

http://vision.cs.hacettepe.edu.tr

Visual saliency

Erkut Erdem Hacettepe University Computer Vision Laboratory

Where do we look on these

The squares shows where 15 observers looked in eye tracking experiments

Slide credit: T. Judd 2

What is attention?

Why do perceptual systems need

- Limited resources
 - Our visual system processes an enormous amount of data coming from the retina. $\sim 10^8$ bits/sec [Itti, 2000]
- Warning
 - noticing predators, sudden motion, etc

The amount of information coming down the optic nerve far exceeds what the brain is capable of fully processing and assimilating into conscious experience.

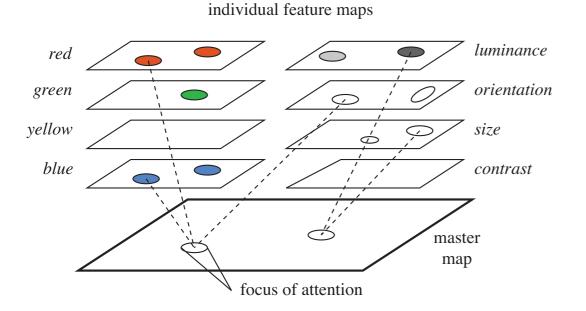
- Exploration
 - finding preys, locating objects, etc.

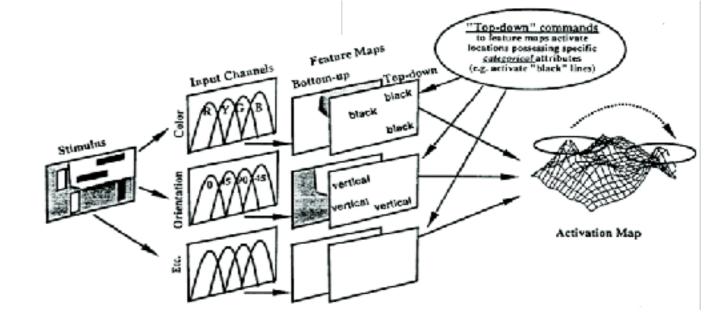
ACETTEPE UNIVERSITY

Attentional mechanisms

Attention is a complex set isual scene of interrelated processes: selection of information Low-level features: priented edges color opponencies, ntensity contrast, motion energy, (bottom-up) stereo disparity, etc. integration of that information with existing knowledge (top-Proto-objects: corners, T-junctions, simple ⅈℴℛ℩ナ┱℅⅀⅀ geometric shapes, etc. down) Bottom-up Saliency map: potentially interesting objects, actors and Gist actions very rapid, primitive, outdoors beach scene task-independent Attention: Layout: most interesting 1 – grasi location; and actions 2 = beach3 = 565Top-down 4 = sky slower, under cognitive control, task-dependent Behavioral goal specification: e.g., "look for people"

Theories of visual attention





Feature-Integration Theory [Treisman & Gelade, 1980]

 processing occurs in parallel and focused attention occurs in serial Guided Search Theory [Wolfe, 1989]

 visual search relies on a combination of bottom-up and topdown activity

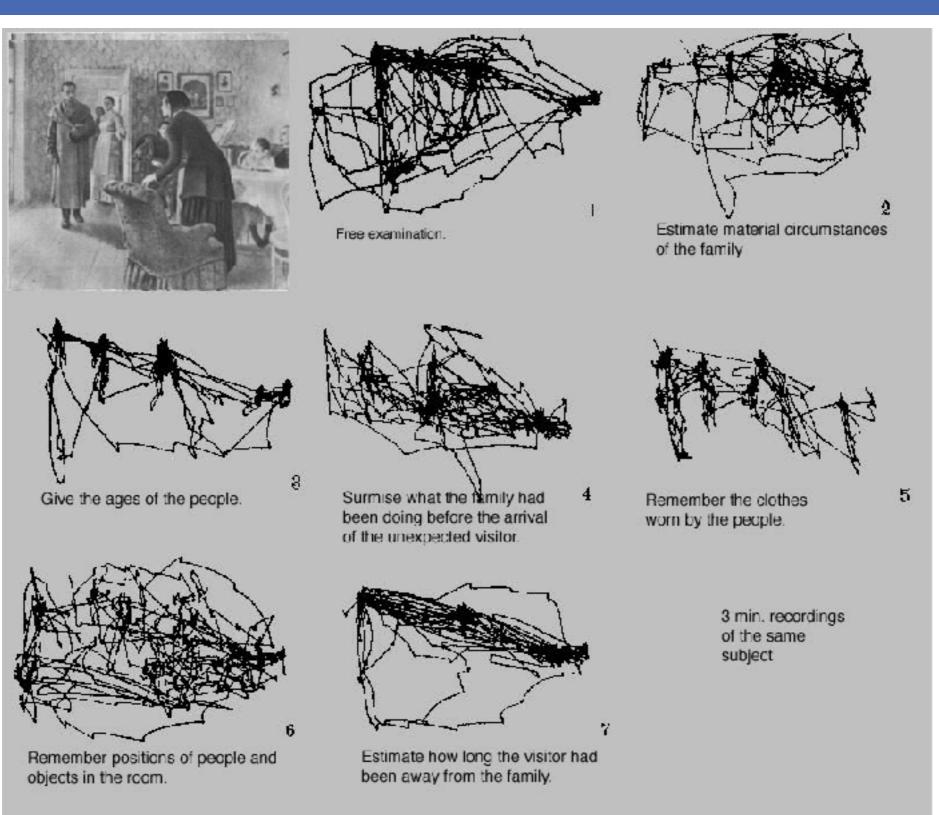
Task-based visual attention

"They did not expect him" by Repin

 Yarbus (1967) was the first to show that <u>task influences</u> eye fixation locations.

BHACETTEPE UNIVERSITY

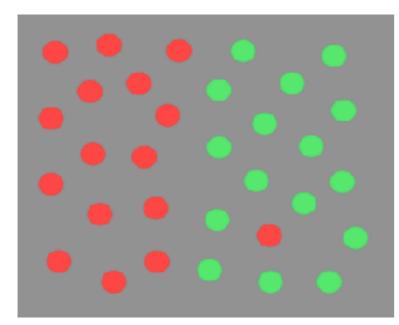
Task-based visual attention

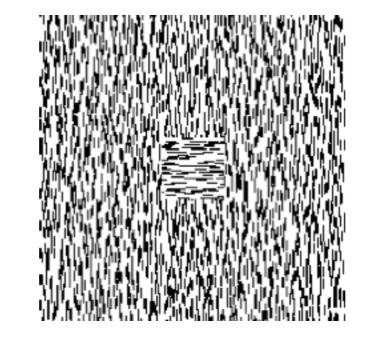


HACETTEPE UNIVERSITY

Visual saliency

- "Saliency at a given location is determined primarily by how different this location is from its surround in color, orientation, motion, depth, etc." [Koch & Ullman, 1985]
- "Visual salience (or visual saliency) is the distinct subjective perceptual quality which makes some items in the world stand out from their neighbors and immediately grab our attention." [Itti, 2007]





Beyond biology: Applications in Computer

- Most computer vision algorithms have relied on brute-force (e.g. sliding window) strategies.
- Attentional mechanisms provide a relatively free and fast mechanism to select a few candidates while eliminating background clutter.
- To list a few of possible applications
 - Scene classification [Siagian & Itti, 2007]
 - → Object recognition [Gao et al., 2009; Rutishauser et al., 2004]
 - → object tracking [Butko et al., 2008]
 - ➡ robotics [Frintrop et al., 2006; Siagian & Itti, 2007]
 - Content-based image resizing [Achanta & Susstrunk, 2009; Avidan & Shamir, 2007]

🕞 HACETTEPE UNIVERSITY

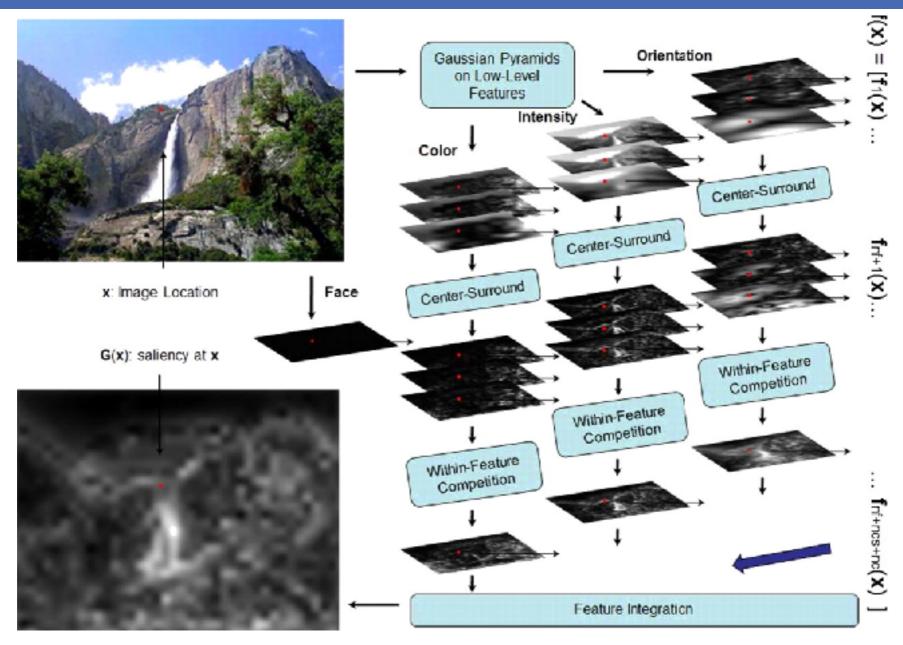
Computational models of visual

Can machines predict where humans look at a given image?

- [Itti & Koch, 1998]
 - One of the first computational models of visual attention to predict where people look
 - A bottom-up model
 - An implementation of Koch & Ullman, 1985
 - It employs a multi-scale center-surround mechanism which imitates the workings of the retinal receptive field.

HACETTEPE UNIVERSITY

Bottom-up models of visual saliency



The common basic structure is:

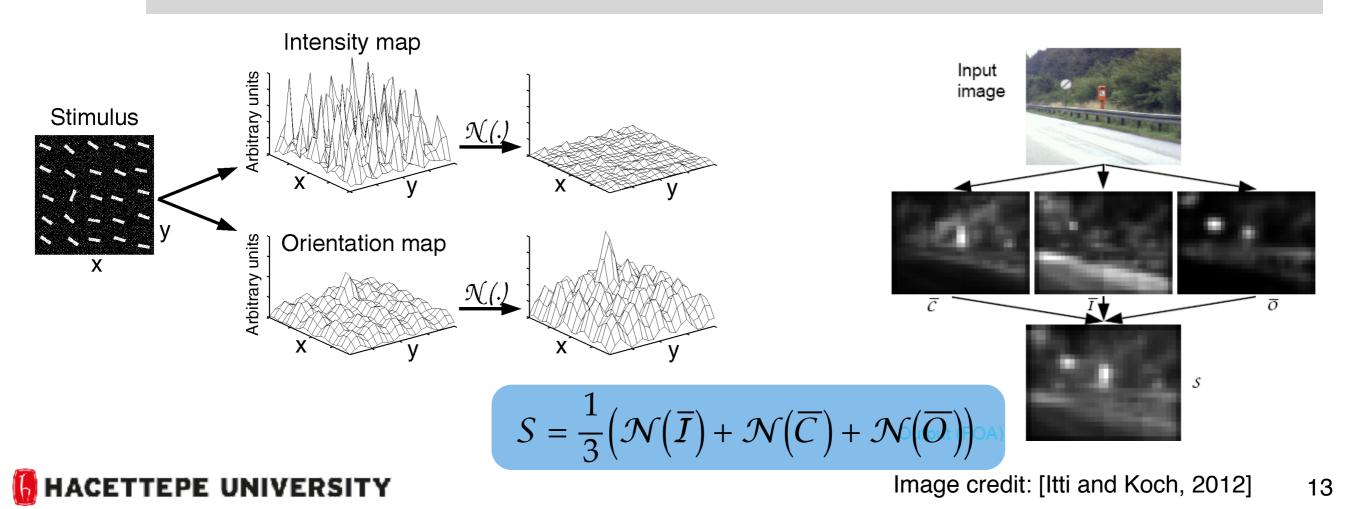
- (i) Extract visual features,
- (ii) Compute a saliency map for each feature channel
- (iii) Compute a final saliency map by combining individual saliency maps

