Energy Minimization

Many vision tasks are naturally posed as energy minimization problems on a rectangular grid of pixels:

\[E(u) = E_{\text{data}}(u) + E_{\text{smoothness}}(u) \]

- The data term \(E_{\text{data}}(u) \) expresses our goal that the optimal model \(u \) be consistent with the measurements.
- The smoothness energy \(E_{\text{smoothness}}(u) \) is derived from our prior knowledge about plausible solutions.

- Recall Mumford-Shah functional
Sample Vision Tasks

- **Image Denoising:** Given a noisy image \(I(x, y) \), where some measurements may be missing, recover the original image \(I(x, y) \), which is typically assumed to be smooth.

- **Image Segmentation:** Assign labels to pixels in an image, e.g., to segment foreground from background.

- Stereo matching
- Surface Reconstruction
- …
Assigning a cluster label per pixel may yield outliers:

- How to ensure they are spatially smooth?

K. Grauman
Solution

\[P(\text{foreground} \mid \text{image}) \]

Encode dependencies between pixels

\[
P(y; \theta, \text{data}) = \frac{1}{Z} \prod_{i=1 \ldots N} f_1(y_i; \theta, \text{data}) \prod_{i,j \in \text{edges}} f_2(y_i, y_j; \theta, \text{data})
\]

Normalization constant

Labels to be predicted

Individual predictions

Pairwise predictions

D. Hoiem
Writing Likelihood as an “Energy”

\[
P(y; \theta, data) = \frac{1}{Z} \prod_{i=1..N} p_1(y_i; \theta, data) \prod_{i,j \in \text{edges}} p_2(y_i, y_j; \theta, data)
\]

\[
\text{Energy}(y; \theta, data) = \sum_{i} \psi_1(y_i; \theta, data) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, data)
\]

“Cost” of assignment \(y_i \)

“Cost” of pairwise assignment \(y_i, y_j \)
Markov Random Fields

\[\text{Energy}(\mathbf{y}; \theta, \text{data}) = \sum_i \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data}) \]
Markov Random Fields

- Example: “label smoothing” grid

\[\text{Energy}(y; \theta, \text{data}) = \sum_i \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data}) \]
Consider the following energy function for two binary random variables, y_1 & y_2.

$$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)$$
Binary MRF Example

- Consider the following energy function for two binary random variables, \(y_1 \) & \(y_2 \).

\[
E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)
\]

\[
= 5\bar{y}_1 + 2y_1
\]

\[
+ \bar{y}_2 + 3y_2
\]

\[
+ 3\bar{y}_1y_2 + 4y_1\bar{y}_2
\]

where \(\bar{y}_1 = 1 - y_1 \) and \(\bar{y}_2 = 1 - y_2 \).
Binary MRF Example

- Consider the following energy function for two binary random variables, \(y_1 \) & \(y_2 \):

\[
E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)
\]

\[
= 5\bar{y}_1 + 2y_1 + \bar{y}_2 + 3y_2 + 3\bar{y}_1y_2 + 4y_1\bar{y}_2
\]

where \(\bar{y}_1 = 1 - y_1 \) and \(\bar{y}_2 = 1 - y_2 \).
Image Denoising

• Given a noisy image \(v \), perhaps with missing pixels, recover an image \(u \) that is both smooth and close to \(v \).

• Classical techniques:
 – Linear filtering (e.g. Gaussian filtering)
 – Median filtering
 – Wiener filtering

• Modern techniques
 – PDE-based techniques
 – Non-local methods
 – Wavelet techniques
 – MRF-based techniques

Modern techniques are based on non-local methods, which are techniques that preserve edges in images. These techniques assume conditional independence of observations.
Denoising as a Probabilistic Inference

- Perform maximum a posteriori (MAP) estimation by maximizing the \(a \ posteriori \) distribution:
 \[
p(\text{true image} \mid \text{noisy image}) = p(u \mid v)
\]

- By Bayes theorem:
 \[
p(u \mid v) = \frac{p(v \mid u)p(u)}{p(v)}
\]

- If we take logarithm:
 \[
 \log p(u \mid v) = \log p(v \mid u) + \log p(u) - \log p(v)
 \]

