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Review - Linear Diffusion

• Let f (x) denote a grayscale (noisy) input image and u(x, t) be initialized 
with u(x,0) = u0(x) = f(x). 

• The linear diffusion process can be defined by the equation: 

where ∇· denotes the divergence operator. Thus, 
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1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1)
∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2)
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.
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red: active areas
blue: inactive area 

influence of the central 
pixel on the other pixels 
(red: high, blue: low) 

gray-level image

Credit: S. Paris

• Evolving images 
become more and 
more simplified

• Diffusion process 
removes the image 
structures at finer 
scales. 



Review - Linear Diffusion and Gaussian Filtering

• Solution of the linear diffusion can be explicitly estimated as:

with

• Solution of the linear diffusion equation is equivalent to a proper 
convolution of the input image with the Gaussian kernel Gσ(x) with 
standard deviation

• The higher the value of T, the higher the value of σ, and the more 
smooth the image becomes. 

1. LINEAR DIFFUSION

T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 1: Linear diffusion results for different diffusion times.

It is shown that the solution of the linear diffusion equation with the given initial
condition u(x, 0) = f (x) for a specific diffusion time T is equivalent to the convolu-
tion of the input image f (x) with the Gaussian kernel Gσ(x) with standard deviation
σ =

√
2T [2, 3, 6]. Thus, linear diffusion can be regarded as a low-pass filter. The cor-

respondence between the diffusion time variable t and the standard deviation σ clearly
depicts the effect of t on the evolving images. The higher the value of t, the higher the
value of σ, and the more smooth the image becomes. This relation also provides the
following explicit solution to (1):

(3) u(x, T) =
(

G√
2T ∗ f

)

(x) with Gσ(x) =
1

2πσ2
exp

(

− |x|2
2σ2

)

.

Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires dis-
cretization in both spatial and time coordinates. Central differences are the typical
choices for the spatial derivatives:

(4)
d2ui,j

dx2
≈

ui+hx,j − 2ui,j + ui−hx,j

h2
x

,
d2ui,j

dy2
≈

ui,j+hy − 2ui,j + ui,j−hy

h2
y

where ui,j denotes the gray value or the brightness of the evolving image at pixel loca-
tion (i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a
regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to
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Review - Numerical Implementation

• Original model:

• Space discrete version:

• Space-time discrete version:
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1 LINEAR DIFFUSION

The linear diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x, 0) = u0(x) = f (x). Then, the linear diffusion process can be
defined by the equation

(1)
∂u

∂t
= ∇ · (∇u) = ∇2u

where∇· denotes the divergence operator. Thus, the equation is:

(2)
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The diffusion process can be seen as an evolution process with an artificial time
variable t denoting the diffusion time where the input image is smoothed at a constant
rate in all directions. Starting from the initial image u0(x), the evolving images u(x, t)
under the governed equation represent the successively smoothed versions of the initial
input image f (x), and thus create a scale space representation of the given image f ,
with t > 0 being the scale. As we move to coarser scales, the evolving images become
more and more simplified since the diffusion process removes the image structures
at finer scales. Figures 1 and 2 show example scale space representations sampled at
different diffusion times for two different images. In fact, the notion of scale is an
essential part of early visual processing, where the main task is to separate the image
into relevant and irrelevant parts.

∗erkut@cs.hacettepe.edu.tr

1

T = 0 T = 5 T = 10

T = 20 T = 40 T = 80

Figure 2: Linear diffusion results for different diffusion times.

the following space-discrete equation for (1):

(5)
dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

The straightforward approach to solve (5) is to consider an iterative scheme with
an explicit time discretization, where homogeneous Neumann boundary condition is
imposed along the image boundary

(6)
uk+1

i,j − uk
i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j

where ∆t is the time step, and uk represents the restored image u at iteration k. Numer-
ical stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and
diffusion equations [4]. The variational regularization methods formulate smoothing
process as a functional minimization via which a noise-free approximation of a given
image is to be estimated. Most of these formulations assume an additive noise model

(7) f (x) = u(x) + n(x)

where f (x) and u(x) respectively denote the given noisy image and the desired de-
noised image, and n(x) represents the additive noise.
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homogeneous Neumann boundary
condition along the image boundary 

∆t ≤ 0.25 is required for 
numerical stability



Variational interpretation of heat diffusion

• Cost functional: 

• Euler-Lagrange:

• Heat diffusion: modifies temperature to decrease E quickly 

Slide credit: I. Kokkinos
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Today

• Median filter
• Perona-Malik Type Nonlinear Diffusion
• Total Variation (TV) Regularization
• Mumford-Shah Model
• Bilateral filtering 
• Non-local means denoising 
• Image smoothing via region covariance (RegCov smoothing) 
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Median filters

• A Median Filter operates over a window by selecting the median 
intensity in the window.

• What advantage does a median filter have over a mean filter?

• Is a median filter a kind of convolution?