🔓 HACETTEPE UNIVERSITY

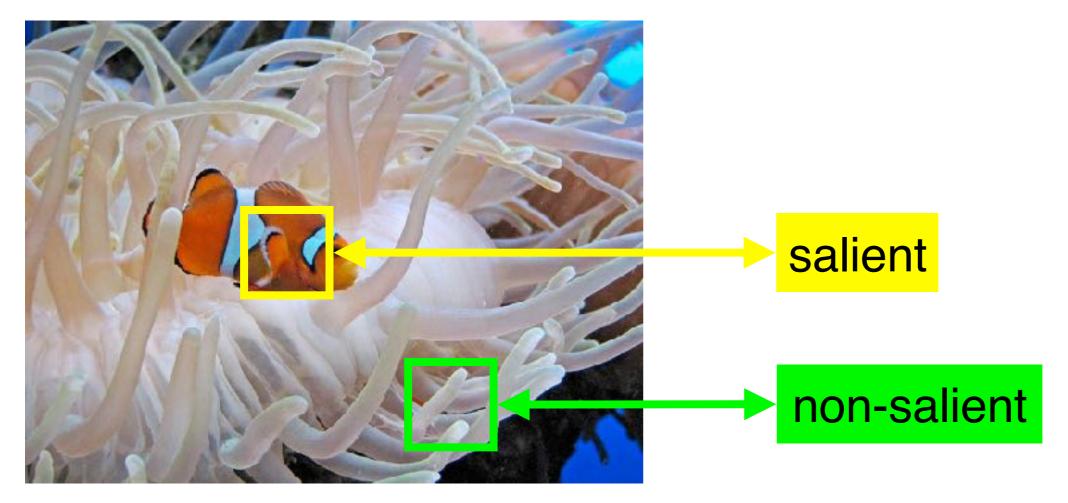
Image credit: [Zhao & Koch, 2012] 12

Feature integration step

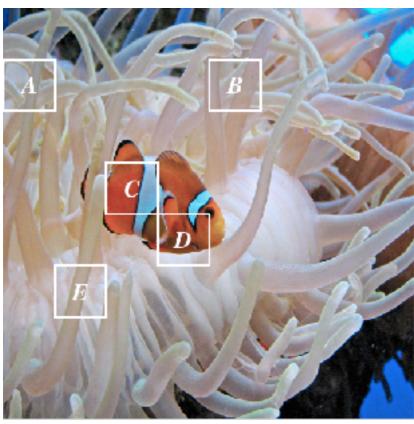
- The most troublesome step
 - typically carried out by taking weighted average (linear summation).
 - But how different feature dimensions contribute to the overall saliency is still an open question! [Callaghan, 1989, 1990; Eckstein et al., 2000; Rosenholtz, 1999, 2001; Rosenholtz et al., 2004]



- a patch-based formulation
 - patches with <u>rare appearance characteristics</u> are considered as salient.



- The region covariance descriptor [Tuzel et al., 2006]
 - captures local image structures better than standard linear filters.
 - naturally provides nonlinear integration of different features by modeling their correlations.

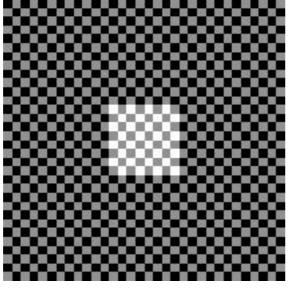


Input image HACETTEPE UNIVERSITY

$$\mathbf{C}_{R} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{f}_{i} - \boldsymbol{\mu}) (\mathbf{f}_{i} - \boldsymbol{\mu})^{T}$$
$$\{\mathbf{f}_{i}\}_{i=1...n} : d\text{-dimensional feature points inside F}$$
$$\begin{bmatrix} I(x,y) & g(x,y) & b(x,y) \\ 0 & I(x,y) & y \end{bmatrix}^{T}$$

$$\begin{bmatrix} L(x,y) & d(x,y) & b(x,y) \\ \hline \partial x & \hline \partial y &$$

Sometimes covariances may not be enough



Covariances alone can not explain changes in the means!

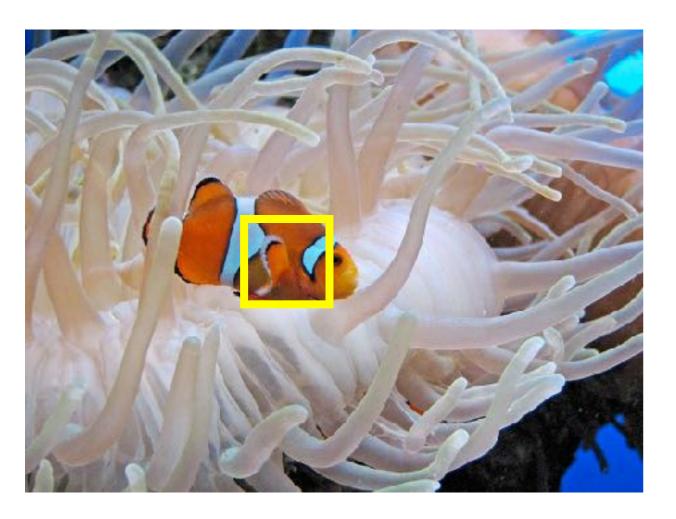
- We additionally incorporate first-order statistics
 - Sigmapoints [Hong et al., 2009; Julier & Uhlmann, 1996]

 $\mathbf{s}_{i} = \begin{cases} \alpha \sqrt{d} \mathbf{L}_{i} & \text{if } 1 \leq i \leq d \\ -\alpha \sqrt{d} \mathbf{L}_{i} & \text{if } d+1 \leq i \leq 2d \end{cases} \quad \mathbf{C} = \mathbf{L} \mathbf{L}^{T} \text{ Cholesky decomposition}$

→ Final representation: $\Psi(\mathbf{C}) = (\mu, \mathbf{s}_1, \dots, \mathbf{s}_d, \mathbf{s}_{d+1}, \dots, \mathbf{s}_{2d})^T$

B HACETTEPE UNIVERSITY

 Visual dissimilarity between two patches R₁ and R₂ can be computed by using the following metrics:



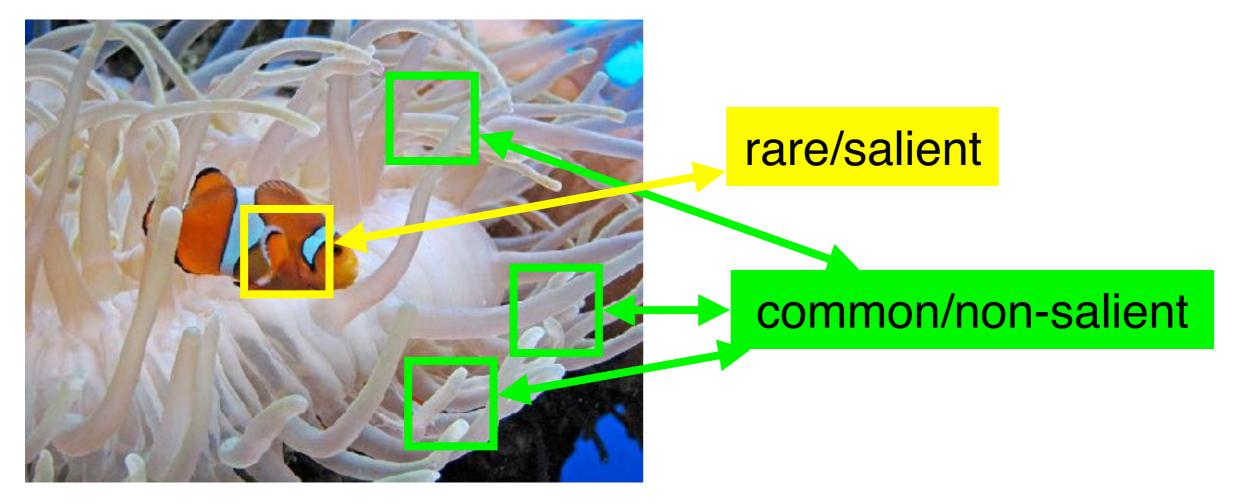
For covariance descriptor:

$$\rho(\mathbf{C}_1,\mathbf{C}_2) = \sqrt{\sum_{i=1}^n ln^2 \lambda_i(\mathbf{C}_1,\mathbf{C}_2)}$$

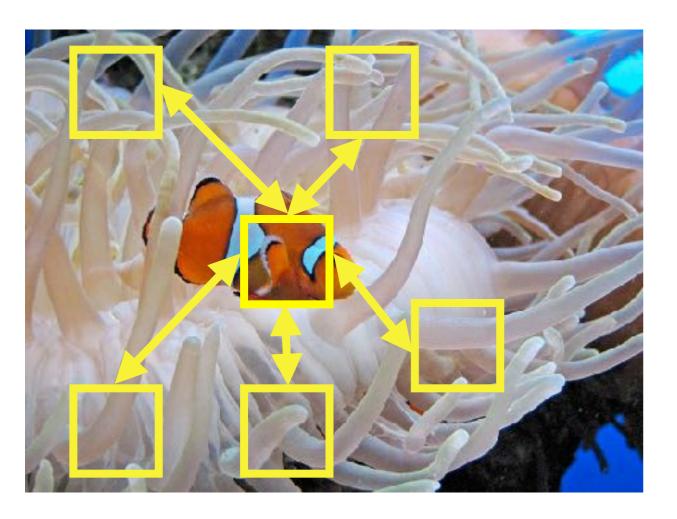
[Föerstner & Moonen, 1999]

For sigma points descriptor: $||\Psi(\mathbf{C}_i) - \Psi(\mathbf{C}_j)||$

- If the patch is highly dissimilar to the patches surrounding it —> rare/salient
- Otherwise common/non-salient



 The saliency of *R_i* is defined as the weighted average of the dissimilarities between *R_i* to the <u>m most similar</u> regions around it.



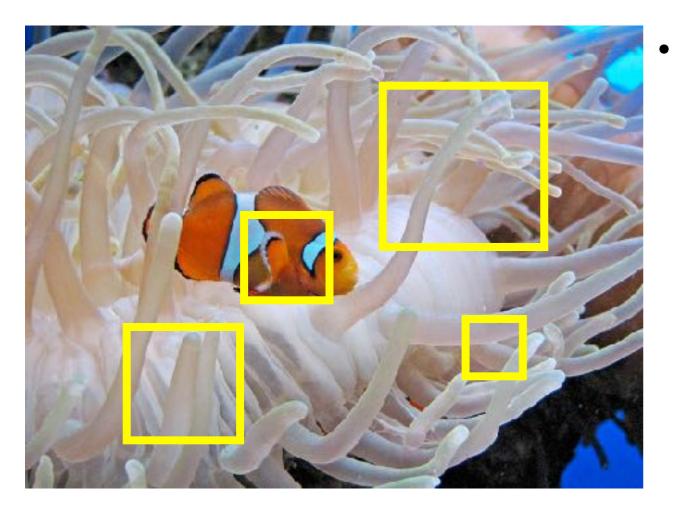
$$S(R_i) = \frac{1}{m} \sum_{j=1}^m d(R_i, R_j)$$

Nodel 1
$$d(R_i, R_j) = \frac{\rho(\mathbf{C}_i, \mathbf{C}_j)}{1 + ||\mathbf{x}_i - \mathbf{x}_j||}$$

Model 2 $d'(R_i, R_j) = \frac{||\Psi(\mathbf{C}_i) - \Psi(\mathbf{C}_j)||}{1 + ||\mathbf{x}_i - \mathbf{x}_j||}$

weighting covariance distances by inverse spatial distance decreases the influence of visually similar nearby regions

- In an image, salient parts can and do appear over a wide range of scales.
- Saliency detection should be carried out simultaneously at multiple scales.