- MAP estimation corresponds to minimizing the encoding cost:
 \[
 E(u) = -\log p(v \mid u) - \log p(u)
 \]
Modeling the Likelihood

- We assume that the noise at one pixel is independent of the others.
 \[p(v | u) = \prod_{i,j} p(v_{ij} | u_{ij}) \]

- We assume that the noise at each pixel is additive and Gaussian distributed:
 \[p(v_{ij} | u_{ij}) = G_\sigma (v_{ij} - u_{ij}) \]

- Thus, we can write the likelihood:
 \[p(v | u) = \prod_{i,j} G_\sigma (v_{ij} - u_{ij}) \]
Modeling the Prior

- How do we model the prior distribution of true images?
- What does that even mean?
 - We want the prior to describe how probable it is (a-priori) to have a particular true image among the set of all possible images.

![Examples of probable and improbable images](image1.png)
Natural Images

- What distinguishes “natural” images from “fake” ones?
Simple Observation

• Nearby pixels often have a similar intensity:

• But sometimes there are large intensity changes.
MRF-based Image Denoising

- Let each pixel be a node in a graph $G = (V, E)$ with 4-connected neighborhoods.

![Diagram of MRF-based Image Denoising](image)

- Unary (clique) potentials D stem from the measurement model, penalizing the discrepancy between the data v and the solution u. This models assumes conditional independence of observations.

- Interaction (clique) potentials V provide a definition of smoothness, penalizing changes in u between pixels and their neighbors.

- Goal: Find the image u that minimizes $E(u)$ (and thereby maximizes $p(u|v)$ since, up to a constant, E is equal to the negative log posterior).
Image Denoising

• The energy function is given by

\[E(u) = \sum_{i \in V} D(u_i) + \sum_{(i,j) \in E} V(u_i, u_j) \]

• Unary (clique) potentials \(D \) stem from the measurement model, penalizing the discrepancy between the data \(v \) and the solution \(u \).

• Interaction (clique) potentials \(V \) provide a definition of smoothness, penalizing changes in \(u \) between pixels and their neighbors.
Denoising as Inference

- **Goal:** Find the image u that minimizes $E(u)$

- Several options for MAP estimation process:
 - Gradient techniques
 - Gibbs sampling
 - Simulated annealing
 - Belief propagation
 - Graph cut
 - ...
Quadratic Potentials in 1D

- Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:
 where $u = (u_1, ..., u_N)$, $v = (v_1, ..., v_N)$, and $e = (e_1, ..., e_N)$.

- With Gaussian IID noise, the negative log likelihood provides a quadratic data term. If we let the smoothness term be quadratic as well, then up to a constant, the log posterior is
 \[
 E(u) = \sum_{n=1}^{N} (u_n - v_n)^2 + \lambda \sum_{n=1}^{N-1} (u_{n+1} - u_n)^2
 \]
Quadratic Potentials in 1D

- To find the optimal u^*, we take derivatives of $E(u)$ with respect to u_n:
 \[
 \frac{\partial E(u)}{\partial u_n} = 2(u_n - v_n) + 2\lambda (-u_{n-1} + 2u_n - u_{n+1})
 \]
 and therefore the necessary condition for the critical point is
 \[
 u_n + \lambda (-u_{n-1} + 2u_n - u_{n+1}) = v_n
 \]
- For endpoints we obtain different equations:
 \[
 u_1 + \lambda (u_1 - u_2) = v_1 \\
 u_N + \lambda (u_N - u_{N-1}) = v_N
 \]
 N linear equations in the N unknowns
Missing Measurements

- Suppose our measurements exist at a subset of positions, denoted P. Then we can write the energy function as

$$E(u) = \sum_{n \in P} (u_n - v_n)^2 + \lambda \sum_{\text{all } n} (u_{n+1} - u_n)^2$$

- At locations n where no measurement exists, we have:

$$-u_{n-1} + 2u_n - u_{n+1} = 0$$

- The Jacobi update equation in this case becomes:

$$u_n^{(t+1)} = \begin{cases}
\frac{1}{1+2\lambda} (v_n + \lambda u_{n-1}^{(t)} + \lambda u_{n+1}^{(t)}) & \text{for } n \in P, \\
\frac{1}{2} (u_{n-1}^{(t)} + u_{n+1}^{(t)}) & \text{otherwise}
\end{cases}$$
2D Image Smoothing

- For 2D images, the analogous energy we want to minimize becomes:

\[
E(u) = \sum_{n,m \in P} (u[n, m] - v[n, m])^2 \\
+ \lambda \sum_{\text{all } n,m} (u[n+1, m] - u[n, m])^2 + (u[n, m+1] - u[n, m])^2
\]

where \(P \) is a subset of pixels where the measurements \(v \) are available.

