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Today

• Linear Filtering
– Gauss filter, Linear diffusion

• Edge Detection
– Derivative filters, Laplacian of Gaussian, Canny edge detector

• Boundary Detection
• Segmentation
– K-means clustering, Graph-theoretic segmentation
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Filtering

• The name “filter” is borrowed from frequency domain processing
• Accept or reject certain frequency components
• Fourier (1807):

Periodic functions 
could be represented
as a weighted sum of 
sines and cosines

Image courtesy of Technology Review



Signals

• A signal is composed of low and high frequency components

low frequency components: smooth /
piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points



– Salt and pepper noise: random occurrences 
of   black and white pixels

– Impulse noise: 
random occurrences of white pixels

– Gaussian noise: variations in intensity drawn 
from a Gaussian normal distribution

Slide credit: S. Seitz

Common Noise Types



Image Filtering

• Idea: Use the information coming from the neighboring pixels 
for processing 
• Design a transformation function of the local neighborhood at 

each pixel in the image
– Function specified by a “filter” or mask saying how to combine values 

from neighbors.

• Various uses of filtering:
– Enhance an image (denoise, resize, etc)
– Extract information (texture, edges, etc)
– Detect patterns (template matching)

Adapted from: K. Grauman



Filtering

• Processing done on a function
– can be executed in continuous form (e.g. analog circuit)
– but can also be executed using sampled representation

• Simple example: smoothing by averaging
• Can be modeled mathematically by convolution

Slide credit: S. Marschner



Discrete convolution

• Simple averaging:

– every sample gets the same weight

• Convolution: same idea but with weighted average

– each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a moving weighted average

Slide credit: S. Marschner



Filters

• Sequence of weights a[j] is called a filter
• Filter is nonzero over its region of support
– usually centered on zero: support radius r

• Filter is normalized so that it sums to 1.0
– this makes for a weighted average, not just any

old weighted sum

• Most filters are symmetric about 0
– since for images we usually want to treat

left and right the same

a box filter

Slide credit: S. Marschner



Convolution and filtering

• Convolution applies with any sequence of weights
• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16

Slide credit: S. Marschner



Discrete filtering in 2D

• Same equation, one more index

– now the filter is a rectangle you slide around over a grid of numbers

• Usefulness of associativity
– often apply several filters one after another: (((a * b1) * b2) * b3)
– this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner



Moving Average In 2D
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• What values belong in the kernel H for the moving average example?
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“box filter”

?

Slide credit: K. Grauman

Averaging filter



depicts box filter: 
white = high value, black = low value

original filtered

Slide credit: K. Grauman

Smoothing by averaging



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want nearest neighboring pixels to have the most influence on 
the output?

• Removes high-frequency components from the image (“low-pass filter”).

This kernel is an 
approximation of a 2d 
Gaussian function:

Slide credit: S. Seitz

Gaussian filter



Slide credit: K. Grauman

Smoothing with a Gaussian



for sigma=1:3:10 
h = fspecial('gaussian‘, fsize, sigma);
out = imfilter(im, h); 
imshow(out);
pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and 
controls the amount of smoothing.

Slide credit: K. Grauman

Smoothing with a Gaussian



Linear Diffusion

• Let f (x) denote a grayscale (noisy) input image and u(x, t) be initialized 
with u(x,0) = u0(x) = f(x). 

• The linear diffusion process can be defined by the equation: 

where ∇· denotes the divergence operator. Thus, 
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1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1)
∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2)
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.

∗erkut@cs.hacettepe.edu.tr
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Linear Diffusion (cont’d.)

• Diffusion process as an evolution process.
• Artificial time variable t denotes the diffusion time
• Input image is smoothed at a constant rate in all directions.
– u0(x): initial image, 
– u(x, t): the evolving images under the governed equation representing 

the successively smoothed versions of the initial input image f (x). 

• Diffusion process creates a scale space representation of the given 
image f , with t > 0 being the scale.



Linear Diffusion 
(cont’d.)
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red: active areas
blue: inactive area 

influence of the central 
pixel on the other pixels 
(red: high, blue: low) 

gray-level image

Credit: S. Paris



Linear Diffusion (cont’d.)

• As we move to coarser scales, 
– Evolving images become more and more simplified
– Diffusion process removes the image structures at finer scales. 

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5
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Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to
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Figure 2: Linear diffusion results for different diffusion times.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) and u(x) respectively denote the given noisy image and the desired de-
noised image, and n(x) represents the additive noise.

