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Filtering

* The name “filter” is borrowed from frequency domain
processing (next week’s topic)

* Accept or reject certain frequency components

 Fourier (1807):
Periodic functions ————r—

could be represented % :
as a weighted sum of e
sines and cosines ‘

[F:

Image courtesy of Technology Review



Signals

* A ssignal is composed of low and high frequency
components

low frequency components: smooth /
piecewise smooth

Neighboring pixels have similar brightness values

You’re within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values

You're either at the edges or noise points




Sighals - Examples
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Motivation: noise reduction

* Assume image is degraded with an additive model.
* Then,

Observation = True signal + noise

Observed image = Actual image + noise

low-pass high-pass
filters filters

l

smooth the image



Common types of noise

— Salt and pepper noise:
random occurrences of
black and white pixels

— Impulse noise:
random occurrences of
white pixels

— Gaussian noise: Original
variations in intensity drawn
from a Gaussian normal
distribution

Impulse noise Gaussian noise
Shide credit: S. Seitz



Gaussian noise

a s ; Fa
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Ide_al Image  Noise process Gaussian i.i.d. (“white") noise:
flxy)= f(z,y) + n(z,y) n(z,y) ~ J\,"(/,z., o)
>> nolise = randn(size (im)) .*sigma;
>> output = im + noise;

What is the impact of the sigma?

Slide credit: M. Hebert



Motivation: noise reduction
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* Make multiple observations of the same static scene
* Take the average

* Even multiple images of the same static scene will not be
identical.

Adapted from: K. Grauman



Motivation: noise reduction

* Make multiple observations of the same static scene

* Take the average

* Even multiple images of the same static scene will not be
identical.

* What if we can’t make multiple observations!?

. ’ i ?
What if there’s only one image! Adapted from: K. Grauman



Image Filtering

* ldea: Use the information coming from the neighboring
pixels for processing

* Design a transformation function of the local
neighborhood at each pixel in the image

— Function specified by a “filter” or mask saying how to
combine values from neighbors.

* Various uses of filtering:

— Enhance an image (denoise, resize, etc)
— Extract information (texture, edges, etc)
— Detect patterns (template matching)

Adapted from: K. Grauman



Filtering

Processing done on a function
— can be executed in continuous form (e.g. analog circuit)
— but can also be executed using sampled representation

Simple example: smoothing by averaging

continuous smoothing filter discrete smoothing filter
\W\/\/\M I |
| S I I
XTI X X+r I-r i i+r

Shlide credit: S. Marschner



Linear filtering

* Filtered value is the linear combination of neighboring pixel
values.

* Key properties
— linearity: filter(f + g) = filter(f) + filter(g)

— shift invariance: behavior invariant to shifting the input
* delaying an audio signal
* sliding an image around

* Can be modeled mathematically by convolution

Adapted from: S. Marschner



First attempt at a solution

* Let’s replace each pixel with an average of all the values in its
neighborhood

* Assumptions:
— Expect pixels to be like their neighbors (spatial regularity in images)
— Expect noise processes to be independent from pixel to pixel

Shde credit: S. Marschner, K. Grauman



First attempt at a solution

* Let’s replace each pixel with an average of all the values in its
neighborhood




Convolution warm-up

* Same moving average operation, expressed mathematically:

1+7r

. 1 .
bsmooth[l] — o + 1 Z b[j]

J=1—r

Shlide credit: S. Marschner



Discrete convolution

Simple averaging:

1 1+r
bsmooth[i] — o + 1 Z b[]]
j=t—r

— every sample gets the same weight

Convolution: same idea but with weighted average

(axb)li) =) aljlbli — ]

J

— each sample gets its own weight (normally zero far away)

This is all convolution is: it is a moving weighted average

Shlide credit: S. Marschner



Filters

* Sequence of weights a[j] is called a filter

* Filter is nonzero over its region of support
— usually centered on zero: support radius r

* Filter is normalized so that it sums to 1.0

— this makes for a weighted average, not just any
old weighted sum

* Most filters are symmetric about 0 2,11 N [ [ ‘ ‘

— since for images we usually want to treat

left and right the same S
= 3

a box filter

Shlide credit: S. Marschner



Convolution and filtering

* Can express sliding average as convolution with a box filter
* o =[O0 L 1L 1L LO,...]