Looks familiar??

D. J. Fleet
Robust Potentials

• Quadratic potentials are not robust to outliers and hence they over-smooth edges. These effects will propagate throughout the graph.

• Instead of quadratic potentials, we could use a robust error function ρ:

$$E(u) = \sum_{n=1}^{N} \rho(u_n - v_n, \sigma_d) + \lambda \sum_{n=1}^{N-1} \rho(u_{n+1} - u_n, \sigma_s),$$

where σ_d and σ_s are scale parameters.
Robust Potentials

- **Example:** the *Lorentzian* error function

\[
\rho(z, \sigma) = \log \left(1 + \frac{1}{2} \left(\frac{z}{\sigma} \right)^2 \right), \quad \rho'(z, \sigma) = \frac{2z}{2\sigma^2 + z^2}.
\]

- **Error function**
- **Influence function**
Robust Potentials

- **Example:** the Lorentzian error function
- Smoothing a noisy step edge

\[
E(u) = \sum_{n=1}^{N} \rho(u_n - v_n, \sigma_d) + \lambda \sum_{n=1}^{N-1} \rho(u_{n+1} - u_n, \sigma_s),
\]

(22)

where \(\sigma_d\) and \(\sigma_s\) are scale parameters. For example, the Lorentzian error function is given by

\[
\rho(z, \sigma) = \log \left(1 + \frac{1}{2} \left(\frac{z}{\sigma}\right)^2\right),
\]

\[
\rho'(z, \sigma) = \frac{2z^2}{\sigma^2} + z^2.
\]

(23)
Robust Image Smoothing

- A Lorentzian smoothness potential encourages an approximately piecewise constant result:

![Original image](image1.png) ![Output of robust smoothing](image2.png)

Original image Output of robust smoothing
Robust Image Smoothing

- A Lorentzian smoothness potential encourages an approximately piecewise constant result:

![Original image](image1.png) ![Edges](image2.png)

We can use the Lorentzian error function to detect spatial outliers.

Problem:
- Computational expense, local minima, and sensitivity to the initial guess.
Image Segmentation

• Given an image, partition it into meaningful regions or segments.

• Approaches
 – Variational segmentation models
 – Clustering-based approaches (K-means, Mean Shift)
 – Graph-theoretic formulations

• MRF-based techniques
Markov Random Fields

• Example: “label smoothing” grid

\[\text{Energy}(y; \theta, \text{data}) = \sum_i \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data}) \]
Solving MRFs with graph cuts

Main idea:
- Construct a graph such that every st-cut corresponds to a joint assignment to the variables y.
- The cost of the cut should be equal to the energy of the assignment, $E(y; \text{data})^*$.
- The minimum-cut then corresponds to the minimum energy assignment, $y^* = \text{argmin}_y E(y; \text{data})$.

Requires non-negative energies
Solving MRFs with graph cuts

\[
\text{Energy}(y; \theta, \text{data}) = \sum_i \psi_1 (y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2 (y_i, y_j; \theta, \text{data})
\]
Solving MRFs with graph cuts

\[
\text{Energy}(y; \theta, \text{data}) = \sum_i \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data})
\]
The st-Minicut Problem

Graph (V, E, C)
- Vertices $V = \{v_1, v_2, \ldots, v_n\}$
- Edges $E = \{(v_1, v_2), \ldots\}$
- Costs $C = \{c_{(1,2)}, \ldots\}$
The st-Minicut Problem

What is a st-cut?
The st-Mincut Problem

What is a st-cut?
An st-cut \((S,T)\) divides the nodes between source and sink.

What is the cost of a st-cut?
Sum of cost of all edges going from S to T

5 + 1 + 9 = 15
The st-Mincut Problem

What is a st-cut?