Employ a fusion strategy to combine single-scale maps to come up with one final saliency map:

$$S(x) = G_{\sigma}(x) * \prod_{k \in K} \hat{S}^k(x)$$

Spatial coincidence assumption: An image part is treated as salient if it is salient at all scales.

scale 1

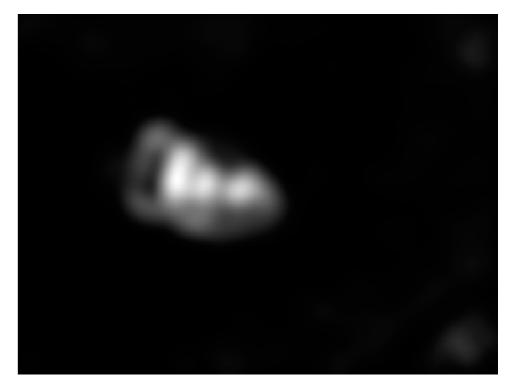
scale 3

scale 5

input image

Saliency analysis at 5 different scales.

$$S(x) = G_{\sigma}(x) * \prod_{k \in K} \hat{S}^k(x)$$



final saliency map

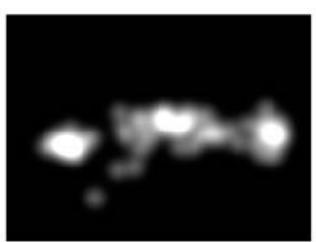
Benchmark Data Sets

- Benchmark image data sets with eye fixation data (free-viewing)
 - ➡ Toronto data set [Bruce & Tsotsos, 2006]
 - ➡ MIT 1003 data set [Judd et al., 2009]
 - → MIT 300 data set [Judd et al., 2012]

[Photo Credit: Jason Dorfman CSAIL website]

Fixations for one observer

Fixations from 15 observers



Fixation map

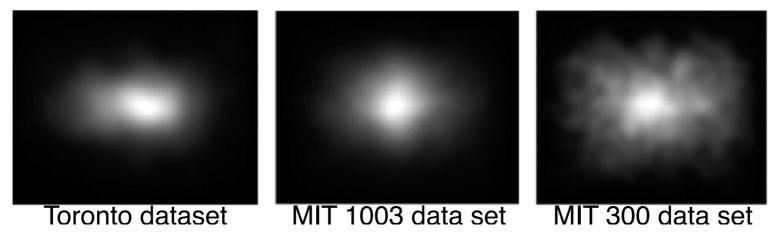
Image credits: T. Judd 22

eye tracking experiments

Center bias

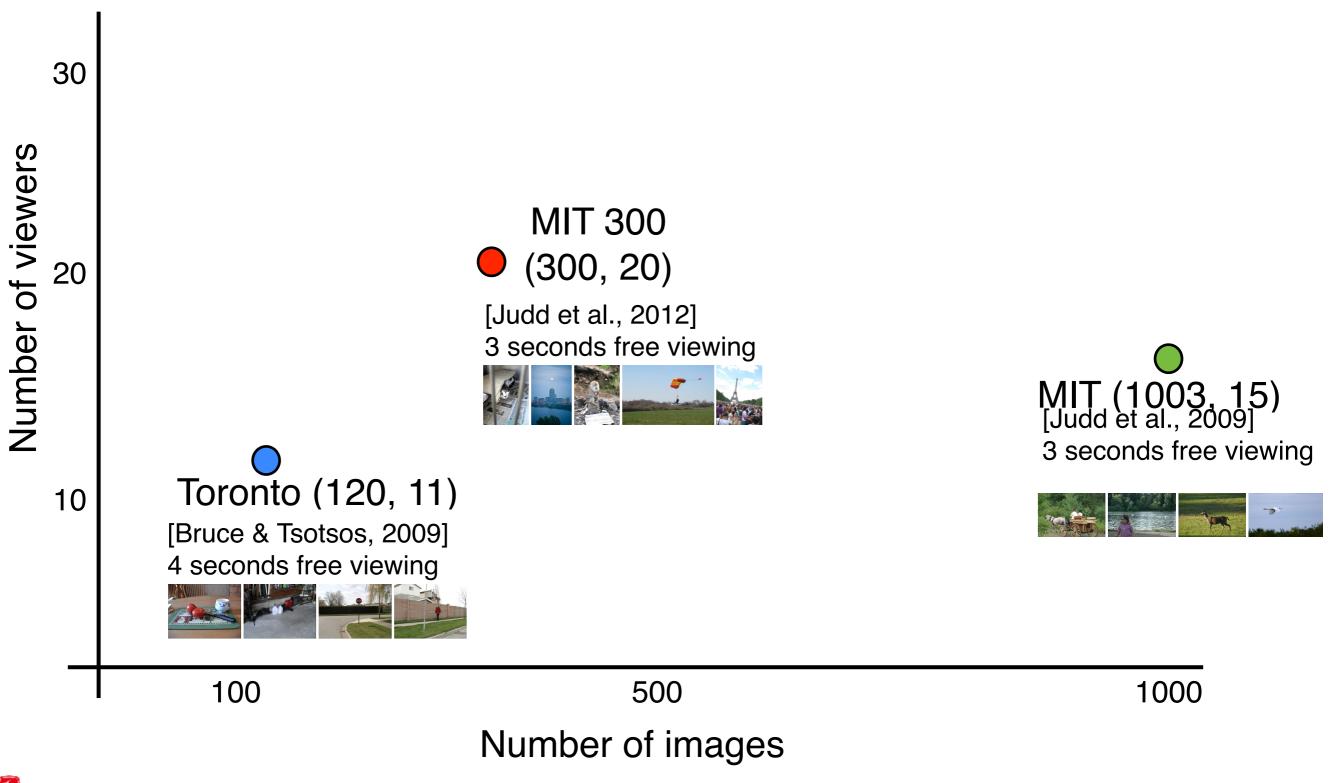
 Experiments show that there is a tendency in humans to look towards the image center.

fixation maps averaged over all images



- Why it exists?
 - photographer bias
 - viewing strategy
 - motor bias

Summary of data sets

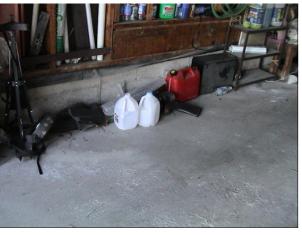


HACETTEPE UNIVERSITY

Slide credit: T. Judd 24

Sample images

HACETTEPE UNIVERSITY



Toronto data set

MIT 1003 data set

MIT 300 data set

Toronto - qualitative results

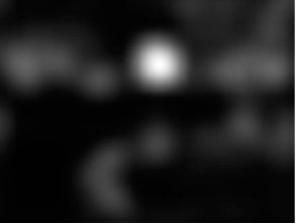
Eye fixations

[Harel et al., 2007]

[Seo & Milanfar, 2009]

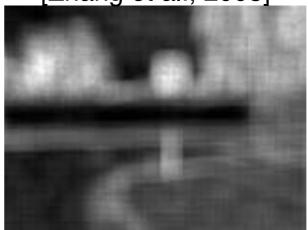
Human

[Hou & Zhang, 2007]



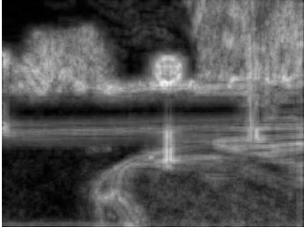
[Goferman et al., 2010]

[Zhang et al., 2008]



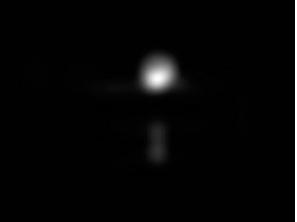
Proposed Model 1

[Torralba et al., 2006]



[Bruce & Tsotsos, 2009]

Proposed Model 2

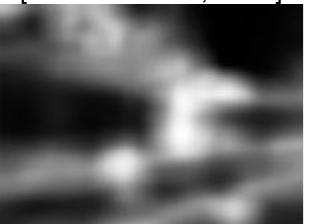


Toronto - qualitative results

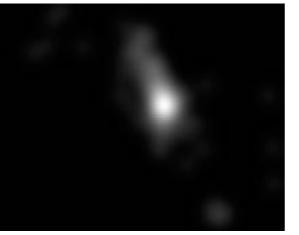
Eye fixations

[Harel et al., 2007]

[Seo & Milanfar, 2009]



Human



[Hou & Zhang, 2007]

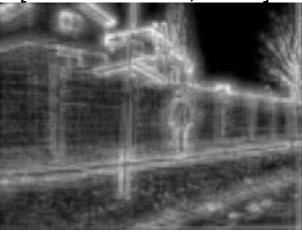
[Goferman et al., 2010]

[Itti et al., 1998]

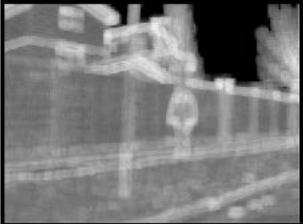
[Zhang et al., 2008]

Proposed Model 1

[Torralba et al., 2006]



[Bruce & Tsotsos, 2009]



Proposed Model 2

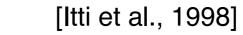
MIT 1003 - qualitative results

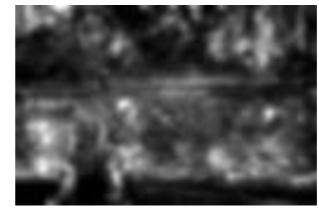
Eye fixations

[Harel et al., 2007]

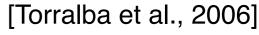
Human

[Hou & Zhang, 2007]



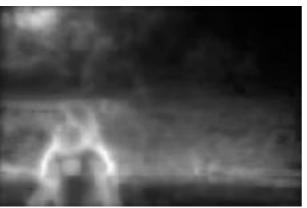


[Zhang et al., 2008]



[Seo & Milanfar, 2009]

[Goferman et al., 2010]



[Bruce & Tsotsos, 2009]

Proposed Model 1



Proposed Model 2

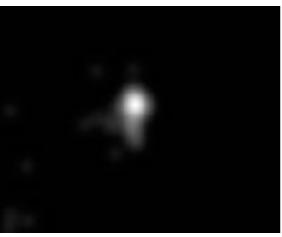
MIT 1003 - qualitative results

Eye fixations

[Harel et al., 2007]

[Seo & Milanfar, 2009]

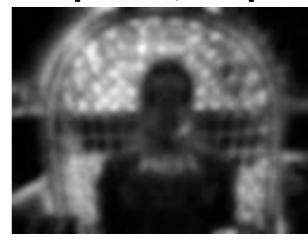
Human



[Hou & Zhang, 2007]

[Goferman et al., 2010]

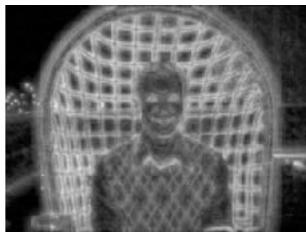
[Itti et al., 1998]



[Zhang et al., 2008]

Proposed Model 1

[Torralba et al., 2006]



[Bruce & Tsotsos, 2009]

Proposed Model 2

Toronto - quantitative results

	AUC		NSS		EMD		Similarity	
	Without CB	With CB						
ltti et al. (1998)	0.771	0.825	1.137	1.264	2.906	2.002	0.397	0.521
Harel et al. (2007)	0.829	0.835	1.533	1.533	2.014	1.886	0.519	0.556
Torralba et al. (2006)	0.710	0.832	0.805	1.185	3.467	1.868	0.330	0.528
Hou & Zhang (2007)	0.736	0.835	0.964	1.271	3.791	1.959	0.360	0.550
Zhang et al. (2008)	0.718	0.832	0.884	1.194	3.954	1.968	0.347	0.541
Bruce & Tsotsos (2009)	0.728	0.835	0.896	1.165	3.127	1.809	0.351	0.535
Seo & Milanfar (2009)	0.766	0.845	1.100	1.320	3.222	1.759	0.415	0.579
Goferman et al. (2010)	0.784	0.841	1.272	1.370	3.520	1.819	0.431	0.574
Our approach with								
Covariances only	0.767	0.834	1.184	1.342	3.142	1.931	0.408	0.546
Covariances + means	0.765	0.834	1.198	1.396	3.398	1.896	0.402	0.548
Covariances + center	0.840	0.840	1.753	1.753	1.901	1.901	0.561	0.561
Covariances + means + center	0.851	0.851	1.891	1.898	1.728	1.728	0.581	0.581
Center	_	0.803	_	0.969	_	2.401	_	0.478
Chance	0.505	0.803	-0.001	0.969	5.159	2.339	0.187	0.479

MIT 1003 - quantitative results

	AUC		NSS		Similarity	
	Without CB	With CB	Without CB	With CB	Without CB	With CB
Itti et al. (1998)	0.741	0.827	0.921	1.170	0.273	0.402
Harel et al. (2007)	0.791	0.829	1.150	1.182	0.319	0.415
Torralba et al. (2006)	0.700	0.832	0.771	1.156	0.244	0.412
Hou & Zhang (2007)	0.713	0.833	0.855	1.200	0.264	0.421
Zhang et al. (2008)	0.703	0.834	0.829	1.177	0.261	0.418
Bruce & Tsotsos (2009)	0.709	0.835	0.813	1.148	0.254	0.415
Seo & Milanfar (2009)	0.712	0.836	0.826	1.171	0.263	0.424
Goferman et al. (2010)	0.758	0.840	1.053	1.241	0.297	0.431
Our approach with						
Covariances only	0.715	0.826	0.862	1.169	0.261	0.410
Covariances + means	0.740	0.832	0.940	1.240	0.287	0.417
Covariances + center	0.833	0.833	1.468	1.486	0.417	0.418
Covariances + means + center	0.843	0.843	1.488	1.543	0.428	0.432
Center	_	0.810	-	1.004	_	0.379
Chance	0.500	0.810	-0.000	1.004	0.131	0.383

MIT 300 - quantitative results

	AUC		EMD		Similarity	
	Without CB	With CB	Without CB	With CB	Without CB	With CB
ltti et al. (1998)	0.750	0.806	4.560	3.394	0.405	0.493
Harel et al. (2007)	0.801	0.813	3.574	3.315	0.472	0.501
Torralba et al. (2006)	0.684	0.806	4.715	3.036	0.343	0.488
Hou & Zhang (2007)	0.682	0.804	5.368	3.200	0.319	0.487
Zhang et al. (2008)	0.672	0.799	5.088	3.296	0.340	0.473
Bruce & Tsotsos (2009)	0.751	0.820	4.236	3.085	0.390	0.507
Goferman et al. (2010)	0.742	0.815	4.900	3.219	0.390	0.509
Our approach with						
Covariances + center	0.800	0.800	3.422	3.422	0.487	0.487
Covariances + means + center	0.806	0.811	3.109	3.109	0.502	0.503
Center	-	0.783	-	3.719	-	0.451
Chance	0.503	0.783	6.352	3.506	0.327	0.482
Judd et al. (2009)	0.811	0.813	3.130	3.130	0.506	0.511