Shlide credit: S. Marschner



Example: box and step

v 1. LTI

Shlide credit: S. Marschner



Convolution and filtering

* Convolution applies with any sequence of weights

* Example: bell curve (gaussian-like) [..., 1,4, 6,4, |, ...]/16




And in pseudocode...

function convolve(sequence a, sequence b, int r, int 7 )

s =10
for j = —r tor

s = s +aljlbli —
return s

Shlide credit: S. Marschner



Key properties

* Linearity: filter(f, + f,) = filter(f,) + filter(f,)
» Shift invariance: filter(shift(f)) = shift(filter(f))

* same behavior regardless of pixel location, i.e. the value of the output
depends on the pattern in the image neighborhood, not the position of

the neighborhood.

* Theoretical result: any linear shift-invariant operator can be
represented as a convolution

Slide credit: S. Lazebnik



Properties in more detail

 Commutative:a*b=b *a
— Conceptually no difference between filter and signal

* Associative: a * (b*c) = (a*b) *c
— Often apply several filters one after another: (((a * b,) * b,) * by)
— This is equivalent to applying one filter: a * (b, * b, * b,)

 Distributes over addition: a * (b + ¢) = (a * b) + (a * ¢)
* Scalars factor out: ka *b =a * kb = k (a * b)

* lIdentity: unit impulsee =1...,0,0, 1, 0,0, ...],
a*e=a

Slide credit: S. Lazebnik



A gallery of filters

* Box filter
— Simple and cheap

* Tent filter
— Linear interpolation

* Gaussian filter
— Very smooth antialiasing filter

Shlide credit: S. Marschner



Box filter
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Shlide credit: S. Marschner



Tent filter

)1 — ||
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otherwise;
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Shlide credit: S. Marschner



Gaussian filter
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Shlide credit: S. Marschner



Discrete filtering in 2D

* Same equation, one more index

(a*b)[i, j] = Z ali', j'1bli —4', 5 — §']

— now the filter is a rectangle you slide around over a grid of numbers

Usefulness of associativity

— often apply several filters one after another: (((a * b,) * b,) * b,)
— this is equivalent to applying one filter: a * (b, * b, * b;)

Shlide credit: S. Marschner



And in pseudocode...

function convolve2d(filter2d a, filter2d b, int ¢, int 7)
4 =)
r = a.radius
for 7/ = —rtor do
for ' = —rtordo
s = s + ali')[7]bli — ¥][j — 5

return s

Shlide credit: S. Marschner



Moving Average In 2D

Flz, y] Glz, vl

Shlide credit: S. Seitz



Moving Average In 2D

Flz, y] Glz, vl

Shlide credit: S. Seitz



Moving Average In 2D

Flz, y]

Glz, y]

10

20

Shlide credit: S. Seitz



Moving Average In 2D

Flz, y]

Glz, y]

10

7]

Shlide credit: S. Seitz



Moving Average In 2D

Flz, y]

Glz, y]

10

20

30 “ 30

Shlide credit: S. Seitz



Moving Average In 2D

Flz, y]

Shlide credit: S. Seitz



Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

o 1 uNNLA .
G[Z,J]—(zk_l_l)zu;_kv;_kﬁ’[z u, j + v]

J

|
Attribute uniform Loop over all pixels in neighborhood

weight to each pixel  around image pixel F[ij]

Now generalize to allow different weights depending on
neighboring pixel’s relative position:

k k
Gli,j1= > > Hlu,v]F[i+ u,j+ v]
u=—kv=—k —r——
Non-uniform weights

Slide credit: K. Grauman



Correlation filtering
k k
Gli,j1= >, > Hluv]F[i+ u,j+ ]
u=—kv=—k
This is called cross-correlation, denoted G=HXF

Filtering an image: replace each pixel with a linear combination of
its neighbors.

The filter “kernel” or “mask’ H[u,v] is the prescription for the
weights in the linear combination.

Slide credit: K. Grauman



Correlation filtering

3

Template (mask)

h

Scene



Correlation filtering

3

h

Detected template Correlation map



Cross correlation example

Left Right

scanline

Norm. corr

Shide credit: Fei-Fei Li



Averaging filter

* What values belong in the kernel H for the moving

average example!?

