
CMP717
Image Processing

Graphical Models

Erkut Erdem
Hacettepe University

Computer Vision Lab (HUCVL)

Energy Minimization

• Many vision tasks are naturally posed as energy minimization
problems on a rectangular grid of pixels:

• The data term Edata(u) expresses our goal that the optimal model u
be consistent with the measurements.

• The smoothness energy Esmoothness(u) is derived from our prior
knowledge about plausible solutions.

• Recall Mumford-Shah functional

Energy Minimization and MRFs

Many vision tasks are naturally posed as energy minimization problems
on a rectangular grid of pixels, where the energy comprises a data term
and a smoothness term:

E(u) = Edata(u) + Esmoothness(u) .

The data term Edata(u) expresses our goal that the optimal model u be
consistent with the measurements. The smoothness energyEsmoothness(u)

is derived from our prior knowledge about plausible solutions.

Denoising: Given a noisy image Î(x, y), where some measurements
may be missing, recover the original image I(x, y), which is typi-
cally assumed to be smooth.

Stereo Disparity: Given two images of a scene, find the binocular dis-
parity at each pixel, d(x, y). The disparities are expected to be
piecewise smooth since most surfaces are smooth.

Surface Reconstruction: Given a sparse set of depth measurements
and/or normals, recover a smooth surface z(x, y) consistent with
the measurements.

Segmentation: Assign labels to pixels in an image, e.g., to segment
foreground from background.

2503: Markov Random Fields Page: 2

D. J. Fleet

Sample Vision Tasks

• Image Denoising: Given a noisy image I(x,y), where some
measurements may be missing, recover the original image I(x, y),
which is typically assumed to be smooth.

• Image Segmentation: Assign labels to pixels in an image, e.g., to
segment foreground from background.

• Stereo matching
• Surface Reconstruction
• …

ˆ

D. J. Fleet

Smoothing out cluster assignments

• Assigning a cluster label per pixel may yield outliers:

• How to ensure they are spatially smooth?

1 2
3

?

original labeled by cluster center’s
intensity

K. Grauman

P(foreground | image)

Encode dependencies between pixels

ÕÕ
Î=

=
edgesji

ji
Ni

i datayyfdatayf
Z

dataP
,

2
..1

1),;,(),;(1),;(qqqy

Labels to be
predicted

Individual
predictions

Pairwise
predictions

Normalizing constant

D. Hoiem

Solution

Writing Likelihood as an “Energy”

ÕÕ
Î=

=
edgesji

ji
Ni

i datayypdatayp
Z

dataP
,

2
..1

1),;,(),;(1),;(qqqy

åå
Î

+=
edgesji

ji
i

i datayydataydataEnergy
,

21),;,(),;(),;(qyqyqy

“Cost” of assignment yi

“Cost” of pairwise
assignment yi ,yj

D. Hoiem

Markov Random Fields

åå
Î

+=
edgesji

ji
i

i datayydataydataEnergy
,

21),;,(),;(),;(qyqyqy

Node yi: pixel label

Edge:
constrained
pairs

Cost to assign a label
to each pixel

Cost to assign a pair of labels
to connected pixels

D. Hoiem

Markov Random Fields

• Example: “label smoothing” grid

Unary potential

0 1
0 0 K
1 K 0

Pairwise Potential

0: -logP(yi = 0 ; data)
1: -logP(yi = 1 ; data)

åå
Î

+=
edgesji

ji
i

i datayydataydataEnergy
,

21),;,(),;(),;(qyqyqy
D. Hoiem

Binary MRF ExampleBinary MRF Example

Consider the following energy function for
two binary random variables, y1 and y2.

0
1

5
2

0
1

1
3

0
1

0 1
0 3
4 0

E (y1, y2) = ψ1(y1) + ψ2(y2) + ψ12(y1, y2)
= 5ȳ1 + 2y1

︸ ︷︷ ︸

ψ1

+ ȳ2 + 3y2
︸ ︷︷ ︸

ψ2

+ 3ȳ1y2 + 4y1ȳ2
︸ ︷︷ ︸

ψ12

where ȳ1 = 1− y1 and ȳ2 = 1− y2.

Stephen Gould 12/23

• Consider the following energy function for two binary random
variables, y1 & y2.

S. Gould

Binary MRF ExampleBinary MRF Example

Consider the following energy function for
two binary random variables, y1 and y2.

0
1

5
2

0
1

1
3

0
1

0 1
0 3
4 0

E (y1, y2) = ψ1(y1) + ψ2(y2) + ψ12(y1, y2)
= 5ȳ1 + 2y1

︸ ︷︷ ︸

ψ1

+ ȳ2 + 3y2
︸ ︷︷ ︸

ψ2

+ 3ȳ1y2 + 4y1ȳ2
︸ ︷︷ ︸

ψ12

where ȳ1 = 1− y1 and ȳ2 = 1− y2.

Stephen Gould 12/23

• Consider the following energy function for two binary random
variables, y1 & y2.

S. Gould

Binary MRF Example

• Consider the following energy function for two binary random
variables, y1 & y2.

Binary MRF Example

Consider the following energy function for
two binary random variables, y1 and y2.