• No new pixel values introduced

• Removes spikes: 
good for impulse, salt & pepper noise

adapted from: S. Seitz, K. Grauman



Salt and 
pepper 
noise

Median 
filtered

Slide credit: M. Hebert

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);

Median filters

• Robustness to outliers

• Median filter is edge preserving
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• earliest nonlinear diffusion model for image smoothing

• called anisotropic diffusion by Perona and Malik.

• a scalar-valued diffusivity

Perona-Malik Type Nonlinear Diffusion

(a) (b) (c)

Figure 2: The staircasing effect. (a) Original noisy image. (b) Perona-Malik diffusion.
(c) Regularized Perona-Malik diffusion.

staircasing effect, where a piece-wise smooth region in the original image evolves into
many unintuitive piecewise constant regions. Figure 2 shows an example where this
instability occurs. The unintuitive regions such as the one at the woman’s face and
shoulder are clearly visible in Figure 2(b). A possible solution to this drawback is to
use regularized gradients in diffusivity computations [2] (Figure 2(c)).

Replacing the diffusivities g(|ru|) with the regularized ones g(|rus|) leads to
the following equation:

(5)
∂u
∂t

= r · (g(|rus|)ru)

where us = Gs ⇤ u represents a Gaussian-smoothed version of the image. Taking the
equivalence of the Gaussian smoothing and the linear scale space into account, rus

can also be considered as the gradient computed at a specific scale s > 0.

Some example results of regularized Perona-Malik filtering with different diffusion
times are shown in Figure3 and Figure 4. It is evident from these images that the corre-
sponding smoothing process diminishes noise while retaining or even enhancing edges
since it considers a kind of a priori edge knowledge.

Numerical Implementation

For numerical implementation, we use central differences to approximate the gradient
magnitude at a pixel (i, j) in the diffusivity estimation, gi,j = g(|rui,j|):

(6)

|rui,j| =

s✓dui,j

dx

◆2

+

✓dui,j

dy

◆2

⇡

s✓ui+1,j � ui�1,j

2

◆2
+

✓ui,j+1 � ui,j�1

2

◆2
.

The Perona-Malik equation (Equation 1) is first discretized w.r.t. spatial variables.
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• The Perona-Malik equation is: 

with homogeneous Neumann boundary conditions and the initial 
condition u0(x) = f (x), f denoting the input image. 

• Constant diffusion coefficient of linear equation is replaced 
with a smooth non-increasing diffusivity function g satisfying
– g(0) = 1, 
– g(s) ≥ 0, 
– lims→∞ g(s) = 0 

• Diffusivities become variable in both space and time (image 
dependent).
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1 PERONA-MALIK TYPE NONLINEAR DIFFUSION

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create
a scale space representation that consists of gradually simplified images where some
image features such as edges are maintained or even enhanced. The earliest nonlinear
diffusion model proposed in image processing is the so-called anisotropic diffusion

1

by Perona and Malik [4].
In their formulation, they replaced the constant diffusion coefficient of linear equa-

tion by a smooth nonincreasing diffusivity function g with g(0) = 1, g(s) � 0, and
lims!• g(s) = 0. As a consequence, the diffusivities become variable in both space
and time. The Perona-Malik equation is

(1)
∂u
∂t

= r · (g(|ru|)ru)

with homogeneous Neumann boundary conditions and the initial condition u0(x) =
f (x), f denoting the input image.

Perona and Malik suggested two different choices for the diffusivity function:

g(s) =
1

1 + s2/l2 ,(2)

g(s) = e�
s2
l2(3)

⇤erkut@cs.hacettepe.edu.tr
1In fact, Perona-Malik equation is an isotropic nonhomogeneous equation as it uses a scalar-valued dif-

fusivity. A true example of anisotropic diffusion model, edge-enhancing diffusion [6], will be summarized
in Section 3.

1

Perona-Malik Type Nonlinear Diffusion



• The Perona-Malik equation:

• Two different choices for the diffusivity function: 

(1)

(2) 

• λ corresponds to a contrast parameter.

• What is the effect of the parameter λ? 
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• 1D version to demonstrate the role of the contrast parameter

• For 1D case, the Perona-Malik equation is as follows: 

with or 

1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

where l corresponds to a contrast parameter. These functions share similar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it
clearly demonstrates the role of the contrast parameter l and the main behavior of the
equation [7]. For 1D case, the Perona-Malik equation is as follows:

(4)
∂u
∂t

=
∂

∂x
(g(|ux|)ux)| {z }

F(ux)

= F0(ux)uxx

with g(|ux|) = 1
1+|ux |2/l2 or g(|ux|) = e�

|ux |2
l2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |ux|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u
∂t = F0(ux)uxx, for the points where |ux| < l, F0(ux) > 0 which corresponds
to lost in the material. For the points where |ux| > l, on the contrary, F0(ux) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.
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If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called
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(4)
∂u
∂t

=
∂

∂x
(g(|ux|)ux)| {z }

F(ux)

= F0(ux)uxx

with g(|ux|) = 1
1+|ux |2/l2 or g(|ux|) = e�

|ux |2
l2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |ux|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u
∂t = F0(ux)uxx, for the points where |ux| < l, F0(ux) > 0 which corresponds
to lost in the material. For the points where |ux| > l, on the contrary, F0(ux) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.
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Figure 1: Diffusivities and the corresponding flux functions for linear diffusion (plotted

in dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For
Perona-Malik diffusivity g(s) = 1

1+s2/l2 is used with l = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called
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• Diffusivity is variable and decreases as |ux| increases.

