IMAGE DENOISING

Non-local Sparse Models for Image Restoration
ICCV2009

Julien Mairal
Francis Bach
Jean Ponce
Guillermo Sapiro
Andrew Zisserman
Simultaneous Sparse Coding

• Unify two different approaches to image restoration
 1. Learning a basis set (dictionary) adapted to sparse signal descriptions
 2. Non-local means approach

• Decompose groups of similar signals on subsets of the learned dictionary.

• Outperforms the state of the art image denoising and restorations works
Denoising and Restoration Problem

- To reduce noise and/or extract useful image structures
- Eliminating undesirable characteristics

Different approaches

- anisotropic filtering
- total variation
- *image decompositions on fixed bases such as wavelets*
- non-local means filtering
- learned sparse models
- block matching with 3D filtering (BM3D)
Inroduction to Simultaneous Sparse Coding

- Different devices produce different kinds of noise, and introduce different types of artefacts and spatial correlations in the noise.

- Operate directly on the raw sensor output, that suffers from non-homogeneous noise, but is less spatially correlated and not corrupted by postprocessing artefacts.

- View both denoising and demosaicking as image reconstruction problems.
Related Works

- non-local means filtering
- learned sparse models
- block matching with 3D filtering (BM3D)

- *These methods assume white Gaussian noise*
- This work demonstrate empirically that their approach is effective at restoring real images corrupted by non-Gaussian, non-uniform noise
Non Local Means Filtering

- The prominence of selfsimilarities is used as a prior on natural images.

\[
x[i] = \sum_{j=1}^{n} \sum_{l=1}^{n} \frac{K_h(y_i - y_j)}{K_h(y_i - y_l)} y[j].
\]

- Two pixels associated with similar patches \(y_i\) and \(y_j\) should have similar values \(y[i]\) and \(y[j]\)
Learned Sparse Coding

- The clean signal can be approximated by a \(\text{sparse} \) linear combination of elements from a basis set called dictionary

\[
\min_{\alpha_i \in \mathbb{R}^k} \| \alpha_i \|_p \quad \text{s.t.} \quad \| y_i - D\alpha \|_2^2 \leq \varepsilon.
\]

- To learn a dictionary \(D \) adapted to the image at hand, and demonstrated that learned dictionaries lead to better empirical performance than off-the-shelf ones

- For an image of size \(n \), a dictionary in \(\mathbb{R}^{mxk} \) adapted to the \(n \) overlapping patches of size \(m \)

\[
\min_{D \in \mathcal{C}, A} \sum_{i=1}^{n} \| \alpha_i \|_p \quad \text{s.t.} \quad \| y_i - D\alpha_i \|_2^2 \leq \varepsilon \quad x = \frac{1}{m} \sum_{i=1}^{n} R_i D\alpha_i
\]

\(\mathcal{C} \) is the set of matrices in \(\mathbb{R}^{mxk} \), \(A = [\alpha \downarrow 1, \ldots, \alpha \downarrow n] \) is a matrix in \(\mathbb{R}^{mxk} \),

\(R_i \) in \(\mathbb{R}^{mxk} \) is the binary matrix which places patch number \(i \) at its proper position in the image.
Block Matching 3D (BM3D)

- A patch-based procedure that exploits image self-similarities and gives state-of-the-art results.

- estimate the codes of overlapping patches and average the estimates

- they reconstruct patches by finding similar ones in the image \((\text{block matching})\), stacking them together into a 3D signal block

- denoising the block using hard or soft thresholding with a 3D orthogonal dictionary
Simultaneous Sparse Coding

- Non-local means filtering has proven very effective in general, but it fails in some cases.

- A patch does not look like any other one in the image, it is impossible to exploit self-similarities to denoise the corresponding pixel value.

- Sparse image models can handle such situations by exploiting the redundancy between overlapping patches, but they suffer from another drawback.

- Similar patches sometimes admit very different estimates due to the potential instability of sparse decompositions.

- In this paper we address this problem by forcing similar patches to admit similar decompositions.

\[\| A \|_{p,q} \triangleq \sum_{i=1}^{k} \| \alpha_i \|_q^p \]
Simultaneous Sparse Coding

\[S_i \triangleq \{ j \in \{1, \ldots, n\} \text{ s.t. } \| y_i - y_j \|_2^2 \leq \xi \} \]

A fixed dictionary D in \(R^{m \times k} \)
- Decomposing the patch \(y_i \) with a grouped-sparsity regularizer on the set \(S_i \) amounts to solving:

\[
\min_{\mathbf{A}_i} \| \mathbf{A}_i \|_{p,q} \quad \text{s.t.} \quad \sum_{j \in S_i} \| \mathbf{y}_j - \mathbf{D} \alpha_{ij} \|_2^2 \leq \varepsilon_i, \quad \mathbf{A}_i = [\alpha_{ij}]_{j \in S_i} \in \mathbb{R}^{k \times |S_i|}
\]

Optimization problem:

\[
\min_{(\mathbf{A}_i)_{i=1}^n, \mathbf{D} \in \mathcal{C}} \sum_{i=1}^n \frac{\| \mathbf{A}_i \|_{p,q}}{|S_i|^p} \quad \text{s.t.} \quad \forall i \sum_{j \in S_i} \| \mathbf{y}_j - \mathbf{D} \alpha_{ij} \|_2^2 \leq \varepsilon_i
\]

D is in \(R^{m \times k} \) with unit \(\ell_2 \)-norm columns,
- The normalization by \(|S_i|^p \) is used to ensure equal weights for all groups
Simultaneous Sparse Coding