0
1

5
2

0
1

1
3

0
1

0 1
0 3
4 0

E (y1, y2) = ψ1(y1) + ψ2(y2) + ψ12(y1, y2)
= 5ȳ1 + 2y1

︸ ︷︷ ︸

ψ1

+ ȳ2 + 3y2
︸ ︷︷ ︸

ψ2

+ 3ȳ1y2 + 4y1ȳ2
︸ ︷︷ ︸

ψ12

where ȳ1 = 1− y1 and ȳ2 = 1− y2.

Graphical Model

y1 y2

Probability Table

y1 y2 E P

0 0 6 0.244
0 1 11 0.002
1 0 7 0.090
1 1 5 0.664

Stephen Gould 12/23

Binary MRF Example

Consider the following energy function for
two binary random variables, y1 and y2.

0
1

5
2

0
1

1
3

0
1

0 1
0 3
4 0

E (y1, y2) = ψ1(y1) + ψ2(y2) + ψ12(y1, y2)
= 5ȳ1 + 2y1

︸ ︷︷ ︸

ψ1

+ ȳ2 + 3y2
︸ ︷︷ ︸

ψ2

+ 3ȳ1y2 + 4y1ȳ2
︸ ︷︷ ︸

ψ12

where ȳ1 = 1− y1 and ȳ2 = 1− y2.

Stephen Gould 12/23
S. Gould

Image Denoising

• Given a noisy image perhaps with missing pixels,
recover an image that is both smooth and close to

• Classical techniques:
– Linear filtering (e.g. Gaussian filtering)
– Median filtering
– Wiener filtering

• Modern techniques
– PDE-based techniques
– Non-local methods
– Wavelet techniques
– MRF-based techniques

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Denoising/smoothing techniques
that preserve edges in images

Denoising as a Probabilistic Inference

• Perform maximum a posteriori (MAP) estimation by maximizing
the a posteriori distribution:

• By Bayes theorem:

• If we take logarithm:

• MAP estimation corresponds to minimizing the encoding cost

p(true image | noisy image) = p(u | v)

p(u | v) = p(v | u)p(u)
p(v) normalization

term

image prior

likelihood of noisy image
given true image

log p(u | v) = log p(v | u)+ log p(u)− log p(v)

E(u) = − log p(v | u)− log p(u)

Modeling the Likelihood

• We assume that the noise at one pixel is independent of
the others.

• We assume that the noise at each pixel is additive and
Gaussian distributed:

• Thus, we can write the likelihood:

p(v | u) = p(vij | uij
i, j
∏)

p(vij | uij) =Gσ (vij −uij)

p(v | u) = Gσ (vij −uij)
i, j
∏

Modeling the Prior

• How do we model the prior distribution of true images?
• What does that even mean?
– We want the prior to describe how probable it is (a-priori) to have

a particular true image among the set of all possible images.

© Stefan Roth, 29.11.2010 | Department of Computer Science | GRIS |

Modeling the Prior
■ How do we model the prior distribution of true images?
■ What does that even mean?
• We want the prior to describe how probable it is (a-priori) to have

a particular true image among the set of all possible images.

20

probable
improbable

© Stefan Roth, 29.11.2010 | Department of Computer Science | GRIS |

Modeling the Prior
■ How do we model the prior distribution of true images?
■ What does that even mean?
• We want the prior to describe how probable it is (a-priori) to have

a particular true image among the set of all possible images.

20

probable
improbable

S. Roth

Natural Images

• What distinguishes
“natural” images from
“fake” ones?

© Stefan Roth, 29.11.2010 | Department of Computer Science | GRIS |

Natural Images
■ What distinguishes “natural” images from “fake” ones?

• We can take a large database of natural images and study them.

21
S. Roth

Simple Observation

• Nearby pixels often have a similar intensity/color:

• But sometimes there are large intensity/color changes.
© Stefan Roth, 29.11.2010 | Department of Computer Science | GRIS |

Simple Observation
■ Nearby pixels often have a similar intensity:

■ But sometimes there are large intensity changes.

22

S. Roth

MRF-based Image Denoising

• Let each pixel be a node in a graph with
4-connected neighborhoods.

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

© Stefan Roth, 29.11.2010 | Department of Computer Science | GRIS |

MRF Model of the Posterior
■ We can now put the likelihood and the prior together in

a single MRF model:

27

pixels of the
true image
(hidden)

pixels of the
noisy image
(observed)

Ti,j

Ni,j

Edges representing
the likelihood

Edges representing
the prior

uij

vij

S. Roth

Image Denoising

• The energy function is given by

• Unary (clique) potentials stem from the measurement model,
penalizing the discrepancy between the data and the solution
.

• Interaction (clique) potentials provide a definition of
smoothness, penalizing changes in between pixels and their
neighbors.

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

D. J. Fleet

Denoising as Inference

• Goal: Find the image that minimizes

• Several options for MAP estimation process:
– Gradient techniques
– Gibbs sampling
– Simulated annealing
– Belief propagation
– Graph cut
– …

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Image Denoising

Consider image restoration: Given a noisy image v, perhaps with miss-
ing pixels, recover an image u that is both smooth and close to v.

Let each pixel be a node in a graph G = (V , E), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E

V (ui, uj) (3)

• Unary (clique) potentials D stem from the measurement model,
penalizing the discrepancy between the data v and the solution u.
This models assumes conditional independence of observations.
The unary potentials are pixel log likelihoods.