An st-cut \((S, T)\) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

What is the st-mincut?

st-cut with the minimum cost

\[2 + 2 + 4 = 8\]
So how does this work?

Construct a graph such that:

1. Any st-cut corresponds to an assignment of x
2. The cost of the cut is equal to the energy of x: $E(x)$

st-mincut

Solution

[Hammer, 1965] [Kolmogorov and Zabih, 2002]
$E(x) = \sum_i \theta_i(x_i) + \sum_{i,j} \theta_{ij}(x_i, x_j)$

For all ij

$\theta_{ij}(0,1) + \theta_{ij}(1,0) \geq \theta_{ij}(0,0) + \theta_{ij}(1,1)$

Equivalent (transformable)

$E(x) = \sum_i c_i x_i + \sum_{i,j} c_{ij} x_i(1-x_j)$ \[c_{ij} \geq 0\]
Graph Construction

\[E(a_1, a_2) \]

Source (0)

\[a_1 \quad a_2 \]

Sink (1)

P. Kohli
Graph Construction

\[E(a_1, a_2) = 2a_1 \]

P. Kohli
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 \]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 \]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 \]
Graph Construction

\[E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Graph Construction

\[E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Graph Construction

\[E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

Cost of cut = 11

\[a_1 = 1 \quad a_2 = 1 \]

\[E(1,1) = 11 \]
Graph Construction

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

\[a_1 = 1 \quad a_2 = 0 \]

\[\text{st-mincut cost} = 8 \]

\[E(1, 0) = 8 \]
How to compute the st-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

Edges: Flow < Capacity
Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem
In every network, the maximum flow equals the cost of the st-mincut

Assuming non-negative capacity

P. Kohli
Maxflow Algorithms

Flow = 0

Augmenting Path Based Algorithms

Source

Sink

v_1

v_2

Flow = 0

P. Kohli
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity

Flow = 0

Source

v₁

v₂

Sink

P. Kohli
Maxflow Algorithms

Flow = 0 + 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity

2. Push maximum possible flow through this path

Flow = 2

Source

\[v_1 \]

\[v_2 \]

Sink
Maxflow Algorithms

Flow = 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity

2. Push maximum possible flow through this path
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 2
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found
Maxflow Algorithms

Flow = 2 + 4

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found
Maxflow Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 6
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 6 + 2
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 8
Flow and Reparametrization

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Flow and Reparametrization

\[E(a_1,a_2) = 2 + 3\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

\[2a_1 + 5\bar{a}_1 = 2(a_1 + \bar{a}_1) + 3\bar{a}_1 = 2 + 3\bar{a}_1 \]

P. Kohli
Flow and Reparametrization

\[E(a_1,a_2) = 2 + 3\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

P. Kohli
Flow and Reparametrization

\[E(a_1,a_2) = 2 + 3\bar{a}_1 + 5a_2 + 4 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

\[9a_2 + 4\bar{a}_2 = 4(a_2 + \bar{a}_2) + 5\bar{a}_2 \]

\[= 4 + 5\bar{a}_2 \]

Flow and Reparametrization

Sink (1)

Source (0)

P. Kohli
Flow and Reparametrization

\[E(a_1, a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Flow and Reparametrization

\[E(a_1,a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]
Flow and Reparametrization

\[E(a_1, a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2 \]

\[3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 = 2(\bar{a}_1 + a_2 + a_1\bar{a}_2) + \bar{a}_1 + 3a_2 = 2(1 + \bar{a}_1a_2) + \bar{a}_1 + 3a_2 \]

\[F_1 = \bar{a}_1 + a_2 + a_1\bar{a}_2 \]

\[F_2 = 1 + \bar{a}_1a_2 \]

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(F_1)</th>
<th>(F_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

P. Kohli
Flow and Reparametrization

\[E(a_1,a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2 \]

\[
3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 \\
= 2(\bar{a}_1 + a_2 + a_1\bar{a}_2) + \bar{a}_1 + 3a_2 \\
= 2(1 + \bar{a}_1a_2) + \bar{a}_1 + 3a_2
\]
Flow and Reparametrization

\[E(a_1,a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2 \]
Flow and Reparametrization

\[E(a_1,a_2) = 8 + \tilde{a}_1 + 3a_2 + 3\tilde{a}_1a_2 \]