3



Linear Diffusion and Gaussian Filtering

• The solution of the linear diffusion can be explicitly estimated as:

with

• Solution of the linear diffusion equation is equivalent to a proper 
convolution of the input image with the Gaussian kernel Gσ(x) with 
standard deviation

• The higher the value of T, the higher the value of σ, and the more 
smooth the image becomes. 
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Numerical Implementation

• Solving the linear diffusion equation requires discretization in both 
spatial and time coordinates.

• Central differences for the spatial derivatives: 

where ui,j denotes the gray value or the brightness of the evolving image 
at pixel location (i, j). 
• We take hx = hy = 1 for a regular grid.
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Numerical Implementation (cont’d.)

• Original model:

• Space discrete version:

• Space-time discrete version:

LINEAR DIFFUSION

Erkut Erdem∗

Hacettepe University

February 24th, 2012

CONTENTS

1 Linear Diffusion 1

2 Appendix - The Calculus of Variations 5

References 6

1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1)
∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2)
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.
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Figure 2: Linear diffusion results for different diffusion times.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
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the following space-discrete equation for (1):

(5)
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∆t
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i,j−1 − 4uk

i,j
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homogeneous Neumann boundary condition 
along the image boundary 

∆t ≤ 0.25 is required for 
numerical stability



Tikhonov energy functional 

• Ω ⊂ R2 is connected, bounded, open subset representing the image 
domain, 

• f is an image defined on Ω,
• u is the smooth approximation of f ,
• α > 0 is the scale parameter. 

1. LINEAR DIFFUSION

Consider the Tikhonov energy functional [5] as an illustrative example:

(8) E(u) =
∫

Ω

(

(u − f )2 + α|∇u|2
)

dx

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the smooth approximation of f ,

• α > 0 is the scale parameter.

The first term in E(u) is the data fidelity term that penalizes the deviations between
u and f , and thus forces the restored image to be close to the original image. The
second term is called the regularization or smoothness term which penalizes the high
gradients, and gives preference to smooth approximations. The relative importance of
these two terms are defined by the scale parameter α.

The minimizing function u formally satisfies the Euler-Lagrange equation

(9) (u − f )− α∇2u = 0

with the Neumann boundary condition ∂u
∂n

∣

∣

∣

∂Ω
= 0.

It is possible to rewrite (9) as

(10)
u − u0

α
= ∇2u with u0 = f ,

whichmay be regarded as an implicit time discretization of the linear diffusion equation
(1) where a single time step (T = α) is used. Note that diffusion time (scale selection)
problem is not really eliminated by the variational regularization, it is replaced with a
new parameter α that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that the smoothing process does
not consider information regarding important image features such as edges. It follows
that same amount of smoothing to be applied at every image location. As a result, the
diffusion process does smooth not only noise, but also image edges.

4

data fidelity 
term

regularizati
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implicit time discretization of the linear diffusion 
equation with a single time step (T = α)



Today

• Linear Filtering
– Gauss filter, Linear diffusion

• Edge Detection
– Derivative filters, Laplacian of Gaussian, Canny edge detector

• Boundary Detection
• Segmentation
– K-means clustering, Graph-theoretic segmentation



Edge detection

• Goal:  Identify sudden changes 
(discontinuities) in an image
– Intuitively, most semantic and shape 

information from the image can be 
encoded in the edges
– More compact than pixels

• Ideal: artist’s line drawing (but artist is 
also using object-level knowledge)

Slide credit: D. Lowe



Depth 
discontinuity: 
object boundary

Change in 
surface 
orientation: 
shape

Cast shadows

Reflectance change: 
appearance information, 
texture

Slide credit: K. Grauman

What causes an edge?



Characterizing edges

• An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Slide credit: K. Grauman



For 2D function f(x,y), the partial derivative is:

For discrete data, we can approximate using finite differences:
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Slide credit: K. Grauman

Derivatives with convolution



Partial derivatives of an image
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Which shows changes with respect to x?

Slide credit: K. Grauman



The gradient points in the direction of most rapid increase in intensity

Image gradient

• The gradient of an image: 

The gradient direction is given by

Slide credit: S. Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?



Original Image vs. Gradient magnitude image

Slide credit: K. Grauman



Effects of noise
• Consider a single row or column of the image
– Plotting intensity as a function of position gives a signal

Where is the edge?

Slide credit: S. Seitz

Difference filters respond 
strongly to noise. 
What can we do about it?



Solution: smooth first

• To find edges, look for peaks in

)( gf
dx
d

*

f

g

f * g

)( gf
dx
d

*

Slide credit: S. Seitz



Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, 
and controls the amount of smoothing.

