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Spatial Filtering	




Filtering	


•  The name “filter” is borrowed from frequency domain 
processing (next week’s topic)	


•  Accept or reject certain frequency components	


•  Fourier (1807): ���
Periodic functions ���
could be represented���
as a weighted sum of ���
sines and cosines	


Image courtesy of Technology Review 



Signals	


•  A signal is composed of low and high frequency 
components	


low frequency components: smooth /���
	
 	
 	
  piecewise smooth	


high frequency components: oscillatory	


Neighboring pixels have similar brightness values	


Neighboring pixels have different brightness values	


You’re within a region	


You’re either at the edges or noise points	




Signals – Examples	




Motivation: noise reduction	


•  Assume image is degraded with an additive model.	


•  Then,	


	
Observation 	
   = True signal  + noise	


	
Observed image = Actual image + noise	

low-pass���

filters	

high-pass���

filters	


smooth the image	




Common types of noise	


–  Salt and pepper noise: 
random occurrences of   
black and white pixels	


–  Impulse noise: ���
random occurrences of 
white pixels	


–  Gaussian noise: 
variations in intensity drawn 
from a Gaussian normal 
distribution	


Slide credit: S. Seitz 



Gaussian noise	


Slide credit: M. Hebert 

>> noise = randn(size(im)).*sigma; 
>> output = im + noise; 

What is the impact of the sigma?	




Motivation: noise reduction	


•  Make multiple observations of the same static scene	


•  Take the average	


•  Even multiple images of the same static scene will not be 
identical.	


Adapted from: K. Grauman 



Motivation: noise reduction	


•  Make multiple observations of the same static scene	


•  Take the average	


•  Even multiple images of the same static scene will not be 
identical.	


•  What if we can’t make multiple observations? ���
What if there’s only one image?	
 Adapted from: K. Grauman 



Image Filtering	


•  Idea: Use the information coming from the neighboring 
pixels for processing 	


•  Design a transformation function of the local 
neighborhood at each pixel in the image	

–  Function specified by a “filter” or mask saying how to 

combine values from neighbors.	


•  Various uses of filtering:	

–  Enhance an image (denoise, resize, etc)	

–  Extract information (texture, edges, etc)	

–  Detect patterns (template matching)	


Adapted from: K. Grauman 



Filtering	


•  Processing done on a function	

–  can be executed in continuous form (e.g. analog circuit)	

–  but can also be executed using sampled representation	


•  Simple example: smoothing by averaging	


Slide credit: S. Marschner 



Linear filtering	


•  Filtered value is the linear combination of neighboring pixel 
values.	


•  Key properties	

–  linearity: filter(f + g) = filter(f) + filter(g)	

–  shift invariance: behavior invariant to shifting the input	


•  delaying an audio signal	

•  sliding an image around	


•  Can be modeled mathematically by convolution	


Adapted from: S. Marschner 



First attempt at a solution	


•  Let’s replace each pixel with an average of all the values in its 
neighborhood	


•  Assumptions: 	

–  Expect pixels to be like their neighbors (spatial regularity in images)	

–  Expect noise processes to be independent from pixel to pixel	


Slide credit: S. Marschner, K. Grauman 



First attempt at a solution	


•  Let’s replace each pixel with an average of all the values in its 
neighborhood	


•  Moving average in 1D:	


Slide credit: S. Marschner 



Convolution warm-up	


•  Same moving average operation, expressed mathematically:	


Slide credit: S. Marschner 



Discrete convolution	


•  Simple averaging:	


–  every sample gets the same weight	


•  Convolution: same idea but with weighted average	


–  each sample gets its own weight (normally zero far away)	


•  This is all convolution is: it is a moving weighted average	


Slide credit: S. Marschner 



Filters	


•  Sequence of weights a[j] is called a filter	


•  Filter is nonzero over its region of support	

– usually centered on zero: support radius r	


•  Filter is normalized so that it sums to 1.0	

–  this makes for a weighted average, not just any���

old weighted sum	


•  Most filters are symmetric about 0	

–  since for images we usually want to treat���

left and right the same	


a box filter 

Slide credit: S. Marschner 



Convolution and filtering	


•  Can express sliding average as convolution with a box filter	


•  abox = […, 0, 1, 1, 1, 1, 1, 0, …]	


Slide credit: S. Marschner 



Example: box and step	


Slide credit: S. Marschner 



Convolution and filtering	


•  Convolution applies with any sequence of weights	


•  Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16	


Slide credit: S. Marschner 



And in pseudocode…	


Slide credit: S. Marschner 



Key properties	


•  Linearity: filter(f1 + f2) = filter(f1) + filter(f2)	


•  Shift invariance: filter(shift(f)) = shift(filter(f))	

•  same behavior regardless of pixel location, i.e. the value of the output 

depends on the pattern in the image neighborhood, not the position of 
the neighborhood.	