- use the convex $\ell_{1,2}$ norm for learning the dictionary
- use the $\ell_{0,\infty}$ pseudo-norm for the final reconstruction
- this formulation allows all the image patches to be processed as if they were independent of each other.
- To reconstruct the final image, average the estimates of each pixel:

$$x = \text{diag}(\sum_{i=1}^{n} \sum_{j \in S_i} R_{ij} 1_m)^{-1} \sum_{i=1}^{n} \sum_{j \in S_i} R_{ij} D \alpha_{ij}.$$
Results

Demosaicking

LSC

LSSC
Results

Demosaicking

PSNR results

<table>
<thead>
<tr>
<th>Im.</th>
<th>AP</th>
<th>DL</th>
<th>LPA</th>
<th>SC</th>
<th>LSC</th>
<th>LSSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.84</td>
<td>38.46</td>
<td>40.47</td>
<td>40.84</td>
<td>40.92</td>
<td>41.36</td>
</tr>
<tr>
<td>2</td>
<td>39.64</td>
<td>40.89</td>
<td>41.36</td>
<td>41.76</td>
<td>42.03</td>
<td>42.24</td>
</tr>
<tr>
<td>3</td>
<td>41.40</td>
<td>42.66</td>
<td>43.47</td>
<td>43.15</td>
<td>43.92</td>
<td>44.24</td>
</tr>
<tr>
<td>4</td>
<td>39.92</td>
<td>40.49</td>
<td>40.84</td>
<td>41.99</td>
<td>42.14</td>
<td>42.45</td>
</tr>
<tr>
<td>5</td>
<td>37.28</td>
<td>38.07</td>
<td>37.51</td>
<td>38.72</td>
<td>39.15</td>
<td>39.45</td>
</tr>
<tr>
<td>6</td>
<td>38.69</td>
<td>40.19</td>
<td>40.92</td>
<td>41.29</td>
<td>41.36</td>
<td>41.71</td>
</tr>
<tr>
<td>7</td>
<td>41.75</td>
<td>42.35</td>
<td>43.06</td>
<td>43.30</td>
<td>43.59</td>
<td>44.06</td>
</tr>
<tr>
<td>8</td>
<td>35.58</td>
<td>36.02</td>
<td>37.13</td>
<td>37.42</td>
<td>37.38</td>
<td>37.57</td>
</tr>
<tr>
<td>9</td>
<td>41.84</td>
<td>43.05</td>
<td>43.50</td>
<td>43.17</td>
<td>43.74</td>
<td>43.83</td>
</tr>
<tr>
<td>10</td>
<td>41.93</td>
<td>42.54</td>
<td>42.77</td>
<td>43.01</td>
<td>43.17</td>
<td>43.33</td>
</tr>
<tr>
<td>11</td>
<td>39.25</td>
<td>40.01</td>
<td>40.51</td>
<td>41.19</td>
<td>41.29</td>
<td>41.51</td>
</tr>
<tr>
<td>12</td>
<td>42.62</td>
<td>43.45</td>
<td>44.01</td>
<td>44.29</td>
<td>44.49</td>
<td>44.90</td>
</tr>
<tr>
<td>13</td>
<td>34.28</td>
<td>34.75</td>
<td>36.08</td>
<td>36.16</td>
<td>36.29</td>
<td>36.35</td>
</tr>
<tr>
<td>14</td>
<td>35.66</td>
<td>36.91</td>
<td>36.86</td>
<td>37.64</td>
<td>38.48</td>
<td>38.77</td>
</tr>
<tr>
<td>15</td>
<td>39.17</td>
<td>39.82</td>
<td>40.09</td>
<td>41.04</td>
<td>41.24</td>
<td>41.74</td>
</tr>
<tr>
<td>16</td>
<td>42.10</td>
<td>43.75</td>
<td>44.02</td>
<td>44.36</td>
<td>44.42</td>
<td>44.91</td>
</tr>
<tr>
<td>17</td>
<td>41.23</td>
<td>41.68</td>
<td>41.75</td>
<td>41.75</td>
<td>41.86</td>
<td>41.98</td>
</tr>
<tr>
<td>18</td>
<td>37.31</td>
<td>37.64</td>
<td>37.59</td>
<td>38.05</td>
<td>38.27</td>
<td>38.38</td>
</tr>
<tr>
<td>19</td>
<td>39.99</td>
<td>41.01</td>
<td>41.55</td>
<td>41.58</td>
<td>41.71</td>
<td>42.31</td>
</tr>
<tr>
<td>20</td>
<td>40.63</td>
<td>41.24</td>
<td>41.48</td>
<td>41.95</td>
<td>42.25</td>
<td>42.27</td>
</tr>
<tr>
<td>21</td>
<td>38.72</td>
<td>39.10</td>
<td>39.61</td>
<td>40.55</td>
<td>40.59</td>
<td>40.65</td>
</tr>
<tr>
<td>22</td>
<td>37.63</td>
<td>38.37</td>
<td>38.44</td>
<td>38.73</td>
<td>38.97</td>
<td>39.24</td>
</tr>
<tr>
<td>23</td>
<td>41.93</td>
<td>43.22</td>
<td>43.92</td>
<td>43.47</td>
<td>43.93</td>
<td>44.34</td>
</tr>
<tr>
<td>24</td>
<td>34.74</td>
<td>35.55</td>
<td>35.44</td>
<td>35.59</td>
<td>35.85</td>
<td>35.89</td>
</tr>
<tr>
<td>Av.</td>
<td>39.21</td>
<td>40.05</td>
<td>40.52</td>
<td>40.88</td>
<td>41.13</td>
<td>41.39</td>
</tr>
</tbody>
</table>
Results

Denoising
Results

Denoising
Thank you.

THE END