Total Flow bound on the optimal solution

Residual Graph (positive coefficients)

Tight Bound >> Inference of the optimal solution becomes trivial

P. Kohli
Flow and Reparametrization

\[E(a_1, a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2 \]

Residual Graph (positive coefficients)

Total Flow bound on the energy of the optimal solution

st-mincut cost = 8

\[a_1 = 1 \quad a_2 = 0 \]

\[E(1,0) = 8 \]
Maxflow in Computer Vision

• Specialized algorithms for vision problems
 – Grid graphs
 – Low connectivity (m ~ O(n))

• Dual search tree augmenting path algorithm
 [Boykov and Kolmogorov PAMI 2004]
 • Finds approximate shortest augmenting paths efficiently
 • High worst-case time complexity
 • Empirically outperforms other algorithms on vision problems
Code for Image Segmentation

\[E(x) = \sum_{i} c_i x_i + \sum_{i,j} d_{ij} |x_i - x_j| \]

Global Minimum \((x^*) \)

\[x^* = \arg \min_x E(x) \]

How to minimize \(E(x) \)?
How does the code look like?

```c
Graph *g;

For all pixels p
    /* Add a node to the graph */
    nodeID(p) = g->add_node();

    /* Set cost of terminal edges */
    set_weights(nodeID(p), fgCost(p),
                bgCost(p));

end

for all adjacent pixels p,q
    add_weights(nodeID(p),nodeID(q),
                cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```
How does the code look like?

Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),bgCost(p));

end

for all adjacent pixels p,q

add_weights(nodeID(p),nodeID(q),
cost(p,q));

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
 add_weights(nodeID(p), nodeID(q), cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
Graph *g;

For all pixels p

 /* Add a node to the graph */
 nodeID(p) = g->add_node();

 /* Set cost of terminal edges */
 set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p, q

 add_weights(nodeID(p), nodeID(q), cost(p, q));

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
Random Fields in Vision

4-connected; pairwise MRF

\[E(x) = \sum_{i,j \in N_4} \theta_{ij} (x_i, x_j) \]

Order 2

higher(8)-connected; pairwise MRF

\[E(x) = \sum_{i,j \in N_8} \theta_{ij} (x_i, x_j) \]

Order 2

MRF with global variables

\[E(x) = \sum_{i,j \in N_8} \theta_{ij} (x_i, x_j) \]

Order 2

Higher-order MRF

\[E(x) = \sum_{i,j \in N_n} \theta_{ij} (x_i, x_j) + \theta(x_1, \ldots, x_n) \]

Order n
GrabCut segmentation

User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.
MRF with global potential
GrabCut model [Rother et al. ‘04]

\[E(x,\theta^F,\theta^B) = \sum_i F_i(\theta^F)x_i + B_i(\theta^B)(1-x_i) + \sum_{i,j \in N} |x_i-x_j| \]

\[F_i = -\log \Pr(z_i|\theta^F) \quad B_i = -\log \Pr(z_i|\theta^B) \]

Problem: for unknown \(x,\theta^F,\theta^B \) the optimization is NP-hard! [Vicente et al. ‘09]
GrabCut: Iterated Graph Cuts

[Rother et al. Siggraph ‘04]

\[
\min_{\theta^F, \theta^B} E(x, \theta^F, \theta^B)
\]

Most systems with global variables work like that
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. ’06, LayoutCRF Winn et al. ’06]
GrabCut: Iterated Graph Cuts

1. Define graph
 - usually 4-connected or 8-connected

2. Define unary potentials
 - Color histogram or mixture of Gaussians for background and foreground

 \[
 \text{unary_potential}(x) = -\log \left(\frac{P(c(x); \theta_{\text{foreground}})}{P(c(x); \theta_{\text{background}})} \right)
 \]

3. Define pairwise potentials
 \[
