is convex (quad. programming).
&\'fA b \3 Very efficient solvers can be deployed:

Relaxation methods Greedy methods = |nterior point methods [Chen, Donoho, & Saunders (‘95)] [Kim, Koh, Lustig, Boyd, & D

Gorinevsky (07)].
Smooth the L, and use Build the solution one = Sequential shrinkage for union of ortho-bases [Bruce et.al. (98)].
continuous thlmlzatlon non-zero .element at = [terative shrinkage [Figuerido & Nowak (‘03)] [Daubechies, Defrise, & De-Mole (‘04)]
’[echmqueg atime [E. (‘05)] [E., Matalon, & Zibulevsky (‘06)] [Beck & Teboulle (09)] ...

Go Greedy: Matching Pursuit (MP) Pursuit Algorithms

The MP is one of the greedy
algorithms that finds one atom at
a time [Mallat & Zhang ('93)].

. 0 _ P p)
min gl st. [Pa-yf <e

Step 1: find the one atom that
the signal. There are various algorithms designed for approximating the

solution of this problem:

Next steps: given the previously found

atoms, find the next one to the + Greedy Algorithms: Matching Pursuit, Orthogonal Matching Pursuit

residual. D (OMP), Least-Squares-OMP, Weak Matching Pursuit, Block Matching

The algorithm stops when the error [De.-y[, is below the destination Pursuit [1993-today].

threshold. B Relaxation Algorithms: Basis Pursuit (a.k.a. LASSO), Dnatzig Selector &
numerical ways to handle them [1995-today].

The Orthogonal MP (OMP) is an improved version that re-evaluates the Hybrid Algorithms: StOMP, CoSaMP, Subspace Pursuit, Iterative Hard-

coefficients by Least-Squares after each round. Thresholding [2007-today].




BP and MP Equivalence (No Noise) BP and MP Equivalence (No Noise)

Equivalence  Giyen a signal x with a representation X = Da,
assuming that || < 0.5(1+1/u) , BP and MP

are guaranteed to find the sparsest solution.

n . 0
g - Arg M()!n HQHO S't' X I Dg * MP and BP are different in general (hard to say which is better).

The above result corresponds to the worst-case, and as such, it is
too pessimistic.

Average performance results are available too, showing much better
bounds [Donoho (04)] [Candes et.al. (‘04)] [Tanner et.al. (‘05)]
[E. (‘06)] [Tropp et.al. (‘06)] ... [Candes

BP Stability for the Noisy Case BP Stability for the Noisy Case

Given a signal y =Da.+V with a representation

Stability .
satisfying o, <1/3u and a white Gaussian

noise ¥ ~ N(0,6°I), BP will show stability; i.e.,
|6t — gc||§ < Const()) - logK - ||gc||g . 0?

Ben-Haim, Eldar & E. (‘09) * With very high
probability

For 0=0 we get a weaker version of the previous result.
This result is the oracle’s error, multuiplied by C- logK.

. 2
min Ao, + [P Y| -+ T , iplicd |
o —Il1 — =12 » Similar results exist for other pursuit algorithms (Dantzig Selector,

Orthogonal Matching Pursuit, CoSaMP, Subspace Pursuit, ...)




To Summarize So Far ... What Should D Be?

Image denoising (and Use a model for
many other problems signals/images
in image processing) based on sparse
requires a model for and redundant
the desired image representations

& =arg min||gc||8 st %" Do -y ||§ <g?
o

Our Assumption: Good-behaved Images
have a sparse representation

Y

D should be chosen such that it sparsifies the representations

We have seen that there are
approximation methods to
find the sparsest solution, and
there are theoretical results
that guarantee their success.

The
Dictionary D
should be
found
somehow !!!

One approach to choose D is from a The approach we will take for

known set of transforms (Steerable building D is training it, based
wavelet, Curvelet, Contourlets, on Learning from
Bandlets, Shearlets ...) Image Examples

Measure of Quality for D K-Means For Clustering

Clustering: An extreme sparse representation

| Initiglize D |

1

Sparse Coding

A

Nearest Neighbor

_ 0
S-t- v]’ gJHO S L [Field & Olshausen (‘96) 1

N Dictionary
Each example is & Sejno Update
a linear combination representation with no Cotter et. al. (

of atoms from D more than L atoms Gribonval et. al. (
[Aharon, E. & Bruckstein (
[Aharon, E. & Bruckstein (‘05)

‘2

Column-by-Column by




The K-SVD Algorithm — General

[Aharon, E. & Bruckstein (‘04,05)]

| Initilize D | D

1

Sparse Coding

Use Matching Pursuit

|

Dictionary
Update

Column-by-Column by

K-SVD: Dictionary Update Stage

Refer only to the
examples that use the
column d,

We should solve: Fixing all A and D apart

from the ki column, and

. T seek both d, and the kih

de ‘ o d - E column in A to better fit
di 1Ok the residual!

