
KEY-SEGMENTS FOR VIDEO OBJECT SEGMENTATION

Yong Jae Lee, Jaechul Kim, and Kristen Grauman

BIL-722 Çağdaş Baş

WHAT IS OBJECT SEGMENTATION?

- Finding foreground objects.
- Finding interesting objects.
- Unsupervised segmentation and tracking has received little

RELATED WORK

Bottom-up methods:

- Most of the saliency detectors.
- Exploring only image cues.
- Supervised methods:
 - Requires user annotation.
 - Tracking-based methods demand less user input (for only first frame)
- Semi-supervised methods:
 - Cannot generalize for all types of objects

APPROACH A - Finding object like regions

Figure Credit: Yong Jae Lee, Jaechul Kim, and Kristen Grauman

A - FINDING OBJECT LIKE REGIONS

- Appearance and motion cue is important to identfy object-like regions.
- 1000 regions are extracted for each frame
- $\blacktriangleright S(r) = A(r) + M(r)$

A - FINDING OBJECT LIKE REGIONS (CONT.)

Use appearance cues to extract static object-like features.

Use Histogram of Optical Flow Histograms on extracted regions to differ objects to background:

$$M(r) = 1 - \exp(-\chi_{flow}^2(r,\bar{r}))$$

Large appearance change indicates background regions.

APPROACH -B - DISCOVERING KEYSEGMENTS ACROSS FRAMES

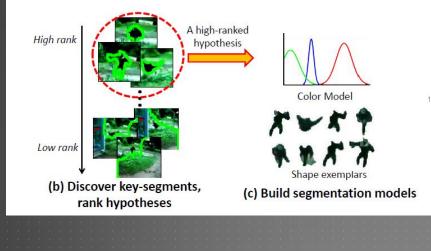
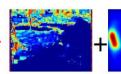


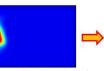
Figure Credit: Yong Jae Lee, Jaechul Kim, and Kristen Grauman

APPROACH -B - DISCOVERING KEY SEGMENTS ACROSS FRAMES

Calculate affinity matrix with similarity measure:

$$K(r_m, r_n) = \exp(-\frac{1}{\Omega}\chi^2_{color}(r_m, r_n))$$


Cluster regions via affinity matrix.


Rank clusters based on avearage score S(r).

Cluster with highest score is primary foreground object.

APPROACH -C - Foreground Object Segmentation



Frame t

Color Fg estimate U_i^c Shape Fg estimate U_i^l

Fg estimate

(d) Foreground likelihood estimation for each frame

cut Foreground object segments for all frames

(e) Space-time MRF for foreground object segmentation

Figure Credit: Yong Jae Lee, Jaechul Kim, and Kristen Grauman

APPROACH – C - FOREGROUND OBJECT SEGMENTATION

Space-Time graph definition:

- A pixel based graph is defined for whole video.
- Then minimize the cost function

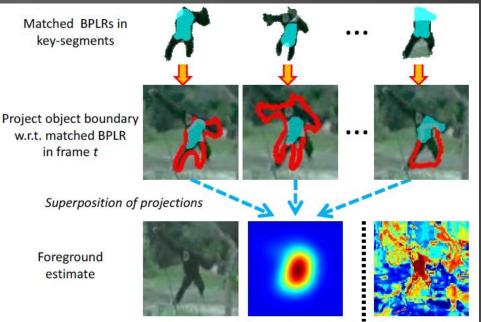
$$E(f,h) = \sum_{i \in \mathcal{S}} D_i^h(f_i) + \gamma \sum_{i,j \in \mathcal{N}} V_{i,j}(f_i, f_j),$$

 $V_{i,j}$ is label smoothness parameter in space-time

> D_i^h is cost of labeling pixel i with f_i , given key-segments in h (cluster).

$$D_i^h(f_i) = -\log\left(\alpha \cdot U_i^c(f_i, h) + (1 - \alpha) \cdot U_i^l(f_i, h)\right),$$