Salient object detection

- Task of identifying foreground objects that attract more attention.
- ImgSal data set [Li et al., 2012]
 - ➡ 235 natural color images
 - Six different categories:
 - large salient regions (50 images),
 - intermediate salient regions (80 images),
 - small salient regions (60 images),
 - cluttered backgrounds (15 images),
 - repeating distractors (15 images),
 - large and small salient regions (15 images)

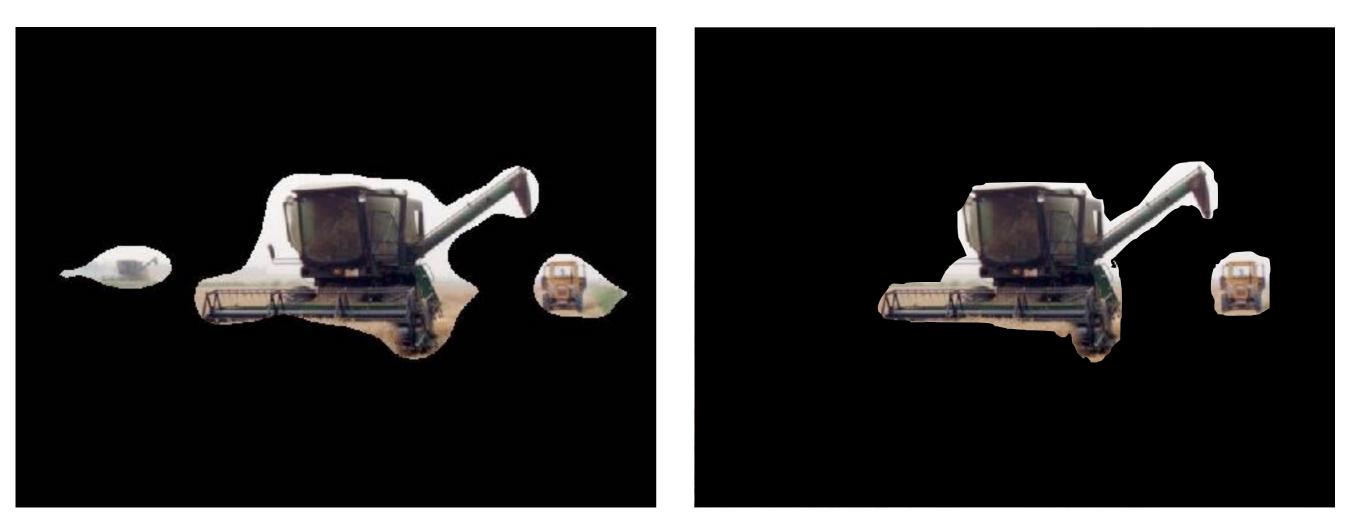
input image

labeling by 1 human subject

ground truth labeling agreed upon 19 subjects 34

HACETTEPE UNIVERSITY

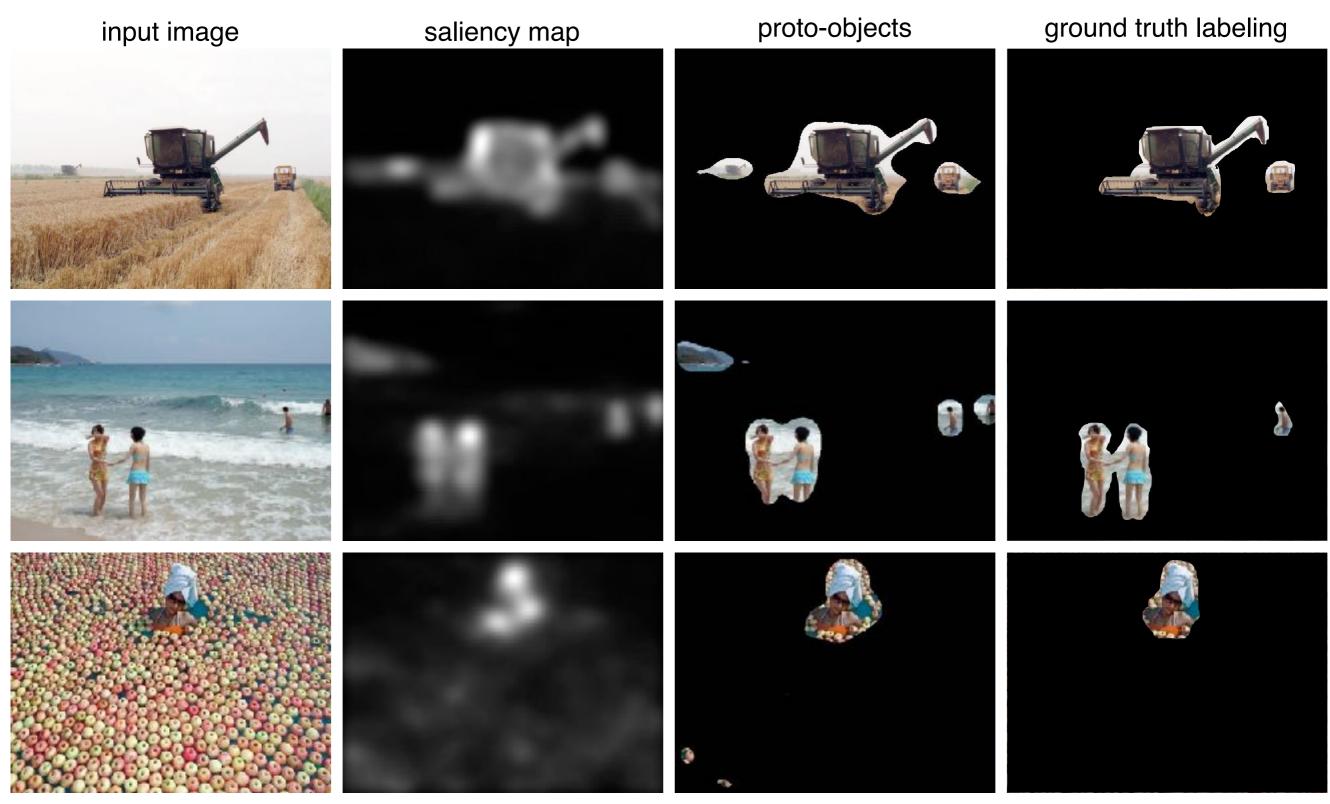
ImgSal - qualitative results



elettacted proteinolyjercap

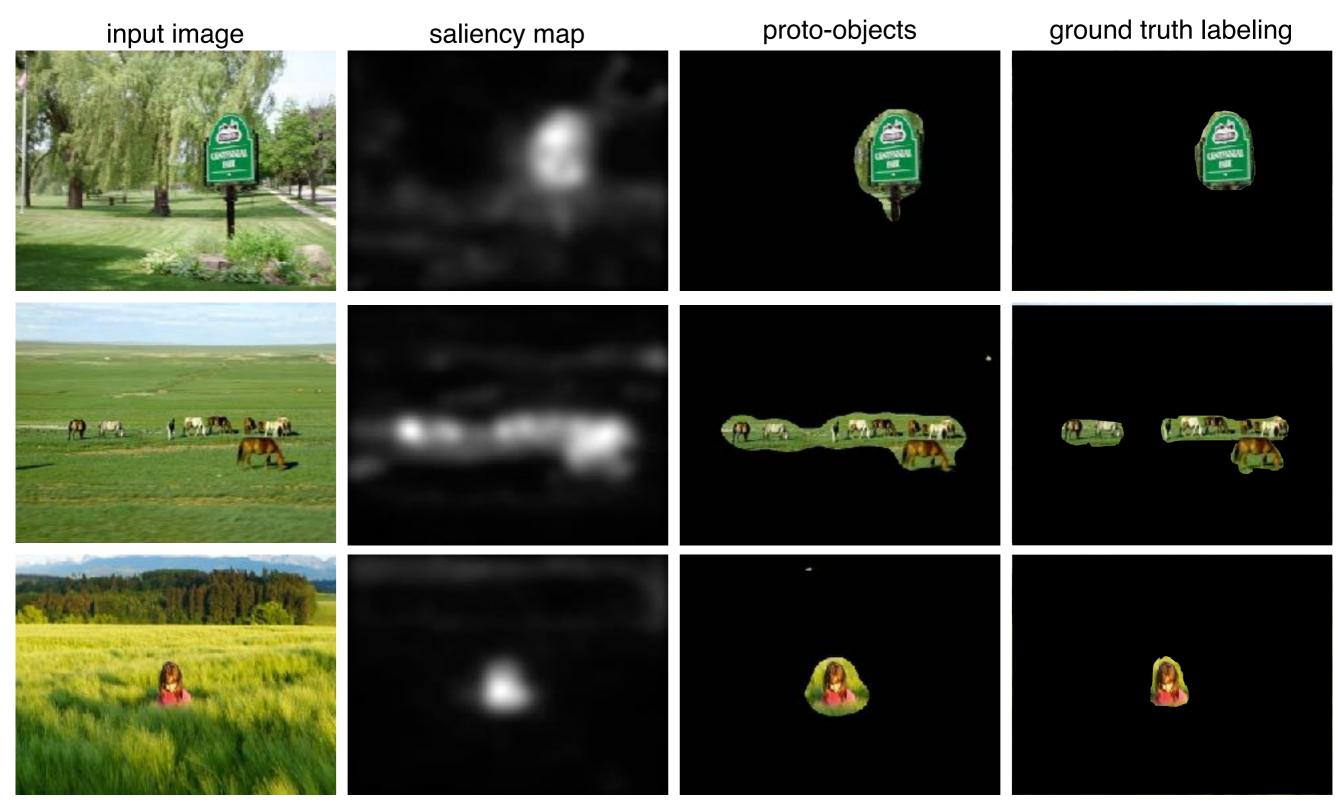
Ground truth labeling

ImgSal - qualitative results



HACETTEPE UNIVERSITY

ImgSal - qualitative results



HACETTEPE UNIVERSITY

ImgSal - quantitative results

	Large salient regions		Intermediate salient regions		Small salient regions		Cluttered backgrounds		Repeating distractors		Large and small salient regions	
	AUC	DSC	AUC	DSC	AUC	DSC	AUC	DSC	AUC	DSC	AUC	DSC
ltti et al. (1998)	0.897	0.610	0.897	0.473	0.937	0.401	0.824	0.335	0.891	0.439	0.936	0.639
Harel et al. (2007)	0.945	0.694	0.925	0.529	0.951	0.463	0.916	0.499	0.934	0.557	0.952	0.688
Torralba et al. (2006)	0.790	0.469	0.825	0.377	0.929	0.372	0.700	0.239	0.750	0.306	0.870	0.515
Hou & Zhang (2007)	0.833	0.524	0.861	0.448	0.939	0.411	0.769	0.308	0.809	0.369	0.918	0.584
Zhang et al. (2008)	0.760	0.461	0.813	0.391	0.895	0.366	0.676	0.270	0.755	0.325	0.850	0.504
Bruce & Tsotsos (2009)	0.798	0.480	0.825	0.383	0.914	0.357	0.759	0.288	0.788	0.350	0.855	0.494
Seo & Milanfar (2009)	0.842	0.563	0.896	0.474	0.948	0.430	0.776	0.284	0.878	0.451	0.916	0.611
Goferman et al. (2010)	0.905	0.636	0.950	0.610	0.970	0.553	0.919	0.509	0.914	0.581	0.947	0.723
Our approach with												
Covariances only	0.920	0.666	0.928	0.548	0.957	0.470	0.933	0.554	0.947	0.664	0.946	0.645
Covariances + means	0.866	0.614	0.924	0.584	0.972	0.586	0.818	0.425	0.948	0.635	0.938	0.728
Covariances + center	0.919	0.681	0.909	0.517	0.919	0.329	0.905	0.500	0.961	0.654	0.893	0.574
Covariances + means + center	0.865	0.673	0.912	0.580	0.954	0.508	0.879	0.441	0.960	0.698	0.888	0.664

Image retargeting

- aka content aware image resizing
- automatically resizing an image to arbitrary aspect ratios while trying to preserve important content
- ReTargetMe data set [Li et al., 2012] ${\bullet}$
 - 80 images with 92 different resizing scenarios
 - categorized into nine groups:
 - lines/clear edges, → symmetry,