…

Slide credit: K. Grauman



Effect of σ on derivatives 

The apparent structures differ depending on Gaussian’s scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Slide credit: K. Grauman



Smoothing and Edge Detection

• While eliminating noise via smoothing, we also lose some of the 
(important) image details.
– Fine details
– Image edges
– etc.

• What can we do to preserve such details?
– Use edge information during denoising!
– This requires a definition for image edges. 

• Edge preserving image smoothing (Next week’s topic!)

Chicken-and-egg dilemma!



• Differentiation is convolution, and convolution is associative:

• This saves us one operation: g
dx
d

fgf
dx
d

*=* )(

Derivative theorem of convolution

g
dx
d

f *

f

g
dx
d

Slide credit: S. Seitz



Derivative of Gaussian filter

x-direction y-direction

Slide credit: S. Lazebnik

* [1 -1] = 



• Smoothing filters
– Gaussian: remove “high-frequency” components; 

“low-pass” filter
– Can the values of a smoothing filter be negative?
– What should the values sum to?
• One: constant regions are not affected by the filter

• Derivative filters
– Derivatives of Gaussian
– Can the values of a derivative filter be negative?
– What should the values sum to?
• Zero: no response in constant regions

– High absolute value at points of high contrast
Slide credit: S. Lazebnik

Smoothing vs. derivative filters



Laplacian of Gaussian

Consider  

Laplacian of Gaussian
operator

Where is the edge?  Zero-crossings of bottom graph
Slide credit: K. Grauman



2D edge detection filters

• The Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Slide credit: K. Grauman



Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

original image

Source: D. Marr and E. Hildreth (1980)

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from  on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with

pos. values – white
neg. values – black

zero-crossings



1. Filter image with derivative of Gaussian 
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
– Thin wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):
– Define two thresholds: low and high
– Use the high threshold to start edge curves and the low threshold 

to continue them

• MATLAB:   edge(image, ‘canny’);

Slide credit: D. Lowe, L. Fei-Fei

Canny edge detector



Canny with Canny with original 

The choice of σ depends on desired behavior
• large σ detects large scale edges

• small σ detects fine features

Slide credit: S. Seitz

Effect of σ (Gaussian kernel spread/size)



Edge detection is just the beginning…

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Source: S. Lazebnik

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Berkeley Segmentation Data Set - Protocol

You will be presented a photographic image.  Divide the image into 
some number of segments, where the segments represent “things” or 
“parts of things” in the scene.  The number of segments is up to you, as 
it depends on the image.  Something between 2 and 30 is likely to be 
appropriate.  It is important that all of the segments have 
approximately equal importance.

• Custom segmentation tool

• Subjects obtained from work-study program 
(UC Berkeley undergraduates)

Slide credit: J. Hays
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Dataset Summary

• 30 subjects, age 19-23
– 17 men, 13 women
– 9 with artistic training

• 8 months
• 1,458 person hours
• 1,020 Corel images
• 11,595 Segmentations
– 5,555 color, 

5,554 gray, 
486 inverted/negated

Slide credit: J. Hays



Pb Detector

Image
Boundary Cues

Model

Pb

Brightness

Color

Texture

Challenges:  texture cue, cue combination 

Goal: learn the posterior probability of a boundary Pb from local
information only

Cue Combination

Slide credit: J. Hays



55

Brightness and Color Features

• 1976 CIE L*a*b* colorspace
• Brightness Gradient (B)
– Chi2 difference in L* distribution

• Color Gradient (C)
– Chi2 difference in a* and b* distributions
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-
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Slide credit: J. Hays
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• Texture Gradient (T)
• Chi2 difference of texton histograms
– Textons are vector-quantized filter outputs

Texton
Map

Slide credit: J. Hays

Texture features



Non-Boundaries Boundaries

I

T

B

C

Slide credit: J. Hays

Texture features
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Cue Combination Models

• Classification Trees
– Top-down splits to maximize entropy, error bounded

• Density Estimation
– Adaptive bins using k-means

• Logistic Regression, 3 variants
– Linear and quadratic terms
– Confidence-rated generalization of AdaBoost (Schapire&Singer)

• Hierarchical Mixtures of Experts (Jordan&Jacobs)
– Up to 8 experts, initialized top-down, fit with EM

• Support Vector Machines (libsvm, Chang&Lin)