•  Theoretical result: any linear shift-invariant operator can be 
represented as a convolution	


Slide credit: S. Lazebnik 



Properties in more detail	


•  Commutative: a * b = b * a	

–  Conceptually no difference between filter and signal	


•  Associative: a * (b * c) = (a * b) * c	

–  Often apply several filters one after another: (((a * b1) * b2) * b3)	

–  This is equivalent to applying one filter: a * (b1 * b2 * b3)	


•  Distributes over addition: a * (b + c) = (a * b) + (a * c)	


•  Scalars factor out: ka * b = a * kb = k (a * b)	


•  Identity: unit impulse e = […, 0, 0, 1, 0, 0, …], ���
a * e = a	

	


Slide credit: S. Lazebnik 



A gallery of filters	


•  Box filter	

–  Simple and cheap	


•  Tent filter	

–  Linear interpolation	


•  Gaussian filter	

– Very smooth antialiasing filter	


Slide credit: S. Marschner 



Box filter	


Slide credit: S. Marschner 



Tent filter	


Slide credit: S. Marschner 



Gaussian filter	


Slide credit: S. Marschner 



Discrete filtering in 2D	


•  Same equation, one more index	


–  now the filter is a rectangle you slide around over a grid of numbers	


•  Usefulness of associativity	

–  often apply several filters one after another: (((a * b1) * b2) * b3)	

–  this is equivalent to applying one filter: a * (b1 * b2 * b3)	


Slide credit: S. Marschner 



And in pseudocode…	


Slide credit: S. Marschner 



Moving Average In 2D	


0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Slide credit: S. Seitz 



Moving Average In 2D	


0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
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0 0 0 90 0 90 90 90 0 0 
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0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
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0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Slide credit: S. Seitz 



Moving Average In 2D	


0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 10 20 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Slide credit: S. Seitz 



Moving Average In 2D	


0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 10 20 30 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Slide credit: S. Seitz 



Moving Average In 2D	


0 10 20 30 30 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Slide credit: S. Seitz 



Moving Average In 2D	


0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 10 20 30 30 30 20 10 

0 20 40 60 60 60 40 20 

0 30 60 90 90 90 60 30 

0 30 50 80 80 90 60 30 

0 30 50 80 80 90 60 30 

0 20 30 50 50 60 40 20 

10 20 30 30 30 30 20 10 

10 10 10 0 0 0 0 0 

Slide credit: S. Seitz 



Correlation filtering	


Say the averaging window size is 2k+1 x 2k+1:	


Loop over all pixels in neighborhood 
around  image pixel F[i,j]	


Attribute uniform 
weight to each pixel	


Now generalize to allow different weights depending on  
neighboring pixel’s relative position:	


Non-uniform weights	


Slide credit: K. Grauman 



Correlation filtering	


Filtering an image: replace each pixel with a linear combination of 
its neighbors.	

	

The filter “kernel” or “mask” H[u,v] is the prescription for the 
weights in the linear combination.	

	


This is called cross-correlation, denoted 	


Slide credit: K. Grauman 



Correlation filtering	




Correlation filtering	




Cross correlation example	


Lecture 3 -Fei-Fei Li 28ͲSepͲ1148

Cross�correlation�– example
Left Right

scanline

N
or
m
.�c
or
r

Slide credit: Fei-Fei Li 



Averaging filter	


•  What values belong in the kernel H for the moving 
average example?	


0 10 20 30 30 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

1	
1	
1	

1	
1	
1	

1	
1	
1	


“box filter”	


?	


Slide credit: K. Grauman 



Smoothing by averaging	


depicts box filter: 	

white = high value, black = low value	


original	
 filtered	


What if the filter size was 5 x 5 instead of 3 x 3?	

Slide credit: K. Grauman 



Boundary issues	


•  What is the size of the output?	