- recurring texture,

 outdoor/nature

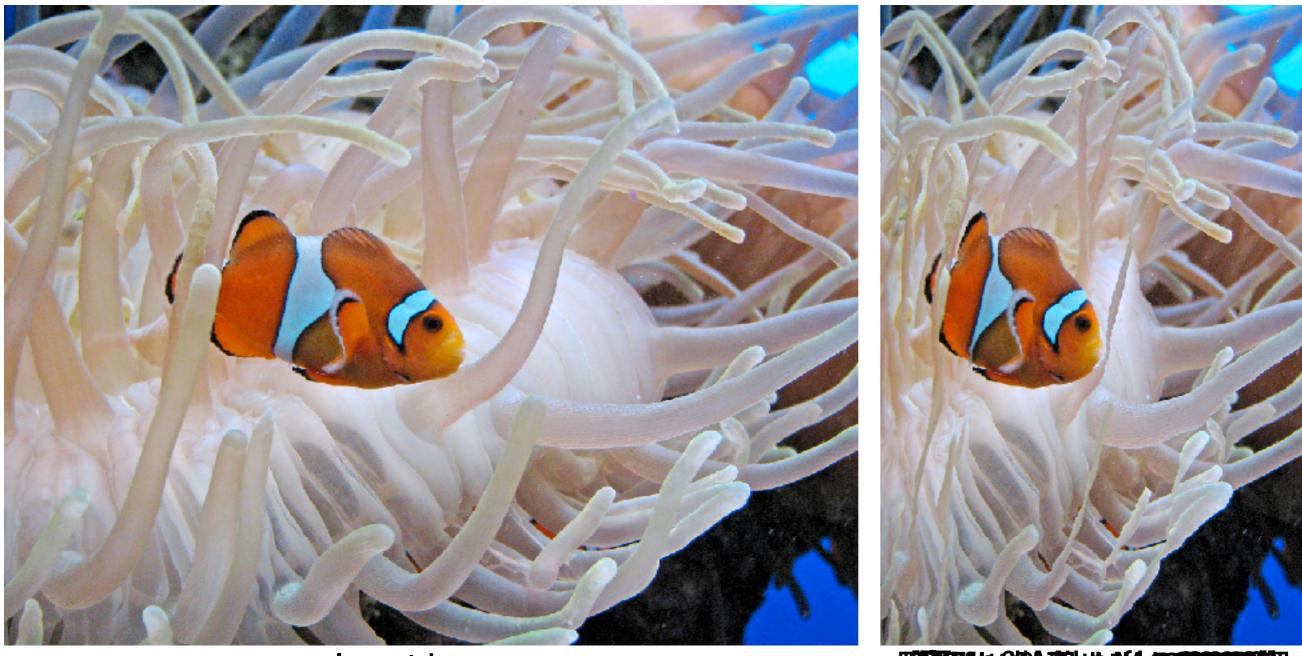
- indoor
- geometric structures,
- evident foreground objects,

input image

resized image

Seam Carving [Avidan & Shamir, 2007]

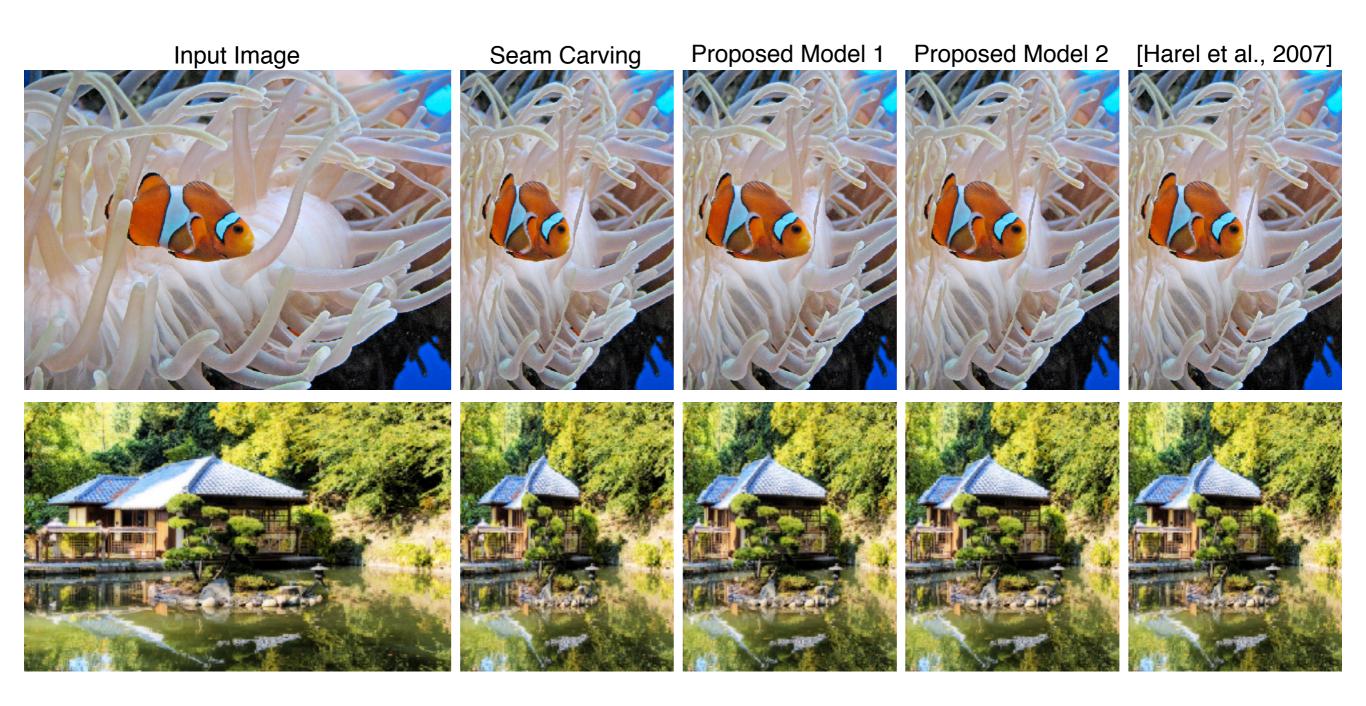
ReTargetMe - qualitative results



Input image

[Avidan & Shamir, 2007]

ReTargetMe - qualitative results



ReTargetMe - quantitative results

	Lines/clear edges		Faces/ people		Recurring texture		Evident fore- ground objects		Geometric structures		Symmetry		Textual elements		Outdoor / Nature		Indoor	
	EMD	SIFTflow	EMD	SIFTflow	EMD	SIFTflow	EMD	SIFTflow	EMD	SIFTflow	EMD	SIFTflow	EMD	SIFTflow	EMD	SIFTflow	EMD	SIFTflow
ltti et al. (1998)	7.62	8.85	6.48	8.45	6.80	8.50	6.13	8.41	8.08	9.29	8.06	8.06	6.50	4.67	6.62	7.41	8.10	9.70
Harel et al. (2007)	3.95	5.71	4.10	5.03	4.20	8.40	4.37	5.17	4.39	6.03	3.59	4.59	2.83	8.33	3.41	5.78	4.50	6.00
Torralba et al. (2006)	7.71	8.60	7.86	8.17	7.20	9.00	8.48	8.57	7.63	8.84	9.65	8.94	9.83	6.67	7.97	7.68	6.40	8.40
Hou & Zhang (2007)	9.71	8.04	8.59	9.17	9.80	5.80	8.61	8.52	9.34	7.84	10.24	6.82	10.00	9.33	9.59	8.32	8.60	9.80
Zhang et al. (2008)	9.05	7.87	10.38	8.07	9.10	7.60	9.59	8.87	9.26	7.95	9.47	8.41	11.00	9.50	9.14	8.14	8.10	7.90
Bruce & Tsotsos (2009)	5.76	10.45	5.86	10.10	5.90	10.80	6.85	9.91	5.61	10.42	6.00	9.94	6.33	8.67	6.32	9.59	6.00	9.40
Seo & Milanfar (2009)	8.42	8.25	8.17	9.00	7.60	7.90	7.91	8.61	7.95	8.21	8.71	9.65	7.00	11.17	7.59	9.41	7.00	8.20
Goferman et al. (2010)	8.78	6.80	9.07	5.69	9.10	6.70	8.61	5.76	8.87	7.03	7.12	7.88	4.67	7.33	7.86	5.97	7.60	8.10
Our approach with																		
Covariances only	5.85	5.56	5.86	5.69	6.50	4.40	6.63	6.50	5.29	5.05	5.24	5.82	7.00	6.50	6.59	5.68	5.60	4.90
Covariances + means	9.04	5.09	8.31	6.00	9.90	5.10	7.89	5.39	9.68	4.61	8.24	4.82	8.67	7.00	8.59	5.95	10.50	4.30
Covariances + center	2.84	5.67	3.10	5.52	2.90	4.70	3.26	5.54	2.68	5.45	2.59	5.53	2.83	5.50	3.73	6.03	2.70	4.60
Covariances + means + center	4.75	5.75	5.28	5.14	4.70	5.80	4.87	4.93	4.76	5.97	4.18	5.53	5.17	4.33	5.30	6.32	7.20	5.90
Seam carving (Avidan & Shamir, 2007	7.53)	4.35	7.93	4.97	7.30	6.30	7.80	4.80	7.45	4.32	7.94	5.00	9.17	2.00	8.27	4.73	8.70	3.80

Beyond saliency - feature selection

Aesthetic class prediction, Wong and Low, ICIP 2009

Scene recognition, Fornoni and Caputo, BMVC 2012

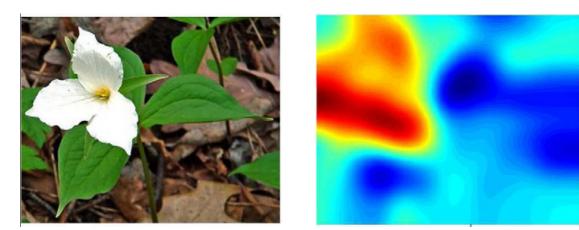
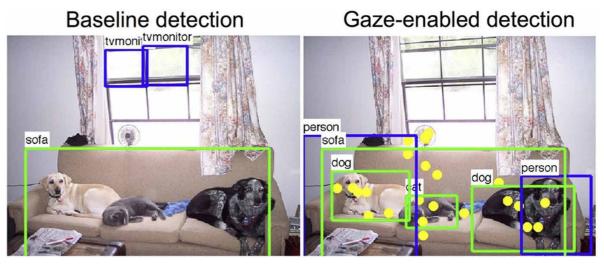


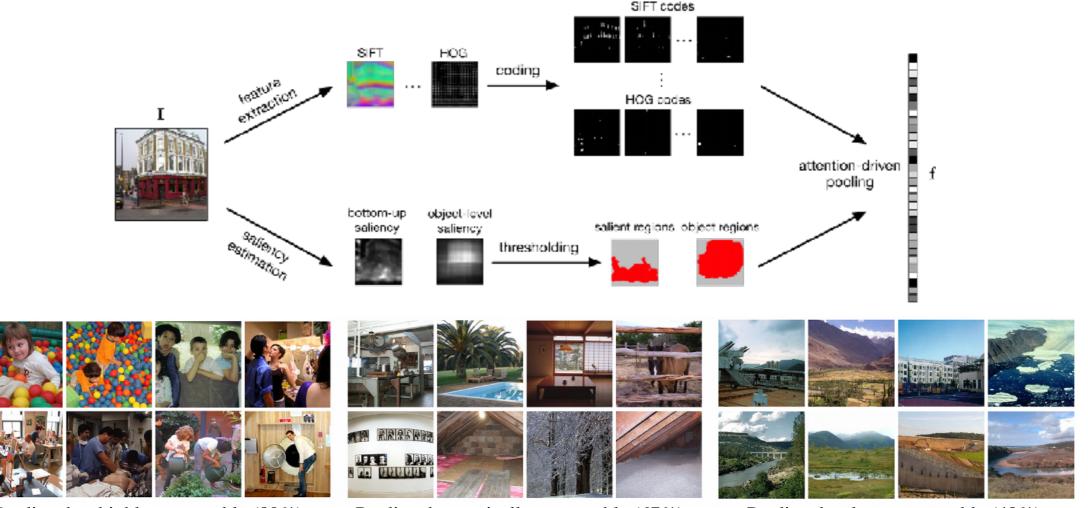
Image classification, de Campos et al., CVIU 2012



Object detection, Yun et al., CVPR 2013

Beyond saliency - feature selection

- Relationship between image memorability and attention
 - B. Celikkale, A. Erdem and E. Erdem, *Predicting Memorability of Images Using Attention-driven Spatial Pooling and Image Semantics*, Image and Vision Computing, 42, pp. 35-46, October 2015 (Editor's choice article)

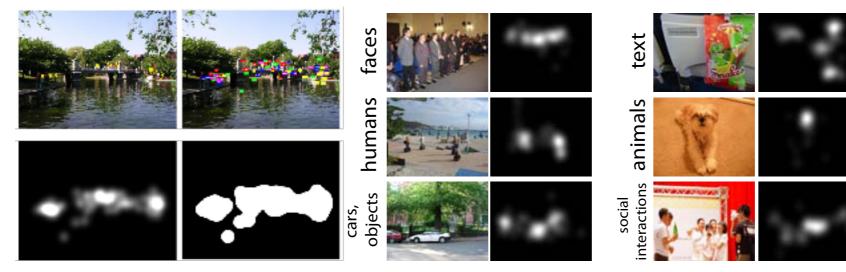


Predicted as highly memorable (89%)