• Interaction (clique) potentials V provide a definition of smooth-
ness, penalizing changes in u between pixels and their neighbours.

Goal: Find the image u that minimizes E(u) (and thereby maximizes
p(u|v) since, up to a constant, E is equal to the negative log posterior).

2503: Markov Random Fields Page: 5

Quadratic Potentials in 1D

• Let be the sum of a smooth 1D signal and IID Gaussian noise :
where and

• With Gaussian IID noise, the negative log likelihood provides a
quadratic data term. If we let the smoothness term be
quadratic as well, then up to a constant, the log posterior is

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

D. J. Fleet

Quadratic Potentials in 1D

• To find the optimal , we take derivatives of
with respect to :

and therefore the necessary condition for the critical point is

• For endpoints we obtain different equations:
N linear equations
in the N unknowns

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

D. J. Fleet

Missing Measurements

• Suppose our measurements exist at a subset of positions,
denoted . Then we can write the energy function as

• At locations n where no measurement exists, we have:

• The Jacobi update equation in this case becomes:

Missing Measurements

The solution is easily extended to missing measurements (i.e., to handle
interpolation and smoothing).

Suppose our measurements exist at a subset of positions, denoted P .
Then we can write the energy function as

E(u) =
∑

n∈P
(un − vn)

2 + λ
∑

alln

(un+1 − un)
2 , (17)

At locations n where no measurement exists, the derivative of E w.r.t.
u yields the condition

−un−1 + 2 un − un+1 = 0 . (18)

The solution is still a large matrix equation, as in (7). Rows of the
matrix with measurements are unchanged. But those for which mea-
surements are missing, have the form

(

0 . . . −1 2 −1 . . . 0
)

, with
zeros substituted for the corresponding vn on the right-hand side.

The Jacobi update equation in this case becomes

u(t+1)n =

{

1
1+2λ (vn + λu(t)n−1 + λu(t)n+1) forn ∈ P ,
1
2 (u

(t)
n−1 + u(t)n+1) otherwise

(19)

The equations that govern the endpoints can be expressed in an analo-
gous manner.

2503: Markov Random Fields Page: 10

Missing Measurements

The solution is easily extended to missing measurements (i.e., to handle
interpolation and smoothing).

Suppose our measurements exist at a subset of positions, denoted P .
Then we can write the energy function as

E(u) =
∑

n∈P
(un − vn)

2 + λ
∑

alln

(un+1 − un)
2 , (17)

At locations n where no measurement exists, the derivative of E w.r.t.
u yields the condition

−un−1 + 2 un − un+1 = 0 . (18)

The solution is still a large matrix equation, as in (7). Rows of the
matrix with measurements are unchanged. But those for which mea-
surements are missing, have the form

(

0 . . . −1 2 −1 . . . 0
)

, with
zeros substituted for the corresponding vn on the right-hand side.

The Jacobi update equation in this case becomes

u(t+1)n =

{

1
1+2λ (vn + λu(t)n−1 + λu(t)n+1) forn ∈ P ,
1
2 (u

(t)
n−1 + u(t)n+1) otherwise

(19)

The equations that govern the endpoints can be expressed in an analo-
gous manner.

2503: Markov Random Fields Page: 10

Missing Measurements

The solution is easily extended to missing measurements (i.e., to handle
interpolation and smoothing).

Suppose our measurements exist at a subset of positions, denoted P .
Then we can write the energy function as

E(u) =
∑

n∈P
(un − vn)

2 + λ
∑

alln

(un+1 − un)
2 , (17)

At locations n where no measurement exists, the derivative of E w.r.t.
u yields the condition

−un−1 + 2 un − un+1 = 0 . (18)

The solution is still a large matrix equation, as in (7). Rows of the
matrix with measurements are unchanged. But those for which mea-
surements are missing, have the form

(

0 . . . −1 2 −1 . . . 0
)

, with
zeros substituted for the corresponding vn on the right-hand side.

The Jacobi update equation in this case becomes

u(t+1)n =

{

1
1+2λ (vn + λu(t)n−1 + λu(t)n+1) forn ∈ P ,
1
2 (u

(t)
n−1 + u(t)n+1) otherwise

(19)

The equations that govern the endpoints can be expressed in an analo-
gous manner.

2503: Markov Random Fields Page: 10

Missing Measurements

The solution is easily extended to missing measurements (i.e., to handle
interpolation and smoothing).

Suppose our measurements exist at a subset of positions, denoted P .
Then we can write the energy function as

E(u) =
∑

n∈P
(un − vn)

2 + λ
∑

alln

(un+1 − un)
2 , (17)

At locations n where no measurement exists, the derivative of E w.r.t.
u yields the condition

−un−1 + 2 un − un+1 = 0 . (18)

The solution is still a large matrix equation, as in (7). Rows of the
matrix with measurements are unchanged. But those for which mea-
surements are missing, have the form

(

0 . . . −1 2 −1 . . . 0
)

, with
zeros substituted for the corresponding vn on the right-hand side.

The Jacobi update equation in this case becomes

u(t+1)n =

{

1
1+2λ (vn + λu(t)n−1 + λu(t)n+1) forn ∈ P ,
1
2 (u

(t)
n−1 + u(t)n+1) otherwise

(19)

The equations that govern the endpoints can be expressed in an analo-
gous manner.