• Decay in diffusivity is particularly rapid after the contrast parameter λ.

• Two different behaviors in the diffusion process
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Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |ux|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter l. This leads to two different behaviors in the diffusion process. Since
∂u
∂t = F0(ux)uxx, for the points where |ux| < l, F0(ux) > 0 which corresponds
to lost in the material. For the points where |ux| > l, on the contrary, F0(ux) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter l separates the regions of forward dif-
fusion from the regions of backward diffusion.
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If we consider the 2D case, the diffusivities are reduced at the image locations
where |ru|2 is large. As |ru|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter l specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called
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• In 2D case, diffusivities are reduced at the image locations where
|∇u|2 is large (|∇u|2 : a measure of edge likelihood)

• Amount of smoothing is low along image edges. 

• Contrast parameter λ specifies a measure that determines which edge 
points are to be preserved or blurred during the diffusion process. 

• Even edges can be sharpened due to the local backward diffusion 
behavior as discussed for the 1D case. 

• Since the backward diffusion is a well-known ill-posed process, this may 
cause an instability, the so-called staircasing effect.
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1 PERONA-MALIK TYPE NONLINEAR DIFFUSION

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create
a scale space representation that consists of gradually simplified images where some
image features such as edges are maintained or even enhanced. The earliest nonlinear
diffusion model proposed in image processing is the so-called anisotropic diffusion

1

by Perona and Malik [4].
In their formulation, they replaced the constant diffusion coefficient of linear equa-

tion by a smooth nonincreasing diffusivity function g with g(0) = 1, g(s) � 0, and
lims!• g(s) = 0. As a consequence, the diffusivities become variable in both space
and time. The Perona-Malik equation is

(1)
∂u
∂t

= r · (g(|ru|)ru)

with homogeneous Neumann boundary conditions and the initial condition u0(x) =
f (x), f denoting the input image.

Perona and Malik suggested two different choices for the diffusivity function:

g(s) =
1

1 + s2/l2 ,(2)

g(s) = e�
s2
l2(3)

⇤erkut@cs.hacettepe.edu.tr
1In fact, Perona-Malik equation is an isotropic nonhomogeneous equation as it uses a scalar-valued dif-

fusivity. A true example of anisotropic diffusion model, edge-enhancing diffusion [6], will be summarized
in Section 3.
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Staircasing Effect

• Due to backward diffusion, a piece-wise smooth region in the original 
image evolves into many unintuitive piecewise constant regions.

• Solution: Use pre-filtered (regularized) gradients in diffusivity 
computations

(a) (b) (c)

Figure 2: The staircasing effect. (a) Original noisy image. (b) Perona-Malik diffusion.
(c) Regularized Perona-Malik diffusion.

staircasing effect, where a piece-wise smooth region in the original image evolves into
many unintuitive piecewise constant regions. Figure 2 shows an example where this
instability occurs. The unintuitive regions such as the one at the woman’s face and
shoulder are clearly visible in Figure 2(b). A possible solution to this drawback is to
use regularized gradients in diffusivity computations [2] (Figure 2(c)).

Replacing the diffusivities g(|ru|) with the regularized ones g(|rus|) leads to
the following equation:

(5)
∂u
∂t

= r · (g(|rus|)ru)

where us = Gs ⇤ u represents a Gaussian-smoothed version of the image. Taking the
equivalence of the Gaussian smoothing and the linear scale space into account, rus

can also be considered as the gradient computed at a specific scale s > 0.

Some example results of regularized Perona-Malik filtering with different diffusion
times are shown in Figure3 and Figure 4. It is evident from these images that the corre-
sponding smoothing process diminishes noise while retaining or even enhancing edges
since it considers a kind of a priori edge knowledge.

Numerical Implementation

For numerical implementation, we use central differences to approximate the gradient
magnitude at a pixel (i, j) in the diffusivity estimation, gi,j = g(|rui,j|):

(6)

|rui,j| =

s✓dui,j

dx

◆2

+

✓dui,j

dy

◆2

⇡

s✓ui+1,j � ui�1,j

2

◆2
+

✓ui,j+1 � ui,j�1

2

◆2
.

