Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification

Satoshi Iizuka, Edgar Simo-Serra, Hiroshi Ishikawa
Contents

• Introduction
• Related Works
 • Scribbles-based
 • Reference Image-based
 • Automatic colorization
• Network Models
• Paper and Our Results
• Demo
• Conclusion
Introduction

Image colorization assigns a color to each pixel of a target grayscale image

• Usually used for coloring of historical black and white photographs

• Q. What is any other usage area of image colorization?
Introduction

• Traditional colorization techniques requires significant user interaction.

• In this paper, a fully automated data-driven approach proposed for colorization.

• This method requires neither pre-processing nor post-processing.

• This model consists of four main components:
 • A low-level features network
 • A mid-level features network
 • A global features network
 • A colorization network
Introduction

• A single network.

• This approach uses a combination of global image priors and local image features to colorize an image automatically.
 • Global priors
 • Local features

• It can also perform classification of the scene.

• This model to be run on input images of arbitrary resolutions, unlike most Convolutional Neural Networks.
Introduction

In summary, in this paper main contribution:

• A user-intervention-free approach to colorize grayscale images.
• A novel end-to-end network that jointly learns global and local features for an image.
• A learning approach that exploits classification labels to increase performance.
• A style transfer technique based on exploiting the global features.
Related works

• Colorization methods can be roughly divided into two categories.
 • Scribble-based colorization
 • Example-based colorization
 • Automatic colorization
Related works

• Scribbles-based
 • Levin et al. 2004
 • Simple colorization method that requires neither image segmentation, nor region tracking.
 • Based on a simple premise: neighboring pixels have similar intensities should have similar colors.
 • Formalize this premise using a quadratic cost function and obtain an optimization problem that can be solved efficiently using standard techniques.
 • Hunang et al. 2005
 • Improve Levin’s cost function for more sensitive to edge information, prevent the color bleeding over object boundaries.
Related works

• Reference Image-based
 • Exploit the colors of a reference image.
 • Inspired by the color transfer techniques that are widely used for recoloring a color image.
 • Welsh et al. [2002]
 • Proposed a general technique to colorize grayscale images by matching the luminance and texture information between images.
 • Aim minimize the amount of human labor required for this task.
 • Further, the procedure is enhanced by allowing the user to match areas of the two images with rectangular swatches.
 • Gupta et al. [2012]
 • Matching superpixels between the input image and the reference image using feature matching
 • Space voting to perform the colorization
Related works

• Reference image-based
 • Liu et al. 2008
 • Reference images that are obtained directly from web search.
 • Its applicability is, however limited to famous landmarks where exact matches can be found.
 • Chia et al. 2011
 • Requires user to provide a semantic text label and segmentation cues for the foreground object.
Related works

• **Automatic colorization**
 Aim to remove user interaction.
 • Cheng et al. 2015
 • Group these images into different clusters adaptively
 • Uses existing multiple image feature
 • Computes chrominance via shallow neural network
 • Depend on the performance of semantic segmentation
 • Only handles simple outdoor scenes
Related works

• Automatic colorization
 • Zhang et al. 2016
 • Given the lightness channel L, our system predicts the corresponding a and b color channels of the image in the CIE Lab colorspace.
 • Color prediction is inherently multimodal—many objects can take on several plausible colorizations.
 • To appropriately model the multimodal nature of the problem, we predict a distribution of possible colors for each pixel.

• Deshpande et al. 2017
 • Previous methods only produce the single most probable colorization. Their goal is to model the diversity intrinsic to the problem of colorization and produce multiple colorizations.
Analyzing Network Model

• In this section, first we will quickly overview the network model according to the subsection stated in article which are,
 • Low Level Features Network
 • High Level Features Network
 • Mid Level Features Network
 • Fusing Layer
 • Colorization Network

• Afterwards, we will examine the model by asking some questions. These questions will be stated later.
Low Level Features Network

- Network properties are:
 - 6 layer CNN structure
 - Dimension reduction with *increasing stride*, NOT by using pooling!
Global Features Network

• Smaller network inside main network model. But WHY? What is the advantage of this smaller network?
Global Features Network

- Smaller network inside main network model. But WHY? What is the advantage of this smaller network?
 - Better understanding the context and scenery.
- How it worked?
 - Simply pretrained over for 205 different classes and specialized on training.
Mid Level Features Network

- It is a fully convolutional network which has 2 layers.
- No dimension reduction
Colorization Network

- It is a deconvolution structure.
- Upsamples till network width and height will be the same input size.
- Combines deconvolution result with input intensities in order to construct colorfull image.
Question to Understanding Network Structure

• How they achieved the process any image resolution?
• How they construct color image?
• How they reflect the content information in backpropogation?
• What activation function they used and why?
• What loss function they preferred?
How they achieved the process any image resolution?