2503: Markov Random Fields Page: 10

D. J. Fleet

2D Image Smoothing

• For 2D images, the analogous energy we want to minimize
becomes:

where is a subset of pixels where the measurements are
available.

2D Image Smoothing

For 2D images, the analogous energy we want to minimize becomes

E(u) =
∑

n,m∈P
(u[n,m]− v[n,m])2

+ λ
∑

alln,m

(u[n+1,m]− u[n,m])2 + (u[n,m+1]− u[n,m])2 (20)

where P is a subset of pixels where the measurements v are available.

Taking derivatives with respect to u[n,m] and setting them equal to
zero yields a linear system of equations that has the same form as (9).
The only difference is that the linear filter g is now 2D: e.g.,

g =

0 −1 0

−1 4 −1

0 −1 0

.

One can again solve for u iteratively, where, ignoring the edge pixels
for simplicity, we have

u(t+1)[n,m] =

{

1
1+4λ(v[n,m] + λ s(t)[n,m]) forn,m ∈ P ,
1
4 s

(t)[n,m] otherwise ,
(21)

where s[n,m] is the sum of the 4 neighbors of pixel [n,m], i.e., u[n −
1,m] + u[n + 1,m] + u[n,m− 1] + u[n,m + 1].

Problem: Linear filters are sensitive to outliers, and will not preserve
image edges. They tend to oversmooth images at boundaries.
2503: Markov Random Fields Page: 11

Missing Measurements

The solution is easily extended to missing measurements (i.e., to handle
interpolation and smoothing).

Suppose our measurements exist at a subset of positions, denoted P .
Then we can write the energy function as

E(u) =
∑

n∈P
(un − vn)

2 + λ
∑

alln

(un+1 − un)
2 , (17)

At locations n where no measurement exists, the derivative of E w.r.t.
u yields the condition

−un−1 + 2 un − un+1 = 0 . (18)

The solution is still a large matrix equation, as in (7). Rows of the
matrix with measurements are unchanged. But those for which mea-
surements are missing, have the form

(

0 . . . −1 2 −1 . . . 0
)

, with
zeros substituted for the corresponding vn on the right-hand side.

The Jacobi update equation in this case becomes

u(t+1)n =

{

1
1+2λ (vn + λu(t)n−1 + λu(t)n+1) forn ∈ P ,
1
2 (u

(t)
n−1 + u(t)n+1) otherwise

(19)

The equations that govern the endpoints can be expressed in an analo-
gous manner.

2503: Markov Random Fields Page: 10

Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signal u and IID Gaussian noise e:

v = u + e , (4)

where u = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic
data term. If we let the smoothness term be quadratic as well, then up
to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solution u∗ should be close to v, and adjacent nodes on the grid
should have similar values. The constant, λ > 0, controls the tradeoff
between smoothness and data fit.

To find the optimal u∗, we take derivatives of E(u) with respect to un:
∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints, n = 1 and n = N , as they
have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN

2503: Markov Random Fields Page: 6

Looks familiar??
D. J. Fleet

Robust Potentials

• Quadratic potentials are not robust to outliers and hence they
over-smooth edges. These effects will propagate throughout
the graph.

• Instead of quadratic potentials, we could use a robust error
function

where and are scale parameters.

Robust Potentials

Quadratic potentials are not robust to outliers and hence they over-
smooth edges. These effects will propagate throughout the graph.

Instead of quadratic potentials, we could use a robust error function ρ:

E(u) =
N
∑

n=1

ρ(un − vn, σd) + λ
N−1
∑

n=1

ρ(un+1 − un, σs) , (22)

where σd and σs are scale parameters. For example, the Lorentzian
error function is given by

ρ(z, σ) = log

(

1 +
1

2

(z

σ

)2
)

, ρ′(z, σ) =
2z

2σ2 + z2
. (23)

-6 -4 -2 2 4 6

1

2

3

4

5

-6 -4 -2 2 4 6

-1.5

-1

-0.5

0.5

1

1.5

Error function Influence function

Smoothing a noisy step edge:

1 32 64

1

2

1 32 64

1

2

1 32 64

1

2

Noisy step LS smoother Lorentzian smoother

Unfortunately, the problem is no longer convex. Optimization is tough.

2503: Markov Random Fields Page: 12

Robust Potentials

Quadratic potentials are not robust to outliers and hence they over-
smooth edges. These effects will propagate throughout the graph.

Instead of quadratic potentials, we could use a robust error function ρ:

E(u) =
N
∑

n=1

ρ(un − vn, σd) + λ
N−1
∑

n=1

ρ(un+1 − un, σs) , (22)

where σd and σs are scale parameters. For example, the Lorentzian
error function is given by

ρ(z, σ) = log

(

1 +
1

2

(z

σ

)2
)

, ρ′(z, σ) =
2z

2σ2 + z2
. (23)

-6 -4 -2 2 4 6

1

2

3

4

5

-6 -4 -2 2 4 6

-1.5

-1

-0.5

0.5

1

1.5

Error function Influence function

Smoothing a noisy step edge:

1 32 64

1

2

1 32 64

1

2

1 32 64

1

2

Noisy step LS smoother Lorentzian smoother

Unfortunately, the problem is no longer convex. Optimization is tough.