The Perona-Malik equation (Equation 1) is first discretized w.r.t. spatial variables.
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Regularized Perona-Malik Model

• Replacing the diffusivities g(|∇u|) with the regularized ones g(|∇uσ|) 
leads to the following equation:

where                      represents a Gaussian-smoothed version of the 
image. 
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Regularized Perona-Malik Model

• Smoothing process diminishes noise while retaining or enhancing 
edges

1. PERONA-MALIK TYPE NONLINEAR DIFFUSION
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Figure 3: Reg. Perona-Malik results for different diffusion time (l = 1, s = 1).
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Figure 4: Reg. Perona-Malik results for different diffusion times (l = 1, s = 1).

This results in the following space-discrete equation:
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Numerical Implementation

• Original model:

• Space discrete version:
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1 PERONA-MALIK TYPE NONLINEAR DIFFUSION

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create
a scale space representation that consists of gradually simplified images where some
image features such as edges are maintained or even enhanced. The earliest nonlinear
diffusion model proposed in image processing is the so-called anisotropic diffusion

1

by Perona and Malik [4].
In their formulation, they replaced the constant diffusion coefficient of linear equa-

tion by a smooth nonincreasing diffusivity function g with g(0) = 1, g(s) � 0, and
lims!• g(s) = 0. As a consequence, the diffusivities become variable in both space
and time. The Perona-Malik equation is

(1)
∂u
∂t

= r · (g(|ru|)ru)

with homogeneous Neumann boundary conditions and the initial condition u0(x) =
f (x), f denoting the input image.

Perona and Malik suggested two different choices for the diffusivity function:

g(s) =
1

1 + s2/l2 ,(2)

g(s) = e�
s2
l2(3)

⇤erkut@cs.hacettepe.edu.tr
1In fact, Perona-Malik equation is an isotropic nonhomogeneous equation as it uses a scalar-valued dif-

fusivity. A true example of anisotropic diffusion model, edge-enhancing diffusion [6], will be summarized
in Section 3.
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Figure 2: The staircasing effect. (a) Original noisy image. (b) Perona-Malik diffusion.
(c) Regularized Perona-Malik diffusion.

staircasing effect, where a piece-wise smooth region in the original image evolves into
many unintuitive piecewise constant regions. Figure 2 shows an example where this
instability occurs. The unintuitive regions such as the one at the woman’s face and
shoulder are clearly visible in Figure 2(b). A possible solution to this drawback is to
use regularized gradients in diffusivity computations [2] (Figure 2(c)).

Replacing the diffusivities g(|ru|) with the regularized ones g(|rus|) leads to
the following equation:

(5)
∂u
∂t

= r · (g(|rus|)ru)

where us = Gs ⇤ u represents a Gaussian-smoothed version of the image. Taking the
equivalence of the Gaussian smoothing and the linear scale space into account, rus

can also be considered as the gradient computed at a specific scale s > 0.

Some example results of regularized Perona-Malik filtering with different diffusion
times are shown in Figure3 and Figure 4. It is evident from these images that the corre-
sponding smoothing process diminishes noise while retaining or even enhancing edges
since it considers a kind of a priori edge knowledge.

Numerical Implementation

For numerical implementation, we use central differences to approximate the gradient
magnitude at a pixel (i, j) in the diffusivity estimation, gi,j = g(|rui,j|):

(6)

|rui,j| =

s✓dui,j

dx

◆2

+

✓dui,j

dy

◆2

⇡

s✓ui+1,j � ui�1,j

2

◆2
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2

◆2
.

The Perona-Malik equation (Equation 1) is first discretized w.r.t. spatial variables.
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Numerical Implementation

• Space discrete version:

• This discretization scheme requires the diffusivities to be estimated at 
mid-pixel points.

• computed by taking averages
of the diffusivities over neighboring 
pixels:
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This discretization scheme requires the diffusivities to be estimated at mid-pixel
points (Figure 5). They are simply computed by taking averages of the diffusivities
over neighboring pixels:
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The time derivative in (Equation 7) can be discretized using forward difference.
This yields an iterative scheme with an explicit time discretization, where homoge-
neous Neumann boundary condition is imposed along the image boundary
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with Dt denoting the time step. For the Perona-Malik diffusion, the stability require-
ment is again Dt  0.25.

2 TOTAL VARIATION (TV) REGULARIZATION

Rudin et al. [5] formulated image restoration as minimization of the total variation
(TV) of a given image under certain assumptions on the noise. The Total Variation
(TV) regularization model is generally defined as:

(10) ETV(u) =
Z

W

✓
1
2
(u � f )2 + a|ru|

◆
dx

where

• W ⇢ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on W,

• u is the restored version of g,
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Numerical Implementation

• Space discrete version:

• Space-time discrete version:

homogeneous Neumann boundary 
condition along the image boundary 

∆t ≤ 0.25 is required for 
numerical stability
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Extension to vectorial images

• Extension of nonlinear diffusion to vectorial images: 

Slide credit: I. Kokkinos

16 Introduction to nonlinear image processing 

Extension to vectorial images 
• Extension of nonlinear diffusion to vectorial images: 

generalization  

where: 

17 Introduction to nonlinear image processing 

(a) Color Image with Noise (b) Perona-Malik  diffusion 

Nonlinear diffusion for color image denoising 



Today

• Median filter
• Perona-Malik Type Nonlinear Diffusion
• Total Variation (TV) Regularization
• Mumford-Shah Model
• Bilateral filtering 
• Non-local means denoising 
• Image smoothing via region covariance (RegCov smoothing) 



Total Variation (TV) Regularization

• Rudin et al. (1992): image restoration as minimization of the total 
variation (TV) of a given image.