• Range over bias, complexity, parametric/non-parametric
Slide credit: J. Hays



Computing Precision/Recall

Recall = Pr(signal|truth) = fraction of ground truth found by the signal

Precision = Pr(truth|signal) = fraction of signal that is correct

• Always a trade-off between the two

• Standard measures in information retrieval (van Rijsbergen XX)

• ROC from standard signal detection the wrong approach

Strategy

• Detector output (Pb) is a soft boundary map

• Compute precision/recall curve:
– Threshold Pb at many points t in [0,1]
– Recall = Pr(Pb>t|seg=1)
– Precision = Pr(seg=1|Pb>t)

Slide credit: J. Hays
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Cue Calibration

• All free parameters optimized on training data
• All algorithmic alternatives evaluated by experiment

• Brightness Gradient
– Scale, bin/kernel sizes for KDE

• Color Gradient
– Scale, bin/kernel sizes for KDE, joint vs. marginals

• Texture Gradient
– Filter bank: scale, multiscale?
– Histogram comparison
– Number of textons, Image-specific vs. universal textons

• Localization parameters for each cue
Slide credit: J. Hays



Dataflow
Image

Optimized Cues

Model

Pb

Brightness

Color

Texture

Benchmark

Human Segmentations

Cue Combination

Slide credit: J. Hays
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Pb Images
Canny 2MM Us HumanImage

Slide credit: J. Hays



Findings

1. A simple linear model is sufficient for cue combination
– All cues weighted approximately equally in logistic

2. Proper texture edge model is not optional for complex natural images
– Texture suppression is not sufficient!

3. Significant improvement over state-of-the-art in boundary detection

4. Empirical approach critical for both cue calibration and cue 
combination

Slide credit: J. Hays



Sketch Tokens (J. Lim et al., CVPR 2013)

Slide credit: J. Hays



Image Features – 21350 dimensions!

• 35x35 patches centered at every pixel

• 35x35 “channels” of many types:
– Color (3 channels)
– Gradients (3 unoriented + 8 oriented channels)
• Sigma = 0, T   heta = 0, pi/2, pi, 3pi/2
• Sigma = 1.5, Theta = 0, pi/2, pi, 3pi/2
• Sigma = 5

– Self Similarity
• 5x5 maps of self similarity within the above channels for a particular anchor point.

Slide credit: J. Hays



Self-similarity features

Self-similarity features: The L1 distance from the anchor cell (yellow box) to the other 
5 x 5 cells are shown for color and gradient magnitude channels. The original patch 
is shown to the left.

Slide credit: J. Hays



Learning

• Random Forest Classifiers, one for each sketch token + background, 
trained 1-vs-all

• Advantages:
– Fast at test time, especially for a non-linear 

classifier.
– Don’t have to explicitly compute independent 

descriptors for every patch. Just look up what 
the decision tree wants to know at each branch.

Slide credit: J. Hays

Frequency of example features being selected by the 
random forest: (first row) color channels, (second row) 

gradient magnitude channels, (third row) selected 
orientation channels.



Detections of individual sketch tokens

Slide credit: J. Hays



Combining sketch token detections

• Simply add the probability of all non-background sketch tokens
• Free parameter: number of sketch tokens
– k = 1 works poorly, k = 16 and above work OK.

Slide credit: J. Hays
Input Image            Ground Truth           Sketch Tokens



Evaluation on BSDS

Slide credit: J. Hays



Summary of Sketch Tokens

• Distinct from previous work, cluster the human annotations to discover 
the mid-level structures that you want to detect.

• Train a classifier for every sketch token.
• Is as accurate as any other method while being 200 times faster and 

using no global information.

Slide credit: J. Hays



Today

• Linear Filtering
– Gauss filter, Linear diffusion

• Edge Detection
– Derivative filters, Laplacian of Gaussian, Canny edge detector

• Boundary Detection
• Segmentation
– K-means clustering, Graph-theoretic segmentation



Image segmentation

• Goal: identify groups of pixels that go together 

Slide credit: S. Seitz, K. Grauman



• With this objective, it is a “chicken and egg” problem:
– If we knew the cluster centers, we could allocate points to groups by 

assigning each to its closest center.

– If we knew the group memberships, we could get the centers by 
computing the mean per group.