•  MATLAB: output size / “shape” options	

–  shape = ‘full’: output size is sum of sizes of f and g	

–  shape = ‘same’: output size is same as f	

–  shape = ‘valid’: output size is difference of sizes of f and g 	


f	


g	
g	


g	
g	


f	


g	
g	


g	
g	


f	


g	
g	


g	
g	


full	
 same	
 valid	


Slide credit: S. Lazebnik 



Boundary issues	


•  What about near the edge?	

–  the filter window falls off the edge of the image	

–  need to extrapolate	

–  methods:	


•  clip filter (black)	

•  wrap around	

•  copy edge	

•  reflect across edge	


Slide credit: S. Marschner 



Boundary issues	


•  What about near the edge?	

–  the filter window falls off the edge of the image	

–  need to extrapolate	

–  methods (MATLAB):	


•  clip filter (black): 	
imfilter(f, g, 0) 
•  wrap around: 	
 	
imfilter(f, g, ‘circular’) 
•  copy edge: 	
 	
imfilter(f, g, ‘replicate’) 
•  reflect across edge: 	
imfilter(f, g, ‘symmetric’) 

Slide credit: S. Marschner 



Gaussian filter	


0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

1 2 1 

2 4 2 

1 2 1 

•  What if we want nearest neighboring pixels to have the 
most influence on the output?	


	


•  Removes high-frequency components from the image 
(“low-pass filter”).	


This kernel is an 
approximation of a 2d 
Gaussian function:	


Slide credit: S. Seitz 



Smoothing with a Gaussian	


Slide credit: K. Grauman 



Gaussian filters	


•  What parameters matter here?	


•  Size of kernel or mask	

–  Note, Gaussian function has infinite support, but discrete filters 

use finite kernels	


	


σ = 5 with ���
10 x 10 kernel	


σ = 5 with ���
30 x 30 kernel	


Slide credit: K. Grauman 



Gaussian filters	


•  What parameters matter here?	


•  Variance of Gaussian: determines extent of 
smoothing	


	


σ = 2 with ���
30 x 30 kernel	


σ = 5 with ���
30 x 30 kernel	


Slide credit: K. Grauman 



Choosing kernel width	


•  Rule of thumb: set filter half-width to about 3σ	


Slide credit: S. Lazebnik 



Matlab	

>> hsize = 10; 
>> sigma = 5; 
>> h = fspecial(‘gaussian’ hsize, sigma); 
 
 
>> mesh(h); 
 
>> imagesc(h); 
 
>> outim = imfilter(im, h); % correlation  
>> imshow(outim); 

outim	


Slide credit: K. Grauman 



Smoothing with a Gaussian	


for sigma=1:3:10  
 h = fspecial('gaussian‘, fsize, sigma); 
 out = imfilter(im, h);  
 imshow(out); 
 pause;  

end 

…	


Parameter σ is the “scale” / “width” / “spread” of the Gaussian 
kernel, and controls the amount of smoothing.	


Slide credit: K. Grauman 



Separability	


•  In some cases, filter is separable, and we can factor into two 
steps:	

–  Convolve all rows	

–  Convolve all columns	


Slide credit: K. Grauman 



Slide credit: D. Lowe 

Separability of the Gaussian filter	




Separability example	


* 

* 

= 

= 

2D convolution���
(center location only)	


The filter factors���
into a product of 1D���

filters:	


Perform convolution���
along rows:	


Followed by convolution���
along the remaining column:	


Slide credit: K. Grauman 



Why is separability useful?	


•  What is the complexity of filtering an n×n image with an m×m 
kernel? 	

– O(n2 m2)	


•  What if the kernel is separable?	

– O(n2 m)	


Slide credit: S. Lazebnik 



Properties of smoothing filters	


•  Smoothing	

–  Values positive 	

–  Sum to 1 à constant regions same as input	

–  Amount of smoothing proportional to mask size	

–  Remove “high-frequency” components; “low-pass” filter	


Slide credit: K. Grauman 



Filtering an impulse signal	


0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

a b c 

d e f 

g h i 

What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?	


?	


Slide credit: K. Grauman 



Convolution	


•  Convolution: 	

–  Flip the filter in both dimensions (bottom to top, right to left)	

–  Then apply cross-correlation	


Notation for 
convolution 
operator	


F	


H	


Slide credit: K. Grauman 



Convolution vs. Correlation 	


•  A convolution is an integral that expresses the amount of 
overlap of one function as it is shifted over another function. 	