K-SVD: Sparse Coding Stage

P 2
Min Y Hogj —X;
. j=1

B st vl

D is known!
For the jih item
we solve

Min [Pa-xjj, st. Jof <t

Solved by
A Pursuit Algorithm

K-SVD: Dictionary Update Stage

Refer only to the
examples that use the
column d,

Fixing all A and D apart
from the ki column, and
seek both d, and the ki
column in A to better fit

the residual!




K-SVD: Algorithm To Summarize So Far ...

Task: Find the best dictionary to represent the data samples {y; };L as
sparse compositions, by solving

Image denoising (and Use a model for
- B _ o . many other problems signals/images
Lr:;::.larlnlznz;tlosr;t ?e:t tpe dictionary matrix D'® € R with ¢2 normalized in image processing) based on Sparse

Repeat until convergence (stopping rule): reqUireS a mode| for and redundant
« Sparse Coding Stage: Use any pursuit algorithm to compute the
representation vectors x; for each example y;, by approximating the the desired image representations

solution of

in {IY —DX||%} subject to Vi, |x:llo < Lp.

i=1,2,..., N, wmin{ly; —Dx[3} subject o |x
i

« Codebook Update Stage: For each column k = 1,2, ..
update it by
- Define the group of examples that use this atom, w

N, xk(i) £ 0} ST
- Con‘:gu{e lhe}overall representation error matrix, E, by V\/” t ” We haVe seen that thel’e are
fhita approximation methods to
find the sparsest solution, and
obtain B o there are theoretical results
Apply SVD decomposition Eff = UAVT”. Choose the updated .
dictionary column dj, to be the first column of U. Update the that guaran‘[ee their success.

coefficient vector x%, to be the first column of V multiplied by
A(1,1).
o SetJ=J+1.

Ee=Y =) djx). .
iz work in

Restrict E;, by choosing only the columns corresponding to wy, and app| icatiol’]sr)

From Local to Global Treatment What Data to Train On?

* The K-SVD algorithm is reasonable for low-
dimension signals (N in the range 10-400).
As N grows, the complexity and the memory » Use a database of images,

N

requirements of the K-SVD become
i *  We tried that, and it works fine (~0.5-1dB
prohibitive.
below the state-of-the-art).

Option 2:

Option 1:

So, how should large images be handled?

Force shift-invariant sparsity - on each patch of size . ) '
N-by-N (N=8) in the image, including overlaps. * Use the corrupted image itself !

1 2 2 Simply sweep through all patches of size
X = ArgMin E"x - y"2 4 HZ”RijZ - Dgij"Z N-by-N (overlapping blocks),
XA i L Image of size 10002 pixels == ~108
examples to use — more than enough.

st oy, <t

Our prior This works much better!




K-SVD Image Denoising

fi= rthHX vl +”2HRIJX D%HZ St HO‘UHO =t

la|]|

x=y and D known x and a; known D and a; known

Compute a; per patch Compute D to minimize Compute x by

il
MRG0l MnsRDof  cfrgein] e
o a jj

0
. s.t. HQ‘HO S L . using SVD, updating one  which is a simple averaging
using the matching pursuit column at a time of shifted patches

Image Denoising (Gray) . & anaron (0s)

A, » ' Source

W iv'—'rl-JI V"ﬂ..’:‘

The results of the K-SVD algorlthm compete favorably ‘HV = b]l‘li"‘

with the state-of-the-art. A B

M. oLl

In a recent work that extended this algorithm to use | mg_p“,w
joint sparse representation on the patches, the best

published denoising performance are obtained [Mairal, 'ﬁ\\m i ’Fﬁ

Bach, Ponce, Sapiro & Zisserman (‘09)]. LA

W R SR e [y

Result 30.829dB SN VIR N
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Noisy image The obtained dictionary after
=20 10 iterations

Image Denoising (Gray) . & anaron (09

Result 30.829dB

Noisy image

| 5=20
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The obtained dictionary after
10 iterations

Denoising (CO|OI’) [Mairal, E. & Sapiro (‘08)]

When turning to handle color images, the
main difficulty is in defining the relation
between the color layers — R, G, and B.