2503: Markov Random Fields Page: 12

Robust Potentials

Quadratic potentials are not robust to outliers and hence they over-
smooth edges. These effects will propagate throughout the graph.

Instead of quadratic potentials, we could use a robust error function ρ:

E(u) =
N
∑

n=1

ρ(un − vn, σd) + λ
N−1
∑

n=1

ρ(un+1 − un, σs) , (22)

where σd and σs are scale parameters. For example, the Lorentzian
error function is given by

ρ(z, σ) = log

(

1 +
1

2

(z

σ

)2
)

, ρ′(z, σ) =
2z

2σ2 + z2
. (23)

-6 -4 -2 2 4 6

1

2

3

4

5

-6 -4 -2 2 4 6

-1.5

-1

-0.5

0.5

1

1.5

Error function Influence function

Smoothing a noisy step edge:

1 32 64

1

2

1 32 64

1

2

1 32 64

1

2

Noisy step LS smoother Lorentzian smoother

Unfortunately, the problem is no longer convex. Optimization is tough.

2503: Markov Random Fields Page: 12

Robust Potentials

Quadratic potentials are not robust to outliers and hence they over-
smooth edges. These effects will propagate throughout the graph.

Instead of quadratic potentials, we could use a robust error function ρ:

E(u) =
N
∑

n=1

ρ(un − vn, σd) + λ
N−1
∑

n=1

ρ(un+1 − un, σs) , (22)

where σd and σs are scale parameters. For example, the Lorentzian
error function is given by

ρ(z, σ) = log

(

1 +
1

2

(z

σ

)2
)

, ρ′(z, σ) =
2z

2σ2 + z2
. (23)

-6 -4 -2 2 4 6

1

2

3

4

5

-6 -4 -2 2 4 6

-1.5

-1

-0.5

0.5

1

1.5

Error function Influence function

Smoothing a noisy step edge:

1 32 64

1

2

1 32 64

1

2

1 32 64

1

2

Noisy step LS smoother Lorentzian smoother

Unfortunately, the problem is no longer convex. Optimization is tough.

2503: Markov Random Fields Page: 12

D. J. Fleet

Robust Potentials

• Example: the Lorentzian error function

Robust Potentials

Quadratic potentials are not robust to outliers and hence they over-
smooth edges. These effects will propagate throughout the graph.

Instead of quadratic potentials, we could use a robust error function ρ:

E(u) =
N
∑

n=1

ρ(un − vn, σd) + λ
N−1
∑

n=1

ρ(un+1 − un, σs) , (22)

where σd and σs are scale parameters. For example, the Lorentzian
error function is given by

ρ(z, σ) = log

(

1 +
1

2

(z

σ

)2
)

, ρ′(z, σ) =
2z

2σ2 + z2
. (23)

-6 -4 -2 2 4 6

1

2

3

4

5

-6 -4 -2 2 4 6

-1.5

-1

-0.5

0.5

1

1.5

Error function Influence function

Smoothing a noisy step edge:

1 32 64

1

2

1 32 64

1

2

1 32 64

1

2

Noisy step LS smoother Lorentzian smoother

Unfortunately, the problem is no longer convex. Optimization is tough.

2503: Markov Random Fields Page: 12

D. J. Fleet

Robust Potentials

• Example: the Lorentzian error function
• Smoothing a noisy step edge

Robust Potentials

Quadratic potentials are not robust to outliers and hence they over-
smooth edges. These effects will propagate throughout the graph.

Instead of quadratic potentials, we could use a robust error function ρ:

E(u) =
N
∑

n=1

ρ(un − vn, σd) + λ
N−1
∑

n=1

ρ(un+1 − un, σs) , (22)

where σd and σs are scale parameters. For example, the Lorentzian
error function is given by

ρ(z, σ) = log

(

1 +
1

2

(z

σ

)2
)

, ρ′(z, σ) =
2z

2σ2 + z2
. (23)

-6 -4 -2 2 4 6

1

2

3

4

5

-6 -4 -2 2 4 6

-1.5

-1

-0.5

0.5

1

1.5

Error function Influence function

Smoothing a noisy step edge:

1 32 64

1

2

1 32 64

1

2

1 32 64

1

2

Noisy step LS smoother Lorentzian smoother

Unfortunately, the problem is no longer convex. Optimization is tough.

2503: Markov Random Fields Page: 12 D. J. Fleet

Robust Image Smoothing

• A Lorentzian smoothness potential encourages an approximately
piecewise constant result:

Robust Image Smoothing

This smoother uses a quadratic data potential, and a Lorentzian smooth-
ness potential to encourage an approximately piecewise constant result:

Original image Output of robust smoothing

We can use the Lorentzian error function to detect spatial outliers.

Edges

Problem: Computational expense, local minima, and sensitivity to the
initial guess.
2503: Markov Random Fields Page: 14

D. J. Fleet

Robust Image Smoothing

This smoother uses a quadratic data potential, and a Lorentzian smooth-
ness potential to encourage an approximately piecewise constant result:

Original image Output of robust smoothing

We can use the Lorentzian error function to detect spatial outliers.

Edges

Problem: Computational expense, local minima, and sensitivity to the
initial guess.
2503: Markov Random Fields Page: 14

Image Segmentation

• Given an image, partition it into meaningful regions or
segments.