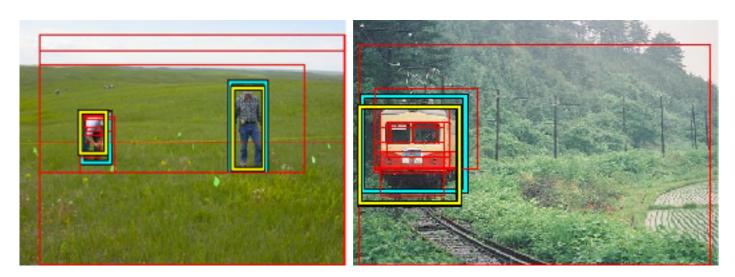
Predicted as typically memorable (67%)

Predicted as least memorable (48%)

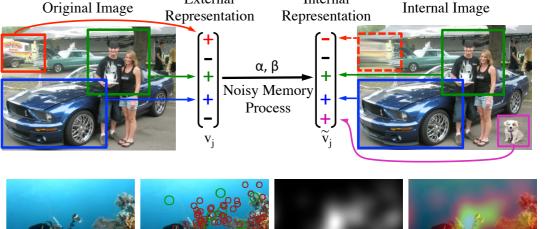
Beyond saliency - as a feature



Learning saliency, Judd et al., ICCV 2009, Borji, CVPR 2012

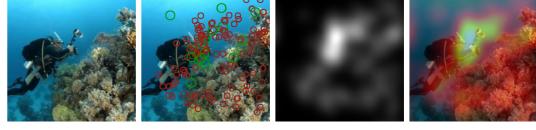


Generic objectness, Alexe et al., CVPR 2010



Internal

External



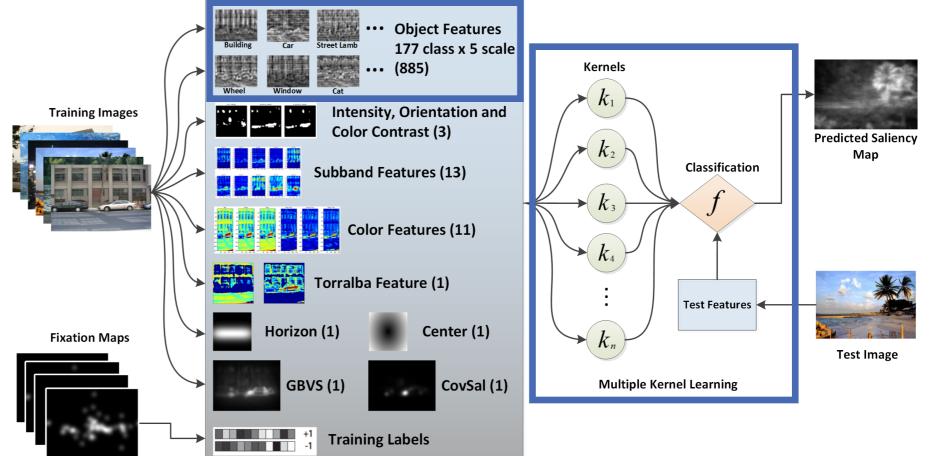
Memorability prediction, Khosla et al., NIPS 2012 Mancas and le Meur, ICIP 2013

Beyond saliency - as a feature

• Learning visual saliency

Y. Kavak, E. Erdem and A. Erdem, *Visual saliency estimation by integrating features using multiple kernel learning,* 6th International Symposium on Attention in Cognitive Systems (ISACS 2013), Beijing, China, August 2013.

• Automatically choose features relevant to visual saliency by learning specific feature weights and normalization schemes in the integration step.



Problems with saliency models?

- Important information may not be visually salient (e.g., stop sign in a cluttered scene)
- Salient information may not be important
- Can not account for many fixations when there is a task

Original image

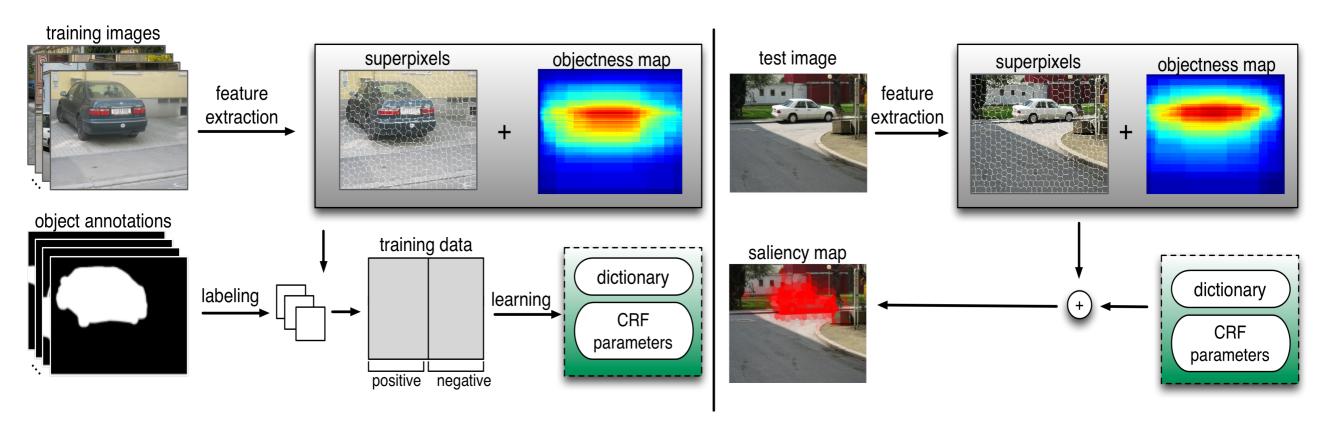
Bottom-up saliency

Task-driven fixations Hayhoe and Ballard, 2009

Top-down saliency estimation

- A. Kocak, K. Cizmeciler, A. Erdem and E. Erdem, Top down saliency estimation via superpixel based discriminative dictionaries, BMVC 2014
- A superpixel-based top-down saliency model via joint discriminative dictionary and CRF learning
- **Task:** Task-driven such as detecting an object instance from a certain category

Top-down saliency estimation



Training:

(1) Segment the images into superpixels and represent them with the sigma points descriptor.

- (2) Extract the objectness maps.
- (3) Jointly learn the dictionary and the CRF parameters for each object

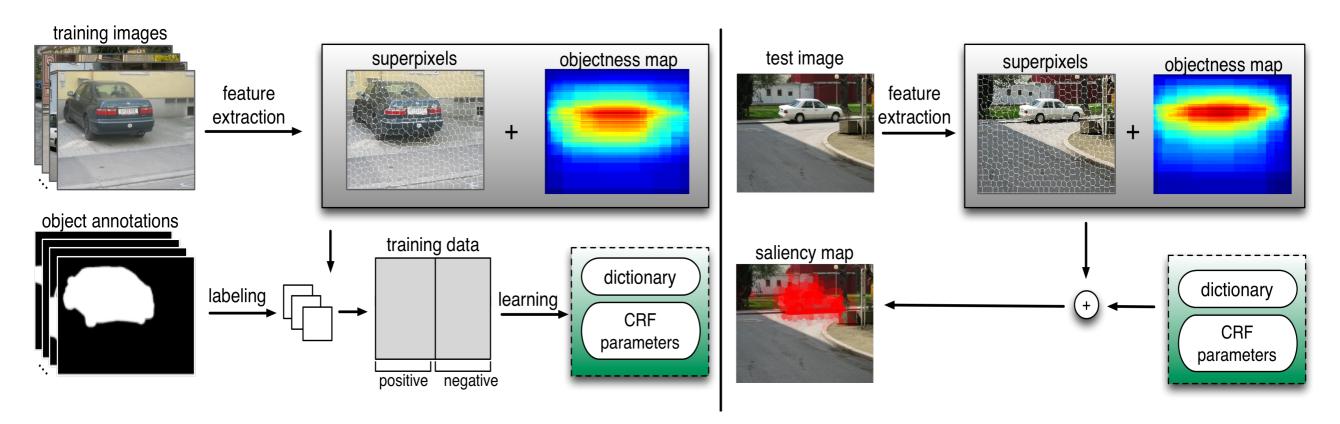
category. KOCAK ET AL.: TOP DOWN SALIENCY ESTIMATION

5

a superpixel is computed as a 7×7 matrix. As illustrated in Fig. 3, superpixels with similar texture and local structures are described by similar covariance matrices.

IACETTEPE UNIVERSITY Covariance matrices do not live on an Euclidean

Top-down saliency estimation



Testing:

(1) Segment the images into superpixels and represent them with the sigma points descriptor.

(2) Compute the sparse codes of superpixels with dictionaries learned from data.

(3) Estimated the object messimapency estimation

5

(4) Use the GRE model to infer the saliency scores ig. 3, superpixels with similar texture and local structures are described by similar covariance matrices.

HACETTEPE UNIVERSITY Covariance matrice

Covariance matrices do not live on an Euclidean

Dictionary potential. The unary potentials ψ_i in our model depend on latent sparse variables defined over a trained discriminative dictionary **D**. We use these sparse variables to learn a $\psi_i(y_i, \mathbf{X}_i; \mathbf{D}, \theta) = -\psi_i \mathbf{W} \mathbf{X}_i \mathbf{X}_i$ and use this classifier directly as our unary potential so that 51

we approach top-down satisfiely estimation as an image labeling problem in which a higher
Satisfier space is assigned to superpixels corresponding to target objects. We construct and the
model with node of representing the superpixels and edges of describing the connection
among them. The value variable is determined by finding the maximum posterior
$$(\mathbf{X})\mathbf{X}$$
 or
 $\mathbf{Y} = \{y_i\}_{i=1}^n$ given the set of superpixels $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^n$
 $\log P(\mathbf{Y}|\mathbf{X}, \mathbf{D}, \theta) = \sum_{i \in \mathcal{V}} \psi_i(y_i, \mathbf{x}_i; \mathbf{D}, \theta) + \sum_{i,j \in \mathcal{V}} \gamma_i(y_i, y_i, \mathbf{x}_i, \mathbf{x}_j; \theta)$ (5)
 $\frac{1}{\operatorname{dictionary potential}} = \frac{1}{\operatorname{dictionary potential}} =$

BHACETTEPE UNIVERSITY

saliency score is assigned to superpixels corresponding to target objects. We construct a CRE
model with nodes
$$\mathcal{F}$$
 representing the superpixels and edges \mathcal{F} describing the connections
among them. The saliency map is accormined by finding the maximum posterior $\mathbf{P}(\mathbf{x})(\mathbf{x})$ or
 $\mathbf{Y} = \{y_i\}_{i=1}^n$ given the set of superpixels $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^n$
 $\log P(\mathbf{Y}|_{\mathcal{Y}_i}^{\log P}(\mathbf{X}, \mathbf{D}, \theta) = \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \mathbf{D}, \theta) + \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \theta) + \sum_{i=1}^n \phi_{i,i}(y_i, y_j, \mathbf{x}_i; \mathbf{x}_j; \theta)$ (5)
 $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n$
 $\log P(\mathbf{Y}|_{\mathcal{Y}_i}^{\log P}(\mathbf{X}, \mathbf{D}, \theta) = \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \mathbf{D}, \theta) + \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \theta) + \sum_{i=1}^n \phi_{i,i}(y_i, y_j, \mathbf{x}_i; \mathbf{x}_j; \theta)$ (5)
 $\mathbf{Y} = \{\mathbf{x}_i\}_{i=1}^n$
 $\log P(\mathbf{Y}|_{\mathcal{X}_i}^{\log P}(\mathbf{X}, \mathbf{D}, \theta) = \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \mathbf{D}, \theta) + \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \theta) + \sum_{i=1}^n \phi_{i,i}(y_i, y_i, \mathbf{x}_i; \theta)$ (5)
 $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n$
 $\log P(\mathbf{Y}|_{\mathcal{X}_i}^{\log P}(\mathbf{X}, \mathbf{D}, \theta) = \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \mathbf{D}, \theta) + \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \theta) + \sum_{i=1}^n \phi_{i,i}(y_i, y_i, \mathbf{x}_i; \theta)$ (5)
 $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n$
 $\log P(\mathbf{Y}|_{\mathcal{X}_i}^{\log P}(\mathbf{X}, \mathbf{D}, \theta) = \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \mathbf{D}, \theta) + \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \theta) + \sum_{i=1}^n \phi_i(y_i, y_i, \mathbf{x}_i; \theta)$ (5)
 $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n$
 $\log P(\mathbf{Y}|_{\mathcal{X}_i}^{\log P}(\mathbf{X}, \mathbf{D}, \theta) = \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \mathbf{D}, \theta) + \sum_{i=1}^n \psi_i(y_i, \mathbf{x}_i; \theta)$ (6)
 $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n$
 $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n$

$$\boldsymbol{\alpha}_{i}(\mathbf{x}_{i}, \mathbf{D}) = \arg\min_{\boldsymbol{\alpha}} \frac{1}{2} \|\mathbf{x}_{i} - \mathbf{D}\boldsymbol{\alpha}\|^{2} + \lambda \|\boldsymbol{\alpha}\|_{1}$$