LABELLING COST EXPLAINED

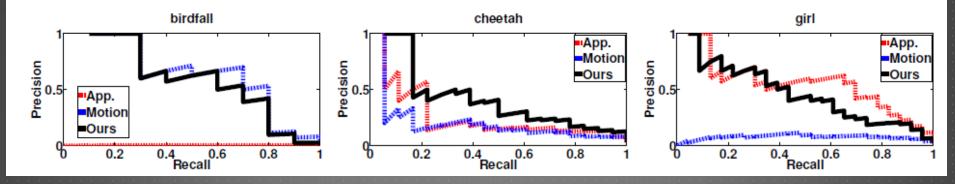

\triangleright U_i^c is appearance based cost.

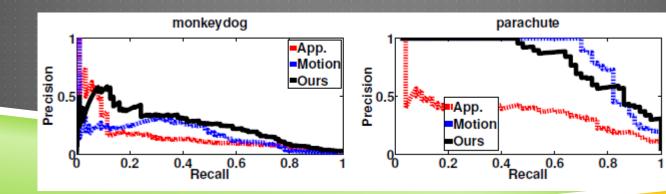
- Two Gaussian Mixture Model is estimated across a video: One for background, one for foreground.
 - fg^{color} for pixels in key-segments,
 - \triangleright bg^{color} for pixels in the complement of key-segments, among all frames.

Basically a pixel and its difference from bakcground have to be consistent across frames.

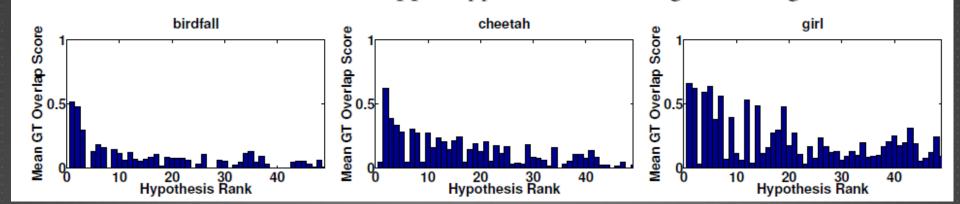
LABELLING COST EXPLAINED (CONT.)

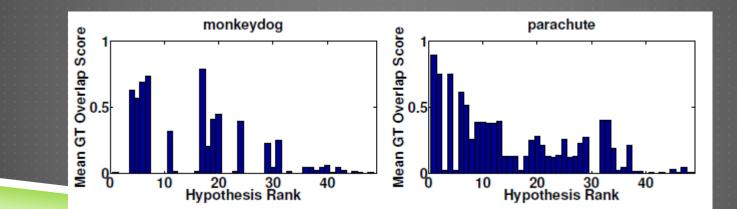
- Match each shape in a key segment across frames.
- Superposition all pairwise matches and create a Shape
 Fg mask for each frame.
- Each pixel will ve voted whether it moslty belongs to foreground or background.


Frame t


Shape Fg estimate Color Fg estimate

$$U_i^l(f_i) = \begin{cases} P(p_i|bg^{shape}(h)), & \text{if } f_i = 0; \\ P(p_i|fg^{shape}(h)), & \text{if } f_i = 1, \end{cases}$$


RESULTS


SegTrack dataset is used [29].

RESULTS (CONT.)

RESULTS (CONT.)

	Ours	[29]	[7]	Top $A(r)$ region	Bg Sub
birdfall	288	252	454	26156	7435
cheetah	905	1142	1217	27728	28763
girl	1785	1304	1755	10236	45019
monkeydog	521	563	683	38083	31099
parachute	201	235	502	75168	27242
penguin	136285(*)	1705	6627	147686	61089
Manual seg?	No	Yes	Yes	No	No

Segmentation errors.

	Ours	Ours w/o partial shape match
birdfall	288	414
cheetah	905	1024
girl	1785	1534
monkeydog	521	1261
parachute	201	188

CONCLUSION AND THANKS

Only motion or appearance models are inadequate to extract foreground object properly.

Top-down information can be used to improve existing methods.

Questions?