The solution with the above algorithm is

simple — consider 3D patches or 8-by-8 wit

the 3 color layers, and the dictionary
will detect the proper relations.

~ ImNP> =
\ "dll"llﬂ]l ;'f--jr a7’

I =AY
TR el

A= -."" \'Hl.w'l. =




Denoising (CO|OF) [Mairal, E. & Sapiro (‘08)] Denoising (CO|OI’) [Mairal, E. & Sapiro (‘08)]

The K-SVD algorithm leads to state-of-the-art denoising
results, giving ~1dB better results compared to (vicauley et al. (06)]
which implements a learned MRF model (Field-of-Experts)

-~ i SN
Original Noisy (20.43dB) Result (30.75dB) Original Noisy (12.77dB)  Result (29.87dB)

Image Inpainting — The Basics Side Note: Compressed-Sensing

Assume: the signal x has been created is leaning on the very same principal, leading to
by x=Da,, with very sparse Q. D alternative sampling theorems.
_O!’O

Missing values in x imply
missing rows in this linear
system. Multiply this set of equations by the matrix Q which reduces
the number of rows.

Assume: the signal x has been created by x=Da, with very sparse q,,

By removing these rows, we get

Do = X

Now solve

Min|o, st X = Do

The new, smaller, system of equations is
QDo = Qx = Do =X X
[
|

L If a, was sparse enough, it will be the spargest solution of the
new system, thus, computing DQ, recovers x perfectly.

Compressed sensing focuses on conditions for this to happen,

If a, was sparse enough, it will be the solution of the above guaranteeing such recovery.

problem! Thus, computing D, recovers x perfectly.




Inpainting veiral, £. & sapiro (03] Inpainting veiral £. & sapiro (08

Experiments lead to state-of-the-art inpainting results.

Experiments lead to state-of-the-art inpainting results.

——
Ll

Résult

Original | 80% missing

Original 80% missing Result

Inpainting meiral £. & sapiro (08)] lmage Compression (et and £ (03)

The problem: Compressing photo-ID images.

5 : ,, General purpose methods (JPEG, JPEG2000)
Experiments lead to state-of-the-art inpainting results. do not take into account the specific family.

By adapting to the image-content (PCA/K-SVD),
better results could be obtained.

For these techniques to operate well, train
dictionaries locally (per patch) using a
training set of images is required.

In PCA, only the (quantized) coefficients are stored,
whereas the K-SVD requires storage of the indices
as well.

Geometric alignment of the image is very helpful
and should be done [Goldenberg, Kimmel, & E. (‘05)].




Image Compression Image Compression Results

Detect main features and warp Training set (2500 images) Original
the images to a common ~ JPEG

reference (20 parameters)
* JPEG-2000

Divide the image into disjoint e — Local-PCA
15-by-15 patches. For each K-SVD
compute and

4

Per each patch find the operating
parameters (number of atoms L,
quantization Q)

L

Warp, remove the mean from
each patch, sparse code using L
atoms, apply Q, and dewarp

Original Original
JPEG - - — - = ") JPEG
JPEG-2000 o &5 | = JPEG-2000
Local-PCA s S 10,00 § Local-PCA
K-SVD 4 K-SVD




Deblocking the Results

Deblock (6.24)

Deblock (5.27)

[Bryt and E. (09)]

Deblock (6.03) Deblock (11.32)

Super'ReSC)lUtiOn [Zeyde, Protter, & E. (‘11)]

» Given a low-resolution image, we desire to enlarge it
while producing a sharp looking result. This problem is
referred to as “Single-Image Super-Resolution”.

Image scale-up using bicubic interpolation is
being satisfactory for this task.

Recently, a sparse and redund

nt representation

technique was proposed [Yang, Wright, Huang, and Ma ('08)]
for solving this problem, by training a coupled-
dictionaries for the low- and high res. images.

* We extended and improved their algorithms and results.

Super-Resolution — Re

This book is about conver optimization, a special class of mathematical optimiza
tion problems, which includes least-squares and linear programming problems. T
is well known that least-squa programming problems have a fairl
complete theory in a var : 1 I
fHciently.
class of convex optimization problems.