P

Quantitative analysis

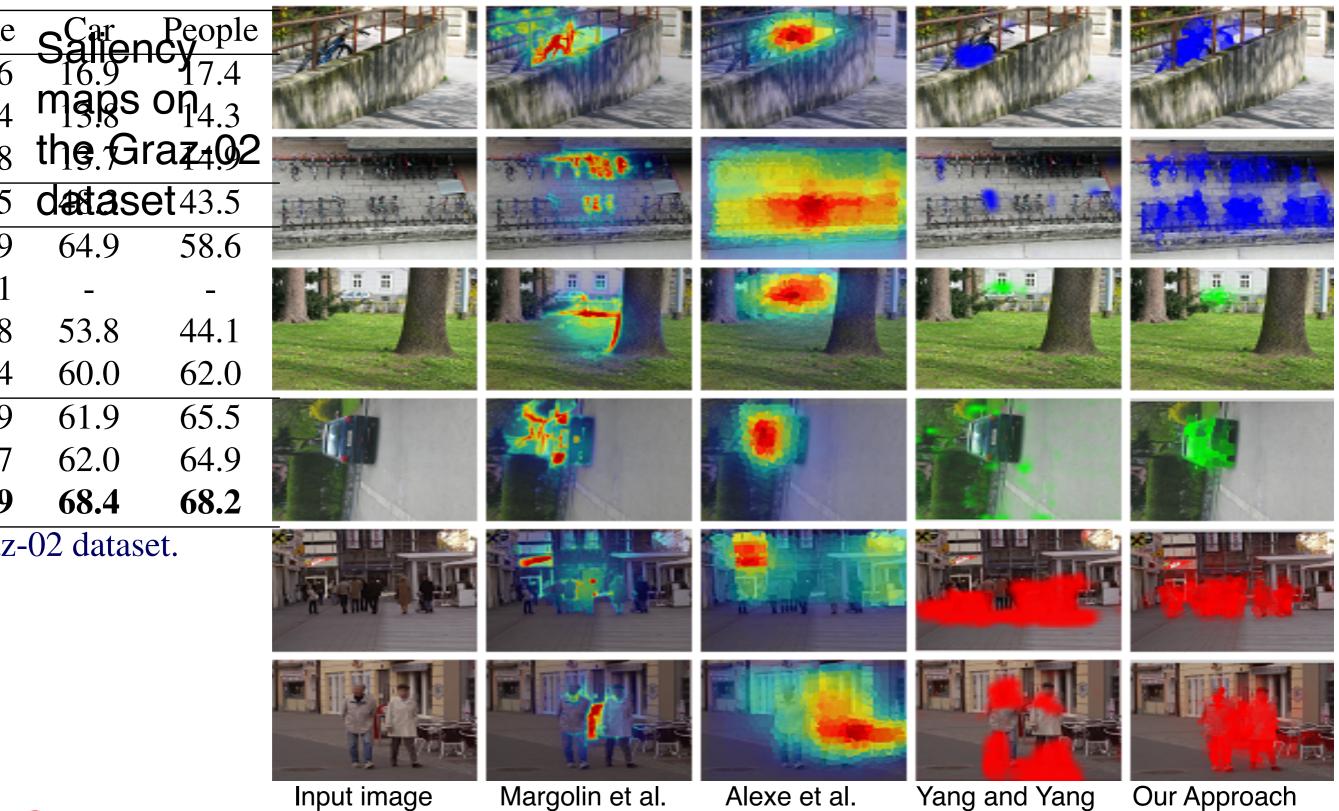
5

els with similar

EER results on the Graz-02 dataset

	Bike	Car	People
Margolin et al. (2013)	25.6	16.9	17.4
Perazzi et al. (2012)	11.4	13.8	14.3
Yang and Zhang (2013)	14.8	13.7	14.9
Objectness (Alexe et al., 2010)	53.5	48.3	43.5
Aldavert et al. (2010)	71.9	64.9	58.6
Khan and Tappen (2013)	72.1	-	-
Marszalek and Schmid (2012)	61.8	53.8	44.1
Yang and Yang (2012)	62.4	60.0	62.0
Our approach (setting 1)	71.9	61.9	65.5
Our approach (setting 2)	71.7	62.0	64.9
Our approach (setting 3)	73.9	68.4	68.2

Qualitative analysis



Main insights from natural tasks

- Vision is **active** not <u>passive</u>.
 - Specific information is usually acquired at the fixation point.
 - Information is acquired "just-in-time".
- Fixations patterns reflect learning at several levels:
 - what objects are relevant
 - where information is located
 - order of sub-tasks/properties of world.
- Fixations tightly linked to actions.

Slide credit: A. Borji 59

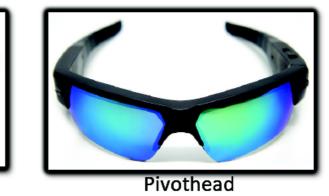
Developments in eye tracking

<u>Head free:</u>

Head mounted IR video-based systems

Scene camera

- Remote systems with head tracking!
- Scene camera



Tobii

Eye tracking camera

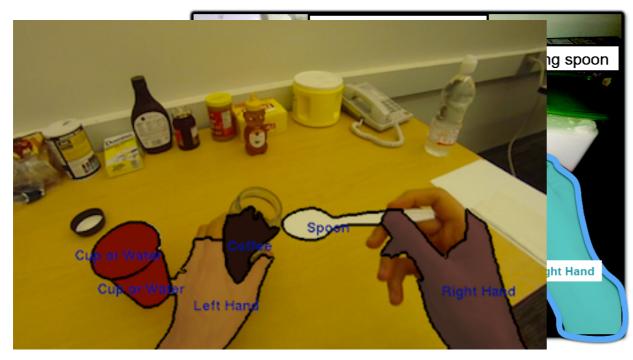
GoPro

SMI

Google Glass

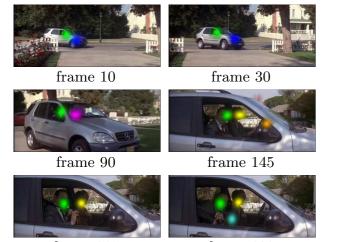
Looxcie

Ego Centric Vision a.k.a F



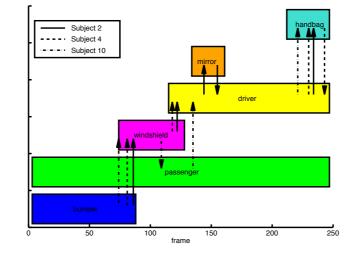
Fathi et al., CVPR 2011

Pirsiavash and Ramanan, CVPR 2012

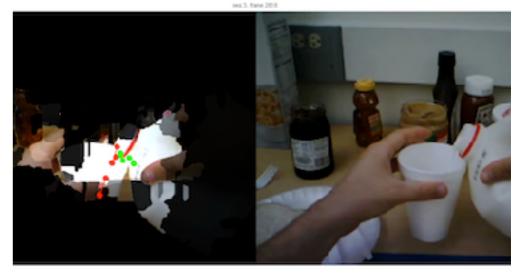


Saturday, June 22, 2013

frame 215



Mathe and Sminchisescu, ECCV 2012



Fathi et al., ECCV 2012

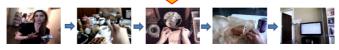
Ego Centric Vision a.k.a First person vision

Mathe and Sminchisescu, NIPS 2013

Discovering Important People and Objects for Egocentric Video Summarization

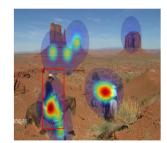
Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman University of Texas at Austin

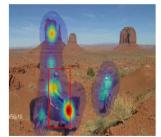
Input: Egocentric video of the camera wearer's day



 1:00 pm
 2:00 pm
 3:00 pm
 4:00 pm
 5:00 pm
 6:00 pm

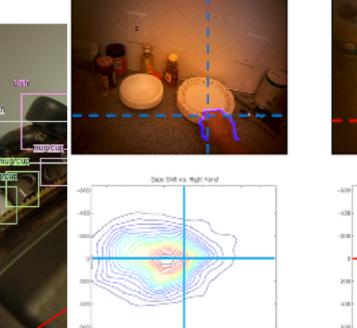
 Output:
 Storyboard summary of important people and objects

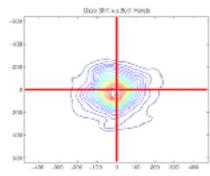




°S 2013

Fathi and Rehg, CVPR 2013





Li et al., ICCV 2013

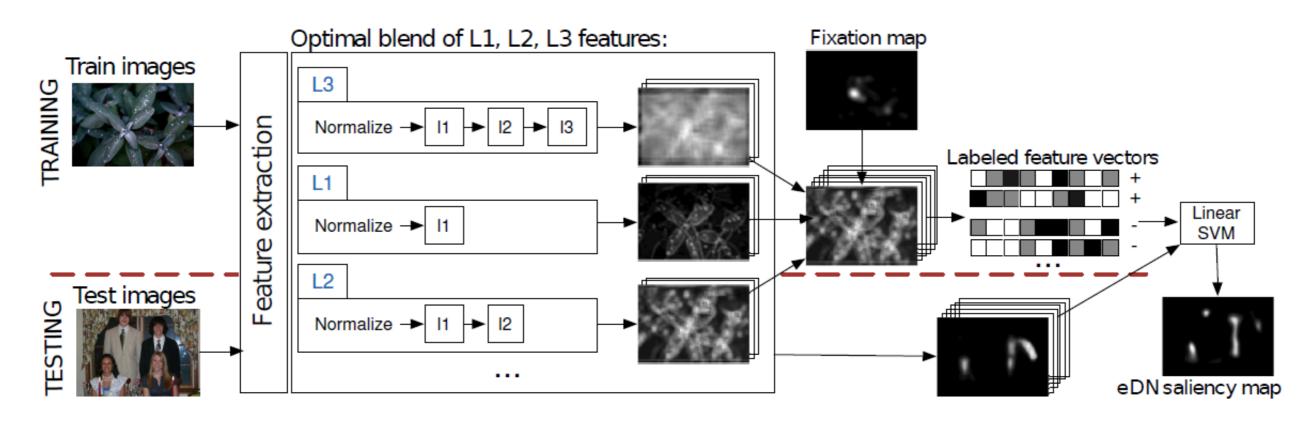
What is the current state-of-the-art?

- Hierarchical processing is ubiquitous in low-level human vision.
- Deep unsupervised models have been present for over a decade.
- Nowadays, go deep and use supervision!
- Mimic human visual system and learn a saliency model in an end-to-end manner.

Deep supervised models

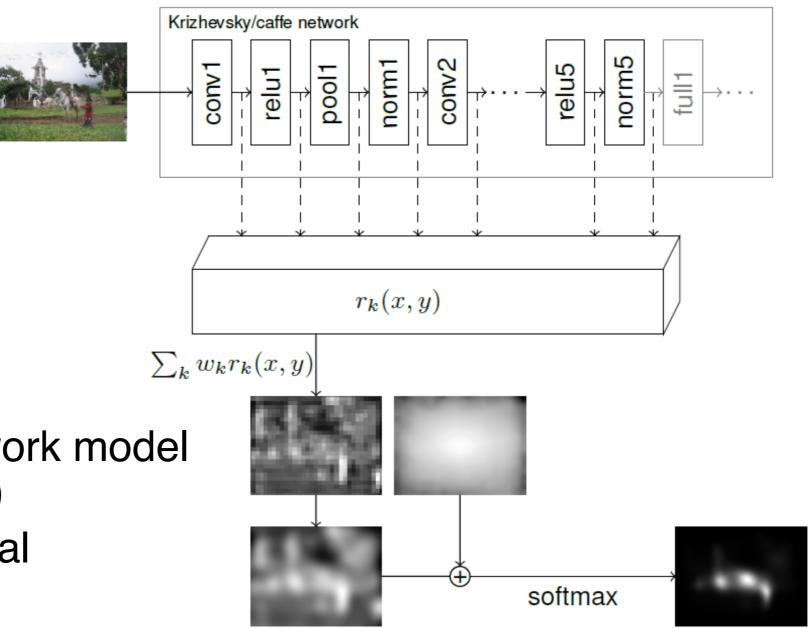
- Typically, superior performance to unsupervised models
- Large-scale proxy datasets have enabled effective supervised learning
- Key considerations:
 - Network architecture
 - Incorporation of prior cues
 - Supervision mechanism
 - Loss function

eDN Model (Vig et al., 2014)



- 1-3 layer networks
- Up to 43 hyper-parameters
- Linear patch classifier is learned
- fixated and non-fixated regions used to supervise training
- Small-scale dataset used for training
- Filters are drawn randomly

Deep Gaze (Kummerer et al., 2015)