Glz, y]

10

20 30| 30|

Flx, y] ®  Hlu,v]
111
1
—11 ‘I 1
111
“box filter”
G=HQF

Slide credit: K. Grauman



Smoothing by averaging

depicts box filter:
< white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 3?
Shide credit: K. Grauman



Boundary issues

* What is the size of the output?

* MATLAB: output size / “shape” options
— shape = ‘full’: output size is sum of sizes of fand g
— shape = ‘same’: output size is same as f
— shape = ‘valid’: output size is difference of sizes of fand g

full same valid

Slide credit: S. Lazebnik



Boundary issues

* What about near the edge?
— the filter window falls off the edge of the image

— need to extrapolate

— methods:
* clip filter (black)
* wrap around
* copy edge

* reflect across edge

Shlide credit: S. Marschner



Boundary issues

* What about near the edge?
— the filter window falls off the edge of the image

— need to extrapolate
— methods (MATLAB):

* clip filter (black): imfilter (£, g, 0)

* wrap around: imfilter (f, g, ‘circular’)
* copy edge: imfilter (£, g, ‘replicate’)
* reflect across edge: imfilter (f, g, ‘symmetric’)

Slide credit: S. Marschner



Gaussian filter

* What if we want nearest neighboring pixels to have the
most influence on the output!?

This kernel is an
approximation of a 2d

Gaussian function:
1] 2] 1 1 _uP40?
* 2|42 h(u’v)ZQ 2¢ 7
16 o
1 2 1
Hu, v]

Flx,y]

* Removes high-frequency components from the image

“I b 2 )
ow-pass filter”).
( P ) Slide credit: S. Seitz



Smoothing with a Gaussian

Shide credit: K. Grauman



Gaussian filters

* What parameters matter here?

e Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete filters
use finite kernels

0] 0=05 with
|10 x 10 kernel 30 x 30 kernel

Slide credit: K. Grauman



Gaussian filters

* What parameters matter here?

« Variance of Gaussian: determines extent of
smoothing

0 = 2 with 0 =5 with
30 x 30 kernel 30 x 30 kernel

Slide credit: K. Grauman



Choosing kernel width

 Rule of thumb: set filter half-width to about 3 O

Effect of o

0.4

0.35 |

0.3+

025

02r

015

0.1

0.0s

Shide credit: S. Lazebnik



Matlab

>>
>>
>>

>>

>>

>>
>>

hsize = 10;
sigma = 5;
h = fspecial (‘gaussian’ hsize, sigma);

mesh (h) ; \ -

imagesc (h) ; n

outim = imfilter(im, h); $ correlation
imshow (outim) ;

outim

Slide credit: K. Grauman



Smoothing with a Gaussian

Parameter O is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

e o o
0

10
20
30

0 10 20 30 10 20 30 0 10 20 30

for sigma=1:3:10

h = fspecial('gaussian', fsize, sigma);
out = imfilter (im, h);
imshow (out) ;
pause;
end

Slide credit: K. Grauman



Separability

* In some cases, filter is separable, and we can factor into two
steps:

— Convolve all rows
— Convolve all columns

Slide credit: K. Grauman



Separability of the Gaussian filter

X2+ y*
G, (x = 1 202
1 X° 1 y*
a2 oA 2
= exp 20 exp 20
( 270 P ) V2To P

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Slide credit: D. Lowe



Separability example

()
n
o

2D convolution |2 |4 |2
(center locationonly)[ 1 ]2 [1] (4 |4 |&

1 |2 |1 1] x 11211
The filter factors 11
into a product of ID TIE=
112 11 1
filters:
2 1 3ls3 11
Perform convolution [ T2 T11*[3 [5 [5 |= 18
along rows: 4 la la 18

Followed by convolution

along the remaining column:
Shlide credit: K. Grauman



Why is separability useful?

* What is the complexity of filtering an nxn image with an mxm
kernel?

— O(n? m?)
* What if the kernel is separable!?
— O(n?m)

Slide credit: S. Lazebnik



Properties of smoothing filters

* Smoothing
— Values positive

— Sum to | = constant regions same as input
— Amount of smoothing proportional to mask size
— Remove “high-frequency” components; “low-pass” filter

Slide credit: K. Grauman



Filtering an impulse signal

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Glz,y.