• The Total Variation (TV) regularization model is generally defined as:

– Ω ⊂ R2 is connected, bounded, open subset representing the image domain, 
– f is an image defined on Ω,
– u is the smooth approximation of f ,
– α > 0 is a scalar. 
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Total Variation (TV) Regularization

• The Total Variation (TV) regularization model:

• The gradient descent equation for Equation (10) is defined by: 

• The value of α specifies the relative importance of the fidelity term.

• It can be interpreted as a scale parameter that determines the level of 
smoothing. 
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2. TOTAL VARIATION (TV) REGULARIZATION

• a > 0 is a scalar.

The gradient descent equation for Equation (10) is defined by

(11)
∂u
∂t

= r ·
✓

ru
|ru|

◆
� 1

a
(u � f );

∂u
∂n

����
∂W

= 0 .

Since the value of a specifies the relative importance of the fidelity term, it can be
interpreted as a scale parameter that determines the level of smoothing. In Figure 6, the
role of this parameter is illustrated. The restored images are given in Figure 6(b)-(d).
As it can be clearly seen, level of smoothing increases with increasing a.

In the original formulation of Rudin et al., the observed image f was assumed to be
degraded by additive Gaussian noise with zero mean and known variance s2. Hence,
in order to restore a given image, they propose to solve the constrained optimization
problem

(12) min
u

Z

W

|ru|dx

subject to

(13)
Z

W

(u � f )2dx = s2 .

When TV regularization is defined as a constrained optimization problem, 1
a can be

considered as a Lagrange multiplier, which has to be determined by taking the given
constraint into account.

TV regularization can be associated with a nonlinear diffusion filter, the so-called
TV flow [1, 3]. Ignoring the fidelity term in Equation (11) leads to the PDE

(14)
∂u
∂t

= r · (g(|ru|)ru)

with u0 = f and the diffusivity function g(|ru|) = 1
|ru| . Notice that this diffusiv-

ity function has no additional contrast parameter as compared with the Perona-Malik
diffusivities. Figure 7 and Figure 8 depict TV scale space examples sampled at dif-
ferent diffusion times for two different images. It is evident from these images that the
corresponding smoothing process yields segmentation-like, piecewise constant images.

Numerical Implementation

The evolution equation of u (11) can be discretized by using standard finite differences.
An important point is that the solution of TV regularization or equivalently TV flow
leads to singular diffusivities as shown in Equation (14). In numerical implementations
based on standard discretization, this leads to stability problems as the image gradient
tends to zero. A common solution to this problem is to add a small positive constant e
to image gradients.

After e-regularization, the space-discrete version of Equation (11) can be written
as:

6



Sample TV Restoration results

3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],
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• The value of α specifies the relative importance of the fidelity term 
and thus the level of smoothing. 
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Figure 5: Discretization grid used in (Equation 7).

This discretization scheme requires the diffusivities to be estimated at mid-pixel
points (Figure 5). They are simply computed by taking averages of the diffusivities
over neighboring pixels:

(8) gi± 1
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2
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2
=
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2
.

The time derivative in (Equation 7) can be discretized using forward difference.
This yields an iterative scheme with an explicit time discretization, where homoge-
neous Neumann boundary condition is imposed along the image boundary
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with Dt denoting the time step. For the Perona-Malik diffusion, the stability require-
ment is again Dt  0.25.

2 TOTAL VARIATION (TV) REGULARIZATION

Rudin et al. [5] formulated image restoration as minimization of the total variation
(TV) of a given image under certain assumptions on the noise. The Total Variation
(TV) regularization model is generally defined as:

(10) ETV(u) =
Z

W

✓
1
2
(u � f )2 + a|ru|

◆
dx

where

• W ⇢ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on W,

• u is the restored version of g,

5



TV Regularization

• Observed image f was assumed to be degraded by additive Gaussian 
noise with zero mean and known variance σ2. 

• To restore a given image, solve the following constrained optimization 
problem:

subject to

• can be considered as a Lagrange multiplier. 

2. TOTAL VARIATION (TV) REGULARIZATION

• a > 0 is a scalar.

The gradient descent equation for Equation (10) is defined by

(11)
∂u
∂t

= r ·
✓

ru
|ru|

◆
� 1

a
(u � f );

∂u
∂n

����
∂W

= 0 .