- Achieved by applying scaling on front of Global Features Network.
- However, this yields both performance and accuracy loss when we increase the input image size!
Question to Understanding Network Structure

• How they achieved the process any image resolution?
• How they construct color image?
• How they reflect the content information in backpropogation?
• What activation function they used and why?
• What loss function they preferred?
How they construct color image?

- By using **Autoencoder** strategy.
- **Fusing** global features at bottleneck.

[Image](https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694)
Question to Understanding Network Structure

- How they achieved the process any image resolution?
- How they construct color image?
- How they reflect the content information in backpropogation?
- What activation function they used and why?
- What loss function they preferred?
How they reflect the content information in back propagation?

- By using **Classification Network loss** at back propogation.
- When they **DID NOT** use the classification loss, they realized that they still lose **content** information on **Global Features Network**.
Question to Understanding Network Structure

• How they achieved the process any image resolution?
• How they construct color image?
• How they reflect the content information in backpropagation?
• What activation function they used and why?
• What loss function they preferred?
What activation function they used and why?

- They have tested network model with both ReLU and Sigmoid activation functions.
- After their experiments, they preferred to use Sigmoid function because:
 - Architecture is not so deep to cause harmful vanishing gradient problem.
 - In early stages, ReLU caused information loss especially at Global Features Network, therefore the Fusion layer became uneffective.

Question to Understanding Network Structure

• How they achieved the process any image resolution?
• How they construct color image?
• How they reflect the content information in backpropogation?
• What activation function they used and why?
• What loss function they preferred?
What loss function they preferred?

- The network has two main loss, classification loss and colorization loss.
- Colorization loss is the MSE between input and resultant image intensities.
- Classification loss is cross-entropy loss of classification network result.
Comprasion with Modern State of Art Approaches

Current Architecture

Learning Diverse Image Colorization, Deshpande et al. 2017

Pros
- Any image can be used in training.
- Easily visualize the blackbox.
- Statistical preventing the overfitting problem (class re-balancing)
- Easy to apply transfer learning.

Cons
- Probability distribution works not as expected.
- Fixed image size.
Learning Diverse Image Colorization, Deshpande et al. 2017

Pros

- Single image, multiple possible outputs.
- Taking advantage of mixture density network.
- Better statistical approach with using GMM.
- More accurate results.
Dataset

• MIT Places Scene Dataset [Zhou+ 2014]
• 2.3 million training images with 205 scene labels
 • 256 x 256 pixels
Computational Time

CPU: Intel Core i7-5960X CPU @ 3.00 GHz with 8 cores
GPU: NVIDIA GeForce GTX TITAN X

<table>
<thead>
<tr>
<th>Image Size</th>
<th>Pixels</th>
<th>CPU (s)</th>
<th>GPU (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>224x224</td>
<td>50,176</td>
<td>0.399</td>
<td>0.080</td>
<td>5.0 X</td>
</tr>
<tr>
<td>512x512</td>
<td>262,144</td>
<td>1.676</td>
<td>0.339</td>
<td>4.9 X</td>
</tr>
<tr>
<td>1024x1024</td>
<td>1,048,576</td>
<td>5.629</td>
<td>1.084</td>
<td>5.2 X</td>
</tr>
<tr>
<td>2048x2048</td>
<td>4,194,304</td>
<td>20.116</td>
<td>4.218</td>
<td>4.8 X</td>
</tr>
</tbody>
</table>
User Study

- 10 users participated
- We show 500 images of each type: total 1,500 images per user
- 90% of our results are considered “natural”

Does this image look natural to you?

![Natural and Unnatural Images](image)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Naturalness (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Truth</td>
<td>97.7%</td>
</tr>
<tr>
<td>Proposed</td>
<td>92.6%</td>
</tr>
<tr>
<td>Baseline</td>
<td>69.8%</td>
</tr>
</tbody>
</table>
Results

Colorization of MIT Places dataset
Colorization of Historical Photographs

Mount Moran, 1941
Scott's Run, 1937
Youngsters, 1912
Burns Basement, 1910
Style Transfer
Style Transfer

- Adapting the colorization of one image to the style of another
Comparisons

Input

[Cheng+ 2015]

Ours
(w/o global features)

Ours
(w/ global features)
Limitations

• Difficult to output colorful images

• Cannot restore exact colors
Conclusion

• Novel approach for image colorization by fusing global and local information
 • Fusion layer
 • Joint training of colorization and classification
 • Style transfer

• Architecture allows us to process images of any resolution
• Using multi model CNN with adding conditional behavior after fusing layer
• Run in near real-time
Future Work

• If classification layer performance improve, their result will be be more accuracy.

• However, this does not contain, for example, human-created images. If we wish to evaluate on significantly different types of images.

• Regularization with Dropout
Thank you!