 \text{edge_potential}(x, y) = k_1 + k_2 \exp \left\{ -\frac{\|c(x) - c(y)\|^2}{2\sigma^2} \right\}
 \]

4. Apply graph cuts

5. Return to 2, using current labels to compute foreground, background models
GrabCut: Iterated Graph Cuts

Result

Energy after each Iteration

Guaranteed to converge
Colour Model

Iterated graph cut

C. Rother
Optimizing over θ’s help

Input

no iteration

[Boykov&Jolly ‘01]

after convergence

[GrabCut ‘04]

Input

after convergence

[GrabCut ‘04]

C. Rother
What is easy or hard about these cases for graphcut-based segmentation?
Easier examples
More difficult Examples

Camouflage & Low Contrast

Fine structure

Harder Case

Initial Rectangle

Initial Result
Semantic Segmentation
Joint Object recognition & segmentation

\[E(x, \omega) = \sum_{i} \theta_{i}(\omega, x_{i}) + \sum_{i} \theta_{i}(x_{i}) + \sum_{i} \theta_{i}(x) + \sum_{i,j} \theta_{ij}(x_{i},x_{j}) \]

\(x_{i} \in \{1, \ldots, K\} \) for K object classes

Location

Class (boosted textons)

[TextonBoost; Shotton et al, ‘06]

C. Rother
Semantic Segmentation
Joint Object recognition & segmentation

(a)
Class+
location

(b) 69.6%
+ edges

(c) 70.3%
+ color

(d) 72.2%

[TextonBoost; Shotton et al, ‘06]
C. Rother
Semantic Segmentation
Joint Object recognition & segmentation

Good results …

<table>
<thead>
<tr>
<th>Object classes</th>
<th>Building</th>
<th>Grass</th>
<th>Tree</th>
<th>Cow</th>
<th>Sheep</th>
<th>Sky</th>
<th>Aeroplane</th>
<th>Water</th>
<th>Face</th>
<th>Car</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike</td>
<td>Flower</td>
<td>Sign</td>
<td>Bird</td>
<td>Book</td>
<td>Chair</td>
<td>Road</td>
<td>Cat</td>
<td>Dog</td>
<td>Body</td>
<td>Boat</td>
</tr>
</tbody>
</table>
Random Fields in Vision

4-connected; pairwise MRF

\[E(x) = \sum_{i,j \in N_4} \theta_{ij}(x_i,x_j) \]

Order 2

higher(8)-connected; pairwise MRF

\[E(x) = \sum_{i,j \in N_8} \theta_{ij}(x_i,x_j) \]

Order 2

MRF with global variables

\[E(x) = \sum_{i,j \in N_8} \theta_{ij}(x_i,x_j) + \theta(x_1, \ldots, x_n) \]

Order 2

Higher-order MRF

Order n

C. Rother
Why Higher-order Functions?

In general \(\theta(x_1, x_2, x_3) \neq \theta(x_1, x_2) + \theta(x_1, x_3) + \theta(x_2, x_3) \)

Reasons for higher-order RFs:

1. Even better image(texture) models:
 - Field-of Expert [FoE, Roth et al. ‘05]
 - Curvature [Woodford et al. ‘08]

2. Use \textbf{global} Priors:
 - Connectivity [Vicente et al. ‘08, Nowozin et al. ‘09]
 - Better encoding label statistics [Woodford et al. ‘09]
 - Convert global variables to global factors [Vicente et al. ‘09]
Modeling the Potentials

- Could the potentials (image priors) be learned from natural images?

Field of Experts (FoE), S. Roth & M. J. Black, CVPR 2005
De-noising with Field-of-Experts

[Roth and Black ’05, Ishikawa ‘09]

\[
E(X) = \sum_{i} (z_i - x_i)^2 / 2\sigma^2 + \sum_{c} \sum_{k} \alpha_k (1 + 0.5 (J_k x_c)^2)
\]

Unary likelihood
FoE prior

\(x_c\) set of nxn patches (here 2x2)
\(J_k\) set of filters:

non-convex optimization problem

How to handle continuous labels in discrete MRF?

From [Ishikawa PAMI ’09, Roth et al ‘05]
De-noising with Field-of-Experts

[Roth and Black '05, Ishikawa '09]

• Very sharp discontinuities. No blurring across boundaries.
• Noise is removed quite well nonetheless.

original image

noisy image, $\sigma=20$

PSNR 22.49dB
SSIM 0.528

denoised using gradient ascent

PSNR 27.60dB
SSIM 0.810