Since the value of a specifies the relative importance of the fidelity term, it can be
interpreted as a scale parameter that determines the level of smoothing. In Figure 6, the
role of this parameter is illustrated. The restored images are given in Figure 6(b)-(d).
As it can be clearly seen, level of smoothing increases with increasing a.

In the original formulation of Rudin et al., the observed image f was assumed to be
degraded by additive Gaussian noise with zero mean and known variance s2. Hence,
in order to restore a given image, they propose to solve the constrained optimization
problem

(12) min
u

Z

W

|ru|dx

subject to

(13)
Z

W

(u � f )2dx = s2 .

When TV regularization is defined as a constrained optimization problem, 1
a can be

considered as a Lagrange multiplier, which has to be determined by taking the given
constraint into account.

TV regularization can be associated with a nonlinear diffusion filter, the so-called
TV flow [1, 3]. Ignoring the fidelity term in Equation (11) leads to the PDE

(14)
∂u
∂t

= r · (g(|ru|)ru)

with u0 = f and the diffusivity function g(|ru|) = 1
|ru| . Notice that this diffusiv-

ity function has no additional contrast parameter as compared with the Perona-Malik
diffusivities. Figure 7 and Figure 8 depict TV scale space examples sampled at dif-
ferent diffusion times for two different images. It is evident from these images that the
corresponding smoothing process yields segmentation-like, piecewise constant images.

Numerical Implementation

The evolution equation of u (11) can be discretized by using standard finite differences.
An important point is that the solution of TV regularization or equivalently TV flow
leads to singular diffusivities as shown in Equation (14). In numerical implementations
based on standard discretization, this leads to stability problems as the image gradient
tends to zero. A common solution to this problem is to add a small positive constant e
to image gradients.

After e-regularization, the space-discrete version of Equation (11) can be written
as:
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TV Regularization and TV Flow

• TV regularization can be associated with a nonlinear diffusion filter, 
the so-called TV flow. 

• Ignoring the fidelity term in the TV regularization model leads to the 
PDE: 

with                and the diffusivity function

• Notice that this diffusivity function has no additional contrast 
parameter as compared with the Perona-Malik diffusivities. 
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Sample TV Flow results

• Corresponding smoothing process yields segmentation-like, 
piecewise constant images. 

3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) a = 50, (c) a = 100, and (d) a = 200.
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Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |ru|2 is large, and as a result, the edges are preserved or even enhanced. In [6],
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1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

T = 0 T = 50 T = 100

T = 200 T = 400 T = 800

Figure 3: Reg. Perona-Malik results for different diffusion time (l = 1, s = 1).

T = 0 T = 100 T = 200

T = 400 T = 800 T = 1600

Figure 4: Reg. Perona-Malik results for different diffusion times (l = 1, s = 1).

This results in the following space-discrete equation:

∂u
∂t

=
∂

∂x
(g(|ru|)ux) +

∂

∂y
�

g(|ru|)uy
�

,

dui,j

dt
= gi+ 1

2 ,j ·
�
ui+1,j � ui,j

�
� gi� 1

2 ,j ·
�
ui,j � ui�1,j

�

+ gi,j+ 1
2
·
�
ui,j+1 � ui,j

�
� gi,j� 1

2
·
�
ui,j � ui,j�1

�
.(7)4
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Figure 8: TV flow results for different diffusion times.

Weickert suggested an alternative approach that additionally takes direction of the im-
age gradients into account. The suggested model is an anisotropic nonlinear diffusion
model with better edge enhancing capabilities.

In general, any anisotropic nonlinear diffusion can be described by the equation

(18)
∂u
∂t

= r · (D(ru)ru)

where u is the smoothed image that is initialized with the input image f (that is
u0(x) = f (x)), and D represents a matrix-valued diffusion tensor that describes the
smoothing directions and the corresponding diffusivities. One can easily observe that
for linear diffusion the diffusion tensor can be defined as D(ru) = I, which results
in a constant diffusion coefficient for all image points in all directions. Similarly, for
Perona-Malik type nonlinear diffusion, D(ru) = g(|rus|)I. Such a choice reduces
the amount of smoothing at image edges, but in an equal amount in all directions. In
actual anisotropic setting, the diffusion tensor D is defined as a function of the structure
tensor given by

(19) J(ru) = ruruT =


u2

x uxuy
uxuy u2

y

�
.