	
– convolution is a filtering operation 	


•  Correlation compares the similarity of two sets of data. 
Correlation computes a measure of similarity of two input 
signals as they are shifted by one another. The correlation result 
reaches a maximum at the time when the two signals match 
best . 	


	
– correlation is a measure of relatedness of two signals 	


Slide credit: Fei-Fei Li 



Convolution vs. correlation	


Convolution	


Cross-correlation	


For a Gaussian or box filter, how will the outputs differ?	

If the input is an impulse signal, how will the outputs differ?	


Slide credit: K. Grauman 



Predict the outputs using correlation 
filtering	


0	
0	
0	

0	
1	
0	

0	
0	
0	


*	
 = ?	

0	
0	
0	

1	
0	
0	

0	
0	
0	


*	
 = ?	


1	
1	
1	

1	
1	
1	

1	
1	
1	


0	
0	
0	

0	
2	
0	

0	
0	
0	
 -	
*	
 = ?	


Slide credit: K. Grauman 



Practice with linear filters	


0	
0	
0	

0	
1	
0	

0	
0	
0	


Original	


?	


Slide credit: D. Lowe 



Practice with linear filters	


0	
0	
0	

0	
1	
0	

0	
0	
0	


Original	
 Filtered 	

(no change)	


Slide credit: D. Lowe 



Practice with linear filters	


0	
0	
0	

1	
0	
0	

0	
0	
0	


Original	


?	


Slide credit: D. Lowe 



Practice with linear filters	


0	
0	
0	

1	
0	
0	

0	
0	
0	


Original	
 Shifted left	

by 1 pixel with 
correlation	


Slide credit: D. Lowe 



Practice with linear filters	


Original	


?	

1	
1	
1	

1	
1	
1	

1	
1	
1	


Slide credit: D. Lowe 



Practice with linear filters	


Original	


1	
1	
1	

1	
1	
1	

1	
1	
1	


Blur (with a	

box filter)	


Slide credit: D. Lowe 



Practice with linear filters	


Original	


1	
1	
1	

1	
1	
1	

1	
1	
1	


0	
0	
0	

0	
2	
0	

0	
0	
0	
 -	
 ?	


Slide credit: D. Lowe 



Practice with linear filters	


Original	


1	
1	
1	

1	
1	
1	

1	
1	
1	


0	
0	
0	

0	
2	
0	

0	
0	
0	
 -	


Sharpening filter:	

accentuates differences with 
local average	


Slide credit: D. Lowe 



Filtering examples: sharpening	


Slide credit: K. Grauman 



Sharpening	

•  What does blurring take away?	


original	
 smoothed (5x5)	


–	


detail	


=	


sharpened	


=	


Let’s add it back:	


original	
 detail	


+ 	


Slide credit: S. Lazebnik 



Unsharp mask filter	


Gaussian	

unit impulse	


Laplacian of Gaussian	


))1(()1()( gefgffgfff −+∗=∗−+=∗−+ αααα

image	
 blurred���
image	


unit impulse���
(identity)	


Slide credit: S. Lazebnik 



Other filters	


-1	
0	
1	


-2	
0	
2	


-1	
0	
1	


Vertical Edge	

(absolute value)	


Sobel	


Slide credit: J. Hays 



Other filters	


-1	
-2	
-1	


0	
0	
0	


1	
2	
1	


Horizontal Edge	

(absolute value)	


Sobel	


Slide credit: J. Hays 



Median filters	


•  A Median Filter operates over a window by selecting the 
median intensity in the window.	


•  What advantage does a median filter have over a mean filter?	


•  Is a median filter a kind of convolution?	


adapted from: S. Seitz 



Median filter	


•  No new pixel values 
introduced	


•  Removes spikes: good for 
impulse, salt & pepper 
noise	


•   Non-linear filter	


Slide credit: K. Grauman 



Median filter	


Salt and 
pepper 
noise	


Median 
filtered	


Slide credit: M. Hebert 

Plots of a row of the image	

Matlab: output im = medfilt2(im, [h w]); 



Median filter	


•  What advantage does median filtering have over Gaussian 
filtering?	

–  Robustness to outliers	

–  Median filter is edge preserving	


Slide credit: K. Grauman 