While the mathematics of convex optimization has been studied for about 4

topic. The first is the recognition that interior-point methods, developed in th
1980s to solve linear programming problems, can be used to solve convex optimiza
tion problems as well. These new methods allow us to solve certain ne
of convex optimization problems, such as semidefinite programs and second-orde
cone programs, almost as casily as lincar progra

The second development is the discovery that convex optimization problem
(beyond least-squares and linear proj ent in pra thar
was previously thought. Since 1990 many applications have been discovered if
areas such as automatic control systems, estimation and signal processing, com
munications and networks, electror uit design, data analysis and modeling|
statistics, and finance. Convex optimization has also found wide application in com
binatorial optimization and global optimization, where it is used to find bounds o1
the optimal value, as well as approximate solutions. We believe that many othe
applications of convex optimization are still waiting to be discovered

ges to recognizing or formulating a problem as a convey

great advan
solved, very reliably and efficiently, using interior-point methods or other specia
methods for convex optimization. These solution methods are reliable enough to b
embedded in a computer-aided design or analysis tool, or even a rez

or automatic control system. There are also theoretical or conceptual advan

of formulating a problem as a convex optimization problem. The associated duz

The training image:
717x717 pixels,
providing a set of
54,289 training
patch-pairs.

Super-Resolution — Results (1)

ety of practical prob

, and operation) can be

mtion problem, or some variation suck
ed, mathematicnl nizatio

» widely wsod in cngineezing, i
ms, and optimal design |

and acrospace engineering, Optimizatio

lowign and operation, finunce, supply «

other aneas, The list of applications is st

For most of these applications thy

1 docision maker, system s

s, cheeks the results, amd modilic

en necessary. This human decision my

by the optimmxation problem, « 4., buyir

porziolio

Bicubic
interpolation
PSNR=14.68dB

SR Result
SNR=16.950B

|deal
Image

An amazing variety of p probl
gn, analysis, and operation) can be

mization problem, or some ion such)
Indeed, mathematical optimization has

It is widely used in engineering, in elect|

trol systems, and optimal design proble

and aerospace engineering. Optimizatio
design and operation, finance, supply

other arcas. The list of applications is st

For most of these applications, mathe

a human decision maker tem designe

checks the resu and modifies

. This human decision ma

by the optimization problem, e.g., buyin

portfolio.

Given Image




Super-Resolution — Results (2) Super-Resolution — Results (2)

Given image

S SN

\

‘ \ ‘\“ \ \ The Original Bicubic Interpolation SR result

Scaled-Up (factor 2:1) using the proposed algorithm,
PSNR=29.32dB (3.32dB improvement over bicubic)

Super-Resolution — Results (2) LO-lmage Smoothing

General goals:

| N IH". N

The Original Bicubic Interpolation SR result

* Suppress insignificant details
* Maintain major edges

N »l B \ \

N




LO-Smoothing Method

A general and effective global smoothing
strategy based on a sparsity measure

A

o(f)=#{p||Vf,| %0}

which corresponds to the LO-norm of gradient

Two Features

2. Enhancing prominent edges

Because large gradients receive
the same penalty as small ones

#{p|pr¢0}:#{p|0{Vf;¢0}

Two Features

1. Flattening insignificant details

By removing small non-zero
gradients

Our Framework in 1D

e Constrain # of non-zero gradients
() =#pl|f,— |20t =k

e Make the result similar to the input
II}/inZ(fp -g,)’

e Obijective function
n}inZ(fp—gp)z st. o(f)=k




Our Framework in 1D

e Input 1D signal g

Our Framework in 1D

e Input 1D signal g

Our Framework in 1D

¢ Input 1D signal g

minY(f,~g,) st o(f)=2

Our Framework in 1D

¢ |Input 1D signal g

rr.lfingt(fp—gp)2 st.  c(f)=200




Transformation

ni,i_n z(fp —& )2 st a(f)=

min Y (f,—g,)’ +/-e(f) 10

Approximation

mfin}p:(fp —g,)+Ac( A,v)

Separately estimate /~ and (%,v)

2D Image

min Y (f, ~g,)* + A-¢(@./.9,/)

c@./,0,/)=#p|0.f,|+[0,f,] =0}

lterative Optimization

Both the sub-problems are with
closed-form solutions




One Example

(W NEw=.t
erge in 15 iterations

Iteratioh #84

Smoothing Strength

Smoothing Strength




Smoothing Strength

Comparison

Total Variation LO Smoothing