The structure tensor J(ru) can be interpreted as an image feature describing the
local orientation information. It has an orthonormal basis of eigenvectors v1 and v2
with v1 k ru and v2 ? ru, and the corresponding eigenvalues l1 = |ru|2 and
l2 = 0. It is important to note that noise significantly affects the tensor estimation.
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Today

• Median filter
• Perona-Malik Type Nonlinear Diffusion
• Total Variation (TV) Regularization
• Mumford-Shah Model
• Bilateral filtering 
• Non-local means denoising 
• Image smoothing via region covariance (RegCov smoothing) 



Mumford-Shah (MS) Segmentation Model

• Mumford & Shah, Comm. Pure Appl. Math., 1989

• Segmentation is formalized as a functional minimization:
Given an image f, compute a piecewise smooth image u and 
an edge set Γ

– Ω ⊂ R2 is connected, bounded, open subset representing the image domain, 
– f is an image defined on Ω,
– Γ ⊂Ω is the edge set segmenting Ω,
– u is the piecewise smooth approximation of f ,
– α, β > 0 are the scale space parameters.
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1 MUMFORD-SHAH (MS) FUNCTIONAL

The formulation of Mumford and Shah [6] is based on a functional minimization via
which a piecewise smooth approximation of a given image and an edge set are to be
recovered simultaneously. In this unified formulation, smoothing and edge detection
processes work jointly to partition an image into segments. The Mumford-Shah (MS)
model is:

(1) EMS(u, G) = b
Z

W

(u � f )2
dx + a

Z

W\G

|ru|2dx + length(G)

where

• W ⇢ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on W,

• G ⇢ W is the edge set segmenting W,

• u is the piecewise smooth approximation of f ,

• a, b > 0 are the scale space parameters of the model.
⇤erkut@cs.hacettepe.edu.tr
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• Smoothing and edge detection processes work jointly to partition an 
image into segments.

• Unknown edge set Γ of a lower dimension makes the minimization of 
the MS model very difficult. 

• In literature several approaches for approximating 
the MS model are suggested.
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Ambrosio-Tortorelli (AT) Approximation

• Unknown edge set Γ is 
replaced with a continuous 
function v(x)
– v ≈ 0 along image edges
– v grows rapidly towards 1

away from edges

• The function v can be interpreted 
as a blurred version of the edge set. 

• The parameter ρ specifies 
the level of blurring.

length(Γ)

2. AMBROSIO-TORTORELLI (AT) APPROXIMATION OF THE MS FUNCTIONAL

The first term in EMS is the data fidelity term which forces u to be close to the
original image f . The next two terms are the generic priors that provide certain knowl-
edge about the solution. Specifically, the second term, the so-called regularization or
smoothness term, gives preference to piecewise smooth images by penalizing high gra-
dients. Since the integral is over W\G, this prior is turned off at image boundaries, and
thus it excludes image edges to be smoothed out. The third term is a penalty term on
total edge length which prevents the image to be split into many regions. Additionally,
it implicitly imposes smoothness of the boundaries.

Generally, the unknown edge set G of a lower dimension makes the minimization of
the MS model very difficult. Hence, in literature several approaches for approximating
the MS model are suggested [1, 4]. In the next section, the approximation proposed by
Ambrosio and Tortorelli [1] will be reviewed.

2 AMBROSIO-TORTORELLI (AT) APPROXIMATION OF THE MS
FUNCTIONAL

Ambrosio and Tortorelli [1] suggested an approximation for the MS model by follow-
ing the G convergence framework [2]. The basic idea is to introduce a smooth edge
indicator function v which is more convenient than using the characteristic function cG
as the edge indicator. The new function v depends on a parameter r, and as r ! 0,
v ! 1 � cG. That is, v(x) ⇡ 0 if x 2 G and v(x) ⇡ 1 otherwise. The result is the
functional

(2) EAT(u, v) =
Z

W

✓
b(u � f )2 + a(v2|ru|2) + 1

2

✓
r|rv|2 + (1 � v)2

r

◆◆
dx .

In the Ambrosio-Tortorelli (AT) model, the continuous function v encodes the
boundary information. The value of v at a point can be interpreted as a measure of
boundaryness where the low values indicate the edge points. That is, v ⇡ 0 along the
boundaries and grows rapidly away from them. Thus, the function v may be thought as
a blurred version of the edge set. The parameter r specifies the level of blurring (Fig-
ure 1), and as r ! 0, 1

2
R

W

⇣
r|rv|2 + (1�v)2

r

⌘
dx approximates the cardinality of the

edge set G.

! ⇢2

! ⇢1

edge point

⇢1 < ⇢2

Figure 1: An example 1D edge strength function (1 � v) for two different values of r.
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Ambrosio-Tortorelli (AT) Approximation

• Solve the following system of coupled PDEs for piecewise smooth 
image u and the edge strength function v: 

Piecewise smooth image u and the edge strength function v are simultaneously
computed via the solution of the following system of coupled PDEs:
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= 0(4)

where ∂W denotes the boundary of W and n denotes the outer unit normal vector to ∂W.

Notice that PDE for each variable can be interpreted as a biased diffusion equation
that minimizes a convex quadratic functional in which the other variable is kept fixed:

Keeping v fixed, Equation (3) minimizes a convex quadratic functional given by
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dx .

The data fidelity term in Equation (3) provides a bias that forces u to be close to the
original image f . In the regularization term, the edge strength function v specifies the
boundary points and guides the smoothing accordingly. Since v ⇡ 0 along the bound-
aries, no smoothing is carried out at the boundary points, thus the edges are preserved.