• Approaches
– Variational segmentation models
– Clustering-based approaches (K-means, Mean Shift)
– Graph-theoretic formulations

• MRF-based techniques

MRFs and Graph-cut

Markov Random Fields

• Example: “label smoothing” grid

Unary potential

0 1
0 0 K
1 K 0

Pairwise Potential

0: -logP(yi = 0 ; data)
1: -logP(yi = 1 ; data)

åå
Î

+=
edgesji

ji
i

i datayydataydataEnergy
,

21),;,(),;(),;(qyqyqy

D. Hoiem

Solving MRFs with graph cuts

Main idea:
• Construct a graph such that every st-cut corresponds to a joint

assignment to the variables y

• The cost of the cut should be equal to the energy of the assignment,
E(y; data)∗.

• The minimum-cut then corresponds to the minimum energy
assignment, y⋆ = argminy E(y; data).

S. Gould
∗Requires non-negative energies

Source (Label 0)

Sink (Label 1)

Cost to assign to 1

Cost to assign to 0

Cost to split nodes

åå
Î

+=
edgesji

ji
i

i datayydataydataEnergy
,

21),;,(),;(),;(qyqyqy
D. Hoiem

Solving MRFs with graph cuts

Solving MRFs with graph cuts
Source (Label 0)

Sink (Label 1)

Cost to assign to 0

Cost to assign to 1

Cost to split nodes

åå
Î

+=
edgesji

ji
i

i datayydataydataEnergy
,

21),;,(),;(),;(qyqyqy
D. Hoiem

The st-Mincut Problem

Source

Sink

v1 v2

2

5

9

4
1

2

Graph (V, E, C)
Vertices V = {v1, v2 ... vn}

Edges E = {(v1, v2)}
Costs C = {c(1, 2)}

P. Kohli

The st-Mincut Problem

Source

Sink

v1 v2

2

5

9

4
1

2

What is a st-cut?

P. Kohli

The st-Mincut Problem

Source

Sink

v1 v2

2

5

9

4
1

2

What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?
Sum of cost of all edges

going from S to T

5 + 1 + 9 = 15
P. Kohli

The st-Mincut Problem
What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?
Sum of cost of all edges

going from S to T

What is the st-mincut?

st-cut with the
minimum cost

Source

Sink

v1 v2

2

5

9

4
1

2

2 + 2 + 4 = 8
P. Kohli

So how does this work?

Construct a graph such that:
1. Any st-cut corresponds to an assignment of x

2. The cost of the cut is equal to the energy of x : E(x)

Solution
t

s st-mincut

E(x)

[Hammer, 1965] [Kolmogorov and Zabih, 2002]

P. Kohli

w

E(x) = ∑ θi (xi) + ∑ θij (xi,xj)
i,ji

θij(0,1) + θij (1,0) ≥ θij (0,0) + θij (1,1)For all ij

E(x) = ∑ ci xi + ∑ cij xi(1-xj) cij≥0
i,ji

Equivalent (transformable)

P. Kohli

st-mincut and Energy Minimization

Graph Construction

Sink (1)

Source (0)

a1 a2

E(a1,a2)

P. Kohli

Source

Sink

a1 a2

2

5

9

4
1

2

Graph Construction

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2a1

2

P. Kohli

Source

Sink

a1 a2

2

5

9

4
1

2

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1

2

5

Sink (1)

Source (0)

P. Kohli

Source

Sink

a1 a2

2

5

9

4
1

2

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2

2

5

9

4

Sink (1)

Source (0)

P. Kohli

Source

Sink

a1 a2

2

5

9

4
1

2

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2

2

5

9

4

2

Sink (1)

Source (0)

P. Kohli

Source

Sink

a1 a2

2

5

9

4
1

2

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 +ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

P. Kohli

Source

Sink

a1 a2

2

5

9

4
1

2

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 +ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

P. Kohli

Source

Sink

a1 a2

2

5

9

4
1

2

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 +ā1a2

2

5

9

4

2

1
a1 = 1 a2 = 1

E (1,1) = 11

Cost of cut = 11

Sink (1)

Source (0)

P. Kohli

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 +ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

a1 = 1 a2 = 0

E (1,0) = 8

st-mincut cost = 8

P. Kohli

How to compute the st-mincut?

Source

Sink

v1 v2

2

5

9

4
2

1

Solve the dual maximum flow problem

Compute the maximum flow
between Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Assuming non-negative capacity

