## BIL 722 Advanced Topics in Computer Vision Oct. 4, 2012

Erkut Erdem Dept. of Computer Engineering Hacettepe University

Introduction

## Instructor and Course Schedule

- Dr. Erkut ERDEM
- <u>erkut@cs.hacettepe.edu.tr</u>
- Office: 114
- Tel: 297 7500 / 149
- Lectures: Thursday, 13:30-16:15@D5
- Office Hour: *To be announced!*

## Communication

• The course webpage will be updated regularly throughout the semester with lecture notes, programming and reading assignments and important deadlines.

http://web.cs.hacettepe.edu.tr/~erkut/bil722.f12

• All other communications will be carried out through Piazza. Please enroll it by following the link

https://piazza.com/hacettepe.edu.tr/fall2012/bil722

## Today

- Introduction
- Administrative stuff
- Overview of the course
- Topics covered in this semester

## A bit about Computer Vision at our department



Ahmet Burak Can



Aykut Erdem



Erkut Erdem



Nazli Ikizler-Cinbis

bttp://vision.cs.hacettepe.edu.tr

## About BIL722

• An advanced-level graduate seminar course which takes an in-depth look at a wide selection of important topics in computer vision.

## **Related Disciplines**



Slide credit: E. P. Simoncelli

## Seeing

What does it mean, to see? The plain man's answer (and Aristotle's too) would be, to know what is where by looking. In other words, vision is the process of discovering from images what is present in the world, and where it is. [Marr, 1982]

> The Walker The sense of sight (detail) 1895 Annie Louisa Swynnerton (1844 - 1933)

NATIONAL MUSEUMS LIVERPOOL

## Why is vision hard?

- A typical image includes many objects organized in many different configurations.
- Vision requires solving ill-posed problems.
- Images are both complicated and highly ambiguous.
- Same object can generate very different images.
- Different objects can generate similar images.



Figures: Steven Pinker, How the Mind Works, 1997

#### Challenges: Illumination



Figure: J. Koenderink

Slide credit: L. Fei-Fei

#### Challenges: viewpoint variation



Slide credit: L. Fei-Fei, R. Fergus and A. Torralba

## Challenges: Scale



Slide credit: L. Fei-Fei, R. Fergus and A. Torralba

#### **Challenges: Deformations**



Xu, Beihong 1943

Slide credit: L. Fei-Fei, R. Fergus and A. Torralba

## Challenges: Occlusion



The Blank Check, by René Magritte

Slide credit: L. Fei-Fei, R. Fergus and A. Torralba

#### Challenges: background clutter



Slide credit: S. Lazebnik

## Challenges: Motion



Slide credit: S. Lazebnik

# Challenges: Some things have strong variations in appearance



Slide credit: B. Freeman and A. Torralba

## Challenges or opportunities?

- Images are confusing, but they also reveal the structure of the world through numerous cues
- Our job is to interpret the cues!



Image: J. Koenderink

#### Why does vision appear easy to humans?

- Our brains are specialized to do vision.
- ~50% of the cortex in a human brain is devoted for visual processing
  (cf. motor control ~20-30%, language ~10-20%)



[David Heeger, 2006]



## **Computer Vision**



What we see



What a computer sees

Slide credit: S. Narasimhan

## Marr's observation: Studying vision at 3 levels

"Vision is a process that produces from images of the external world a description that is useful to the viewer and not cluttered with irrelevant information"

Vision as an information processing task

- 3 levels of understanding:
  - 1. Computational theory
    - What is computed? Why it is computed?
  - 2. Representation and Algorithm
    - How it is computed?
    - Input, Output, Transformation
  - 3. Physical Realization
    - Hardware

## Marr's observation: Studying vision at 3 levels



Slide Credit: E. Simoncelli

## Marr's observation: Studying vision at 3 levels



Slide Credit: S. C. Zhu

## In this course

• We will survey and discuss recent conference papers and research articles related to several computer vision topics.

## Goals

- Give a deeper understanding of the state- of-the-art methods in vision literature
- Provide students the ability to identify open issues and possible directions for future research
- Read and discuss some interesting recent papers together
  - Learn how to speak,
  - Learn how think critically
- Complete a vision project throughout the semester

## Course Organization

- 20% Paper presentations
- 15% Class participation
- 10% Response papers
- 20% Project (progress report, presentation)
- 35% Final exam (final project report)

## Paper Presentations

- Each week we will be discussing 2-3 papers on a specific topic.
- Start picking your papers from the list.
- Prepare a good, conference-quality presentation (30+15 mins)
  - Clearly state the problem
  - Discuss key technical ideas, main contributions, assumptions, strengths and weaknesses
- Send your slides the day before the class
- Not just present but also defend the paper in front of the class

## Paper Presentations

- For some of the papers, its code may be available on the web
- If so,
  - Run it on new data,
  - Play with parameters,
  - Discuss the paper accordingly.

## **Class Participation**

- Come to class as prepared as the presenter
- Actively participate in class discussions
- Voice your ideas, comments and opinions

## Paper Responses

- For half of the papers in the list, —Hand in a brief summary (1-2 pages) of each paper
  - Summary of the paper in your own words,
  - Main contributions of the paper,
  - Strengths and weaknesses of the paper,
  - Details of the experimental evaluation,
  - Areas of further improvements
  - Send your responses via e-mail before the beginning of the class

## Project

- Each student will work individually.
- Design of a novel approach with strong experimental evaluation.
- Project proposals in a few weeks.
- Progress reports in the middle of semester.
- Project presentations at the end of semester.

## Course Schedule

- (1 week)
- Introduction to the course
- (1 week) Image smoothing, restoration and enhancement
- (2 weeks) Role of context
- (2 weeks) Action
- (1 week) Scene Understanding
- (2 weeks) Visual saliency
- (1 week) Video processing
- (1 week) Image retrieval
- (1 week) Miscellaneous
- (1 week) Project Presentations

## Image Smoothing

• Images are corrupted with 70% salt-and-pepper noise



What do these examples demonstrate?

R. H. Chan, C.-W. Ho, and M. Nikolova, Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail-Preserving Regularization. IEEE TIP 2005

#### Role of context



Slide credit: A. Torralba, D. Hoiem

## Action



O. Boiman and M. Irani, Detecting Irregularities in Images and in Video, ICCV2005

#### Action



N.Ikizler-Cinbis, R. G.Cinbis and S. Sclaroff, Learning Actions From The Web, ICCV2009

#### Scene Understanding



#### Scene Understanding



## Visual Saliency



#### Visual Saliency



## Visual Saliency



## Video processing

#### Tracking objects, video analysis, low level motion







Slide credit: K. Grauman

#### Image retrieval





Find these landmarks



... in these images and 1M more

Slide credit: J. Sivic