Shide credit: K. Grauman



Convolution

* Convolution:
— Flip the filter in both dimensions (bottom to top, right to left)
— Then apply cross-correlation

Gli, 7] = Z Z Hlu,v]F[i—u,j — v]

u=—kov=-—%k

G=HxF 5

T

Notation for
convolution
operator

Slide credit: K. Grauman



Convolution vs. Correlation

* A convolution is an integral that expresses the amount of
overlap of one function as it is shifted over another function.

— convolution is a filtering operation

* Correlation compares the similarity of two sets of data.
Correlation computes a measure of similarity of two input
signals as they are shifted by one another. The correlation result
reaches a maximum at the time when the two signals match
best .

— correlation is a measure of relatedness of two signals

Slide credit: Fei-Fei 1L



Convolution vs. correlation

Convolution

Gli, 7] = Z Z Hlu,v]F[i —u,j — v]

u=—kv=—k

G=HxF

Cross-correlation

k
Gli,jl= > > Hluwv]Fli+u,j+ ]

u=—kv=—-%k

G=HQF

For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ?

Slide credit: K. Grauman



Predict the outputs using correlation
filtering

Slide credit: K. Grauman



Practice with linear filters

-

i

-
~>

Original

Slide credit: D. Lowe



Practice with linear filters

-
i
-

Original Filtered
(no change)

Slide credit: D. Lowe



Practice with linear filters

-

-
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Original

Slide credit: D. Lowe



Practice with linear filters

0(0(0
0(0]1
0(0(0
Original Shifted left
by | pixel with
correlation

Slide credit: D. Lowe



Practice with linear filters

111]1
- 11]1 (7
9 ®
111]1

Original

Slide credit: D. Lowe



Practice with linear filters

O|

Original Blur (with a
box filter)

Slide credit: D. Lowe



Practice with linear filters

olo]o 11171
1

ol2[o] - S[1[t]1 ‘)

0(0/0 1111 ’

Original

Slide credit: D. Lowe



Practice with linear filters

0/0/0 RaEEn

0/2/0f = G|L/1]1

0]0]0 1[1]1
Original Sharpening filter:

accentuates differences with
N local average

Slide credit: D. Lowe



Filtering examples: sharpening

before

Shide credit: K. Grauman



Sharpening

* What does blurring take away?

\detail




Unsharp mask filter

unit impulse

fra(f-fg)=(+a)f -af+g=[f*((+a)e-g)

| | |

image blurred unit impulse
image (identity)

il
,;;’,’,”If"c ok
W

)
{',’;', ;,,?0, W
L
/3'260’0“““‘:“\
00l

{f
il
"":‘:’:’0"0”0“

Gaussian Laplacian of Gaussian

Slide credit: S. Lazebnik



Other filters

1 |0 -1

210 |-2

1 |0 -1
Sobel

Vertical Edge
(absolute value)

Shde credit: J. Hays



Other filters

1 1211

O[]0 O

-1 (-2 -1
Sobel

Horizontal Edge
(absolute value)

Shde credit: J. Hays



Median filters

* A Median Filter operates over a window by selecting the
median intensity in the window.

* What advantage does a median filter have over a mean filter?

* |s a median filter a kind of convolution?

adapted from: S. Seitz



Median filter

10l 15120 * No new pixel values
2319027 introduced
33131130 l Sort

/ L. RN ) D o

Median value _____ |2~ * Removes spikes: good for

10 15 20 23 |27130 31 33 90 impu|se, salt&pepper’

10]15]20 I Replace nolse
232727 * Non-linear filter
33131130

Slide credit: K. Grauman



Median filter

Saltand |- § |
epper ik & » . Median
’ I'DP filtered
noise

a0 ’ ol N ™,
B ‘Wl ) \#M
i 1O et R

Plots of a row of the image

Matlab: output im = medfilt2 (im, [h w]);
Shide credit: M. Hebert



Median filter

* What advantage does median filtering have over Gaussian
filtering?

— Robusthess to outliers
— Median filter is edge preserving

filters have width 5 :

. INPUT
T MEDIAN
I MEAN

Slide credit: K. Grauman