In every network, the maximum flow
equals the cost of the st-mincut

Min-cut\Max-flow Theorem

P. Kohli

Maxflow Algorithms

Augmenting Path Based
Algorithms

Source

Sink

v1 v2

2

5

9

4
2

1

Flow = 0

P. Kohli

Maxflow Algorithms

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

Source

Sink

v1 v2

2

5

9

4
2

1

Flow = 0

P. Kohli

Maxflow Algorithms

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

Source

Sink

v1 v2

2-2

5-2

9

4
2

1

Flow = 0 + 2

P. Kohli

Maxflow Algorithms

Source

Sink

v1 v2

0

3

9

4
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

Flow = 2

P. Kohli

Maxflow Algorithms

Source

Sink

v1 v2

0

3

9

4
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 2

P. Kohli

Maxflow Algorithms

Source

Sink

v1 v2

0

3

9

4
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 2

P. Kohli

Maxflow Algorithms

Source

Sink

v1 v2

0

3

5

0
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 2 + 4

P. Kohli

Maxflow Algorithms

Source

Sink

v1 v2

0

3

5

0
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 6

P. Kohli

Maxflow Algorithms

Source

Sink

v1 v2

0

3

5

0
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 6

P. Kohli

Maxflow Algorithms

Source

Sink

v1 v2

0

1

3

0
2-2

1+2

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 6 + 2

P. Kohli

Maxflow Algorithms

Source

Sink

v1 v2

0

1

3

0

3

0

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 8

P. Kohli

Maxflow Algorithms

Source

Sink

v1 v2

0

1

3

0
3

0

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 8

P. Kohli

Flow and Reparametrization

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 +ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

P. Kohli

Flow and Reparametrization

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 +ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

2a1 + 5ā1

= 2(a1+ā1) + 3ā1

= 2 + 3ā1

P. Kohli

Flow and Reparametrization

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 +ā1a2

0

3

9

4

2

1
2a1 + 5ā1

= 2(a1+ā1) + 3ā1

= 2 + 3ā1

P. Kohli

a1 a2

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 +ā1a2

0

3

9

4

2

1

Flow and Reparametrization

9a2 + 4ā2

= 4(a2+ā2) + 5ā2

= 4 + 5ā2

Sink (1)

Source (0)

P. Kohli

a1 a2

E(a1,a2) = 2 + 3ā1+ 5a2 + 4 + 2a1ā2 +ā1a2

0

3

5

0

2

1
9a2 + 4ā2

= 4(a2+ā2) + 5ā2

= 4 + 5ā2

Flow and Reparametrization

Sink (1)

Source (0)

P. Kohli

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 +ā1a2

0

3

5

0

2

1

Flow and Reparametrization

Sink (1)

Source (0)

P. Kohli

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 +ā1a2

0

3

5

0

2

1

Flow and Reparametrization

Sink (1)

Source (0)

P. Kohli

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 +ā1a2

0

3

5

0

2

1

Flow and Reparametrization

3ā1+ 5a2 + 2a1ā2

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2

a1 a2 F1 F2

0 0 1 1
0 1 2 2
1 0 1 1
1 1 1 1

Sink (1)

Source (0)

P. Kohli

a1 a2

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

0

1

3

0

0

3

Flow and Reparametrization

3ā1+ 5a2 + 2a1ā2

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

a1 a2 F1 F2

0 0 1 1
0 1 2 2
1 0 1 1
1 1 1 1

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2

Sink (1)

Source (0)

P. Kohli

a1 a2

0

1

3

0

0

3

Flow and Reparametrization
E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

No more
augmenting

paths possible

Sink (1)

Source (0)

P. Kohli

a1 a2

0

1

3

0

0

3

Flow and Reparametrization
E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

Total Flow

Residual Graph
(positive coefficients)

bound on the
optimal solution

Tight Bound >> Inference of the optimal solution becomes
trivial

Sink (1)

Source (0)

P. Kohli

a1 a2

0

1

3

0

0

3

Flow and Reparametrization
E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

a1 = 1 a2 = 0

E (1,0) = 8

st-mincut cost = 8
Total Flow

bound on the energy
of the optimal

solution

Residual Graph
(positive coefficients)

Sink (1)

Source (0)

P. Kohli

Maxflow in Computer Vision

• Specialized algorithms for vision problems
– Grid graphs
– Low connectivity (m ~ O(n))

• Dual search tree augmenting path algorithm
[Boykov and Kolmogorov PAMI 2004]
• Finds approximate shortest augmenting paths efficiently
• High worst-case time complexity
• Empirically outperforms other algorithms on vision problems

P. Kohli

E(x) = ∑ ci xi + ∑ dij |xi-xj|
i i,j

Global Minimum
(x*)

x
x* = arg min E(x)

How to minimize
E(x)?

E: {0,1}n → R
0 → fg
1 → bg

n = number
of pixels

P. Kohli

Code for Image Segmentation

How does the code look like?

Sink (1)

Source (0)

Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Kohli

How does the code look like?

a1 a2

fgCost(a1)

Sink (1)

Source (0)

fgCost(a2)

bgCost(a1) bgCost(a2)

Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Kohli

How does the code look like?

a1 a2

fgCost(a1)

Sink (1)

Source (0)

fgCost(a2)

bgCost(a1) bgCost(a2)

cost(p,q)

Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Kohli

How does the code look like?

a1 a2

fgCost(a1)

Sink (1)

Source (0)

fgCost(a2)

bgCost(a1) bgCost(a2)

a1 = bg a2 = fg

Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Kohli

cost(p,q)

4-connected;
pairwise MRF Higher-order MRF

E(x) = ∑ θij (xi,xj)
i,j Є N4

higher(8)-connected;
pairwise MRF

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2 Order 2
Order n

E(x) = ∑ θij (xi,xj)

+θ(x1,…,xn)
i,j Є N4

MRF with
global variables

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2

C. Rother

Random Fields in Vision

User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.