Slide credit: K. Grauman

Clustering



Common similarity/distance measures

• P-norms
– City Block (L1)
– Euclidean (L2)
– L-infinity

• Mahalanobis
– Scaled Euclidean

• Cosine distance

Here xi is the 
distance btw.
two points

Slide credit: D. Hoiem



• Basic idea: randomly initialize the k cluster centers, and 
iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c1, ..., cK

2. Given cluster centers, determine points in each cluster
• For each point p, find the closest ci.  Put p into cluster i

3. Given points in each cluster, solve for ci
• Set ci to be the mean of points in cluster i

4. If ci have changed, repeat Step 2

Properties
• Will always converge to some solution
• can be a “local minimum”, it does not always find the global 

minimum of objective function:

Slide credit: S. Seitz

K-means clustering



Pros

• Simple, fast to compute

• Converges to local minimum of within-
cluster squared error

Cons/issues

• Setting k?

• Sensitive to initial centers

• Sensitive to outliers

• Detects spherical clusters

• Assuming means can be computed
Slide credit: K. Grauman

K-means clustering



R=255
G=200
B=250

R=245
G=220
B=248

R=15
G=189
B=2

R=3
G=12
B=2

R

G
B

Feature space: color value (3-d) Slide credit: K. Grauman

Depending on what we choose as the feature space, we can group pixels 
in different ways.

Grouping pixels based on color similarity 

Segmentation as clustering



Depending on what we choose as the feature space, we can group pixels 
in different ways.

X

Grouping pixels based on intensity+position similarity 

Y

Intensity Both regions are black, but if 
we also include position (x,y), 
then we could group the two 
into distinct segments; way to 
encode both similarity & 
proximity.

Slide credit: K. Grauman

Segmentation as clustering



Build a weighted graph 
G=(V,E) from image

V: image pixels

E: connections between pairs 
of nearby pixels

Wij: probability that i & j belong 
to the same region

Segmentation = graph partition

Slide credit: B. Freeman and A. Torralba

Graph-Theoretic Image Segmentation



A Weighted Graph and its Representation
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Affinity Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

a

e

d

c

b

6 W = 

Wij: probability that i & j 
belong to the same 
region

Slide credit: B. Freeman and A. Torralba



Segmentation by graph partitioning

• Break graph into segments
– Delete links that cross between segments
– Easiest to break links that have low affinity
• similar pixels should be in the same segments
• dissimilar pixels should be in different segments

A B C wij

i

j

Slide credit: S. Seitz



Affinity between pixels

Interleaving edges Wij = 1 - max Pb
Line between i and j

With Pb = probability of boundary

Similarities among pixel descriptors Wij = exp(-|| zi – zj ||2 / σ2)
σ = Scale factor… 
it will hunt us later

Slide credit: B. Freeman and A. Torralba



Scale affects affinity

• Small σ: group only nearby points
• Large σ: group far-away points

Slide credit: S. Lazebnik



assoc(A,V) is sum of all edges with 
one end in A.

cut(A,B) is sum of weights with 
one end in A and one end in B

Write graph as V, one cluster as A and the other as B

cut(A,B)

assoc(A,V)

cut(A,B)

assoc(B,V)
+Ncut(A,B) = 

€ 

cut(A,B) = W(u,v),
u∈A,v∈B
∑

                     with A ∩ B = ∅

€ 

assoc(A,B) = W(u,v)
u∈A,v∈B
∑

                     A and B not necessarily disjoint

Slide credit: B. Freeman and A. Torralba

Normalized cut



Normalized cut
• Let W be the adjacency matrix of the graph

• Let D be the diagonal matrix with diagonal entries 
D(i, i) = Σj W(i, j) 

• Then the normalized cut cost can be written as

where y is an indicator vector whose value should be 1 in the ith
position if the ith feature point belongs to A and a negative constant 
otherwise

Dyy
yWDy

T

T )( -

Slide credit: S. LazebnikJ. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf


Normalized cut algorithm

• In this formulation, the segmentation becomes a global process. 
• Decisions about what is a boundary are not local (as in Canny edge detector)

Slide credit: B. Freeman and A. Torralba



Boundaries of image regions defined by a number of 
attributes
– Brightness/color
– Texture
– Motion
– Stereoscopic depth
– Familiar configuration

Slide credit: B. Freeman and A. Torralba



N pixels = ncols * nrows

W = 

N

N

brightness Location

Affinity:

Slide credit: B. Freeman and A. Torralba

Example



http://www.cs.berkeley.edu/~fowlkes/BSE/
Slide credit: S. Lazebnik

Results: Berkeley Segmentation Engine

http://www.cs.berkeley.edu/~fowlkes/BSE/


• Pros
– Generic framework, can be used with many different 

features and affinity formulations

• Cons
– High storage requirement and time complexity
– Bias towards partitioning into equal segments

Normalized cuts: Pro and con

Slide credit: S. Lazebnik