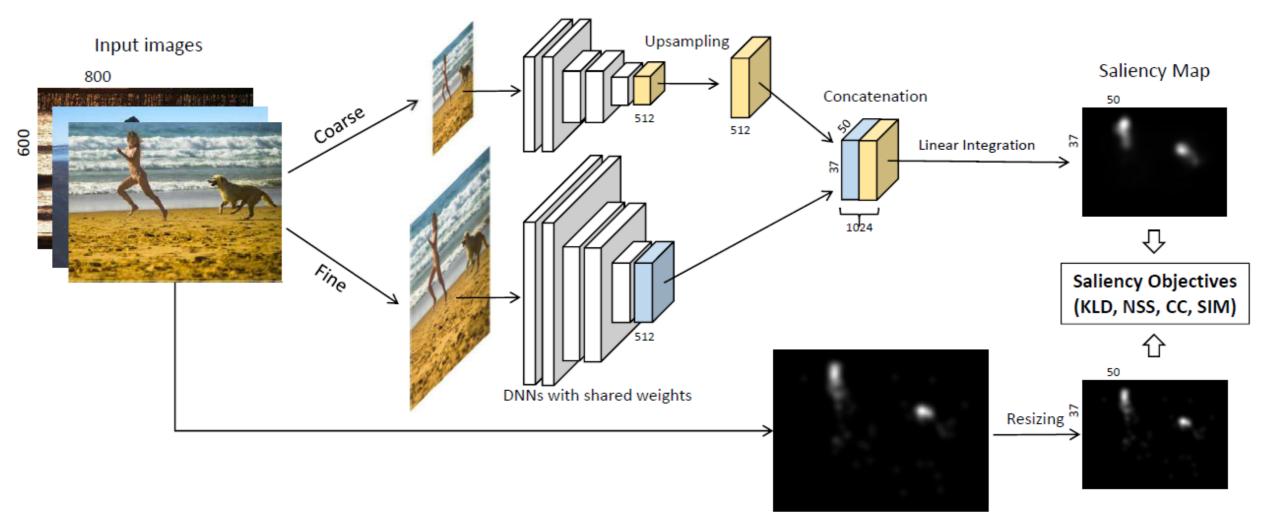
- Convolutional network model (based on AlexNet)
- pre-trained for visual recognition task

ACETTEPE UNIVERSITY

 Incorporation of centre-bias prior

65

SALICON Model (Huang et al., 2015)

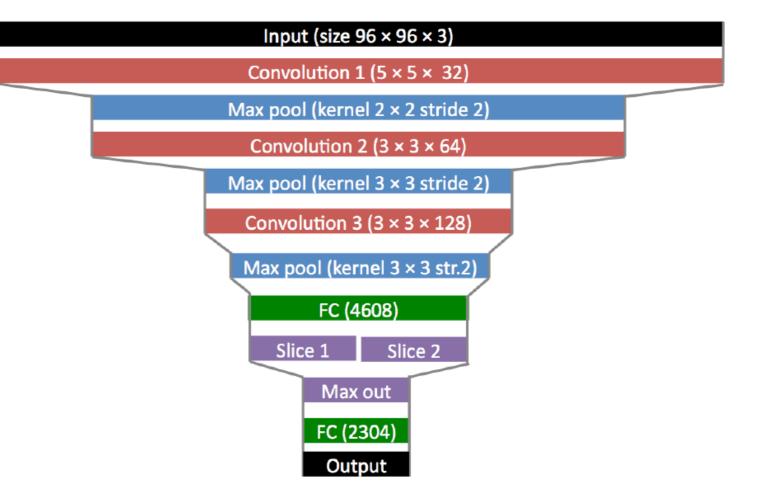


Human Fixation Maps

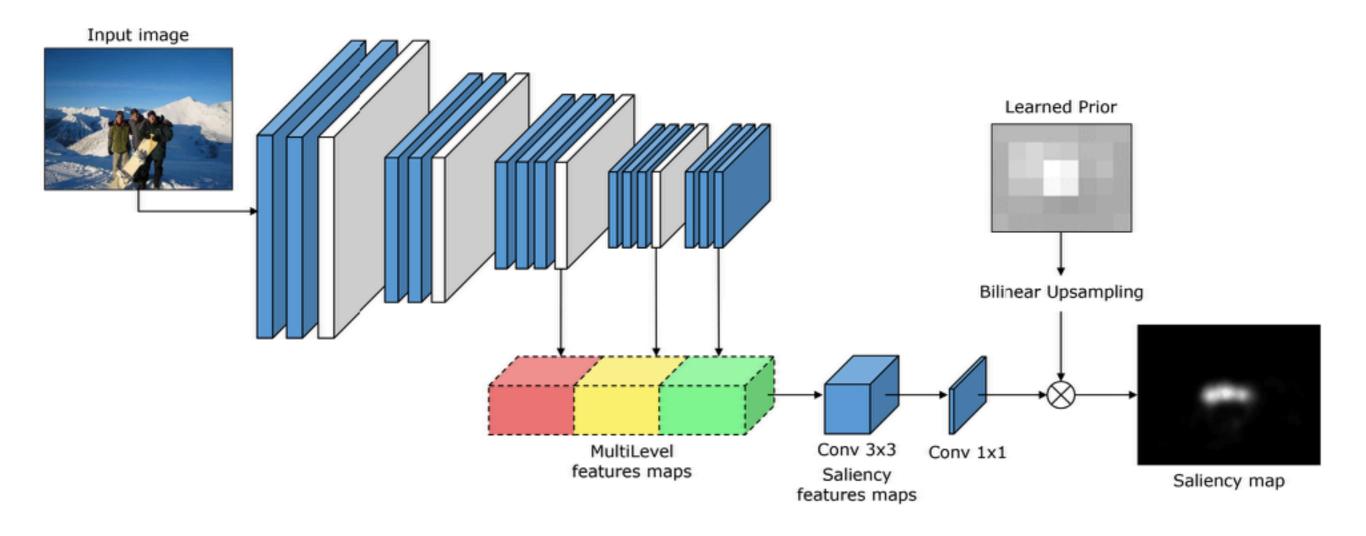
- Domain adaptation to saliency works
- Adding multi-scale information helps

DeepSal Model (Pan et al., 2016)

- New large-scale datasets with proxy eye-fixation data
- Training all features of larger networks
- Still small-scale compared to networks designed for semantics prediction



ML-Net Model (Cornia et al., 2016)



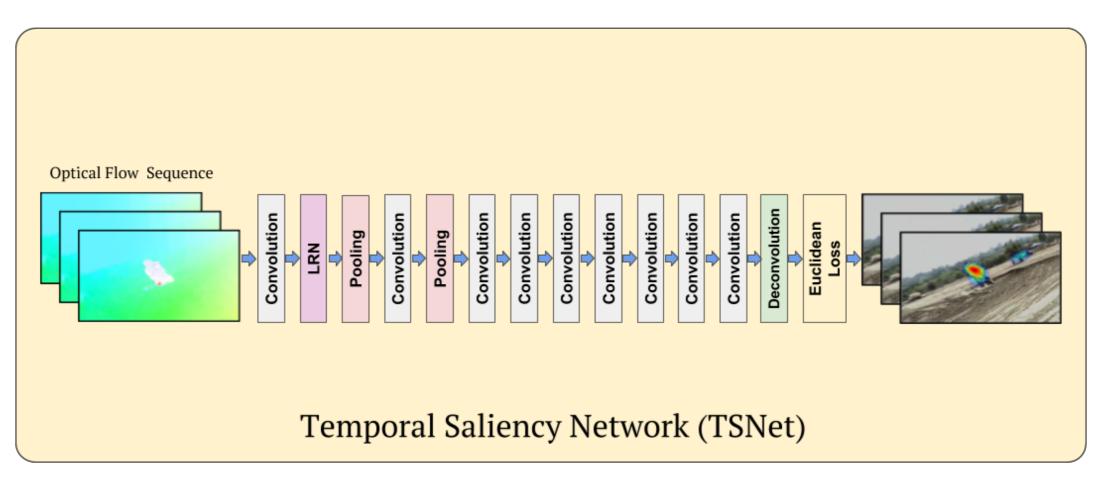
- Saliency map priors
- Multiple resolutions

- Two-stream CNNs for saliency prediction from videos
 - One of the first deep models for dynamic saliency prediction
- Element-wise and convolutional fusion strategies to integrate spatial and temporal information.
- Experiments on
 - DIEM (Mital et al., 2011) : 84 videos, fixations from 50 subjects
 - UCF-Sports (Mathe and Sminchisescu, 2015) : 150 videos, fixations from 16 subjects

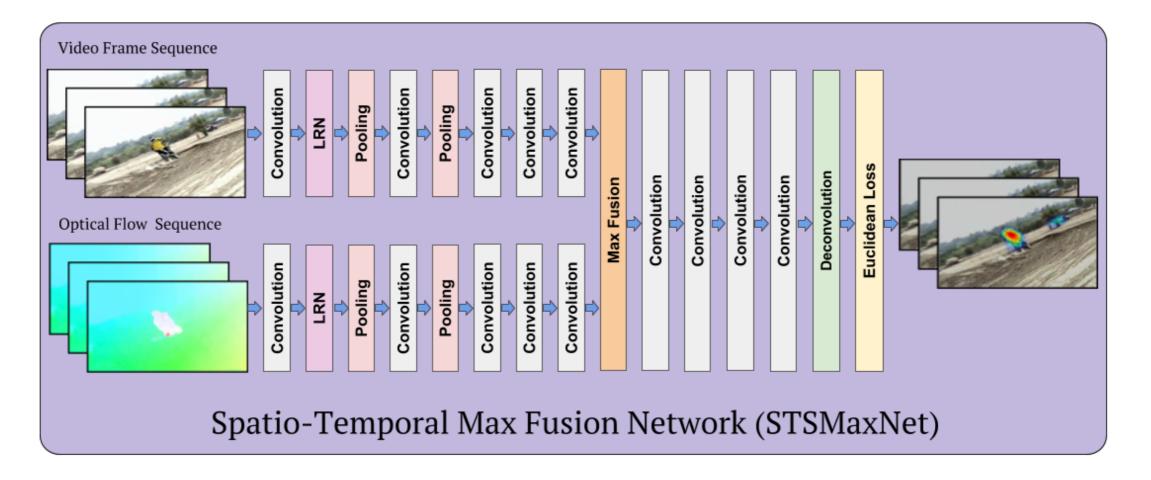
- Two base network models
- 9 convolution + 1 deconvolution layers
- 25.8M parameters
- Appearance stream

Video Frame Sequence Image: Sequence of the s	Poling Convolution Convolution Convolution Convolution Convolution Convolution Convolution Convolution Convolution Convolution Convolution Convolution					
Spatial Saliency Network (SSNet)						

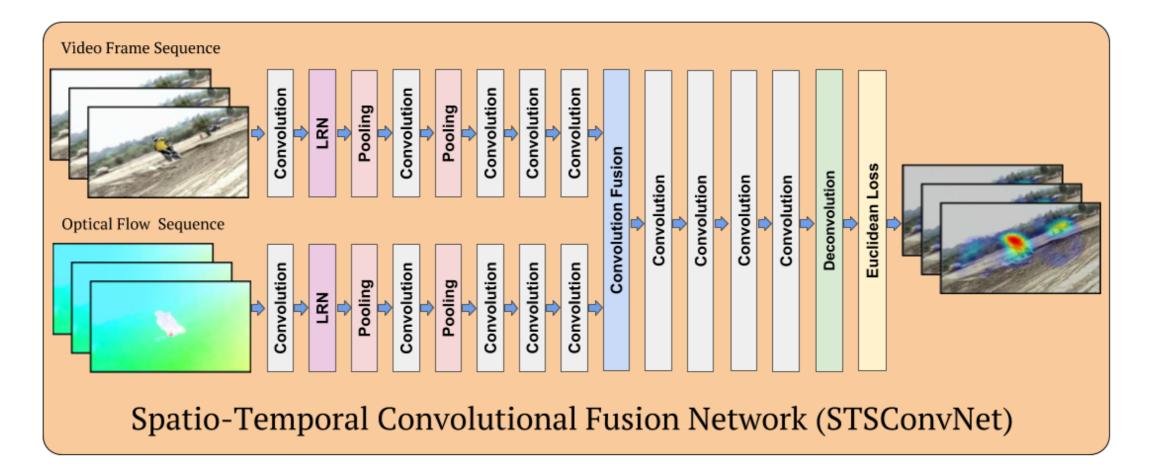
- Two base network models
- 9 convolution + 1 deconvolution layers
- 25.8M parameters
- Motion stream



- STSMaxNet
- Element-wise max fusion
- 34.7M parameters



- STSConvNet
- Convolution fusion
- 51.6M parameters



DEPARTMENT STORE ? I, WALDO-WATCHERS! V SOME TRULY TERRIFIC HTS TODAY - SOMEONE RNING TROUSERS WITH I IRON; A LONG THIN MAN TH A LONG THIN TIE; GLOVE ATTACKING A MAN. IEW! INCREDIBLE!

Juldo

TO:

NOW

WALDO-WATCHERS

OVER THE MOON,

THE WILD WEST,

Thanks for your attention!