D. Hoiem

GrabCut segmentation

MRF with global potential - GrabCut model
[Rother et. al. ‘04]

Fi = -log Pr(zi|θF) Bi= -log Pr(zi|θB)

Background

Foreground G

R

θF/B Gaussian
Mixture models

E(x,θF,θB) =

Problem: for unknown x,θF,θB the optimization is NP-hard!
[Vicente et al. ‘09]

Image z Output x

∑ Fi(θF)xi+ Bi(θB)(1-xi) + ∑ |xi-xj|
i,j Є Ni

θF/B

C. Rother

GrabCut: Iterated Graph Cuts
[Rother et al. Siggraph ‘04]

Learning of the
colour distributions

Graph cut to infer
segmentation

F

x
min E(x, θF, θB)
θF,θB

min E(x, θF, θB)

B

Most systems with global variables work like that
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. ’06, LayoutCRF Winn et al. ’06]

θF/B

C. Rother

1. Define graph
– usually 4-connected or 8-connected

2. Define unary potentials
– Color histogram or mixture of Gaussians for background and foreground

3. Define pairwise potentials

4. Apply graph cuts
5. Return to 2, using current labels to compute foreground,

background models

ïþ

ï
ý
ü

ïî

ï
í
ì --

+= 2

2

21 2
)()(

exp),(_
s

ycxc
kkyxpotentialedge

÷
÷
ø

ö
ç
ç
è

æ
-=

));((
));((

log)(_
background

foreground

xcP
xcP

xpotentialunary
q
q

D. Hoiem

GrabCut: Iterated Graph Cuts

1 2 3 4

Energy after each IterationResult

Guaranteed to

converge

C. Rother

GrabCut: Iterated Graph Cuts

Background

Foreground &
Background G

R

Background

Foreground G

R
Iterated

graph cut

C. Rother

Colour Model

Optimizing over θ’s help

after
convergence
[GrabCut ‘04]

no iteration
[Boykov&Jolly ‘01]

Input

Input after
convergence
[GrabCut ‘04] C. Rother

What is easy or hard about these cases for
graphcut-based segmentation?

D. Hoiem

Easier examples

D. Hoiem

More difficult Examples

D. Hoiem

Harder CaseFine structure

Initial
Rectangle

Initial
Result

Camouflage &
Low Contrast

Semantic Segmentation
Joint Object recognition & segmentation

E(x,ω) = ∑ θi (ω, xi) +∑ θi (xi) +∑ θi (xi) + ∑ θij (xi,xj)
i,ji i i(color) (locatio

n)

Buildin
g

Sky

Tree
Grass

(class)

xi ∊ {1,…,K} for K object classes

(edge aware
Ising prior)

Class (boosted textons)Location

sky grass

[TextonBoost; Shotton et al, ‘06] C. Rother

Class+
location

+ edges + color

Semantic Segmentation
Joint Object recognition & segmentation

[TextonBoost; Shotton et al, ‘06]

C. Rother

Semantic Segmentation
Joint Object recognition & segmentation

[TextonBoost;
Shotton et al, ‘06]

C. Rother

Good results …

4-connected;
pairwise MRF Higher-order MRF

E(x) = ∑ θij (xi,xj)
i,j Є N4

higher(8)-connected;
pairwise MRF

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2 Order 2
Order n

E(x) = ∑ θij (xi,xj)

+θ(x1,…,xn)
i,j Є N4

MRF with
global variables

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2

C. Rother

Random Fields in Vision

Why Higher-order Functions?

• In general

• Reasons for higher-order RFs:
1. Even better image(texture) models:

– Field-of Expert [FoE, Roth et al. ‘05]
– Curvature [Woodford et al. ‘08]

2. Use global Priors:
– Connectivity [Vicente et al. ‘08, Nowozin et al. ‘09]
– Better encoding label statistics [Woodford et al. ‘09]
– Convert global variables to global factors [Vicente et al. ‘09]

θ(x1,x2,x3) ≠ θ(x1,x2) + θ(x1,x3) + θ(x2,x3)

C. Rother

Modeling the Potentials

• Could the potentials (image priors) be learned from natural images?

© Stefan Roth, 29.11.2010 | Department of Computer Science | GRIS |

Natural Images
■ What distinguishes “natural” images from “fake” ones?

• We can take a large database of natural images and study them.

21

Field of Experts
(FoE), S. Roth &
M. J. Black, CVPR
2005

De-noising with Field-of-Experts
[Roth and Black ’05, Ishikawa ‘09]

FoE prior

xc set of nxn patches (here 2x2)
Jk set of filters:

From [Ishikawa PAMI ’09, Roth et al ‘05]

Unary likelihood

E(X) = ∑ (zi-xi)2 / 2σ2 + ∑ ∑ αk (1+ 0.5(Jk xc)2)
i c k

non-convex optimization problem

z x

How to handle continuous labels in discrete MRF?

C. Rother

De-noising with Field-of-Experts
[Roth and Black ’05, Ishikawa ‘09]

• Very sharp
discontinuities.

• No blurring across
boundaries.

• Noise is removed quite
well nonetheless.

© Stefan Roth, 29.11.2010 | Department of Computer Science | GRIS |

Denoising Results

29

original image noisy image,
σ=20

PSNR 22.49dB
SSIM 0.528

denoised using
gradient ascent

PSNR 27.60dB
SSIM 0.810

S. Roth