Keeping u fixed, Equation (4) minimizes a convex quadratic functional given by
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The reciprocal relationship between v and |ru|2 can be clearly observed in the above
functional. It asserts that the function v is nothing but a smoothing of 1

1+2ar|ru|2 with
a blurring radius proportional to r and reciprocal to |ru|. Ignoring the smoothness
term r|rv|2, which mildly forces some spatial organization by requiring the edges to
be smooth, and by letting r ! 0 [3, 9], v ⇡ 1

1+2ar|ru|2 .

Considering this approximation and the relation between variational regularization
and diffusion equations, Equation (3) can be interpreted as a Perona-Malik type nonlin-
ear diffusion at a specific scale. Replacing v in Equation (3) with 1/(1 + 2ar|ru|2)
yields
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where g(|ru|) =
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with l2 = 1/ (2ar). Thus,

p
1/ (2ar) can be seen

as a contrast parameter.

Since the parameters a and b define the relative importance of the regularization
term, the scale is determined by the ratio a/b. Keeping the value of a fixed, decreasing
the value of b results in more simplified results (Figure 2(b)-(c)). Moreover, the scale
space parameters a and b also define the detail level in segmentation. With the ratio
a/b fixed, the level of detail increases with the increasing a (Figure 2(b)-(d)).
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• Keeping v fixed, PDE for the process u minimizes the following convex 
quadratic functional:

• Data fidelity term provides a bias that forces u to be close to the original 
image f . 

• In the regularization term, the edge strength function v specifies the 
boundary points and guides the smoothing accordingly. 

• Since v ≈ 0 along the boundaries, no smoothing is carried out at the 
boundary points, thus the edges are preserved. 
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• Keeping u fixed, PDE for the process v minimizes the following convex 
quadratic functional:

• The function v is nothing but a smoothing of 

• The smoothness term forces some spatial organization by requiring the 
edges to be smooth.

• Ignoring the smoothness term and letting ρ go to 0, we have

Ambrosio-Tortorelli (AT) Approximation: v process
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• Replacing v with                           , PDE for the process u 
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Relating with the Perona-Malik Diffusion
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Figure 2: Example segmentation results (u and 1� v). (a) Source image. (b)-(d) Corre-
sponding segmentations obtained with the parameters (b) a = 1, b = 0.01, r = 0.01,
(c) a = 1, b = 0.001, r = 0.01, and (d) a = 4, b = 0.04, r = 0.01, respectively.
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Challenging Cases for Ambrosio-Tortorelli Approximation



• E. Erdem and S. Tari, 
“Mumford-Shah Regularizer with Contextual Feedback”, 
Journal of Mathematical Imaging and Vision, 
Vol. 33, No.1, pp. 67-84, January 2009

• Contextual knowledge extracted from local image 
regions guides the regularization process.

Context-Guided Image Smoothing



Context-Guided Image Smoothing

pixel level

local 
neighborhood

contextual
measure 

local
context



Context-Guided Image Smoothing

• 2 coupled processes (u and v modules)

φ∈[0,1] V∈{0,1} 



The Roles of φ and V

1. Eliminating an accidentally occurring event
– e.g., a high gradient due to noise
– V=1, φ is low for accidental occurrences

2. Preventing an accidental elimination of a feature 
of interest
– e.g., encourage edge formation
– V=0, φ is low for meaningful occurrences 



Experimental Results

• Suggested contextual measures: 
1. Directional consistency of edges
• shapes have smooth boundaries

2. Edge Continuity
• gap filling

3. Texture Edges
• boundary between different textured regions

4. Local Scale
• Resolution varies throughout the image



Directional Consistency
Approximate MS

Context guided filtering result



Directional Consistency

Approximate MS

Context guided 
filtering result



Edge Continuity

Approximate MS Context guided 
filtering result



Coalition of Directional Consistency and Texture 
Edges

φte



Today

• Median filter
• Perona-Malik Type Nonlinear Diffusion
• Total Variation (TV) Regularization
• Mumford-Shah Model
• Bilateral filtering 
• Non-local means denoising 
• Image smoothing via region covariance (RegCov smoothing) 

Slides are adapted from the ones prepared by S. Paris, P. Kornprobst, J. Tumblin, and F. Durand.



Strategy for Smoothing Images

• Images are not smooth because adjacent pixels are different.

• Smoothing = making adjacent pixels look more similar.

• Smoothing strategy
pixel ~ average of its neighbors



normalized
Gaussian function
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Idea: weighted average of pixels.

0
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Gaussian  Blur

average

input

per-pixel multiplication
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size of the window
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Properties of Gaussian Blur

• Weights independent of spatial location
– linear convolution
– well-known operation
– efficient computation (recursive algorithm, FFT…)

• Does smooth images

• But smoothes too much:
edges are blurred.
– Only spatial distance matters
– No edge term

input

output
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qp qp ||||][ s

space



*

*

*

input output

Same Gaussian kernel everywhere.

Blur Comes from Averaging across Edges



Bilateral Filter: No Averaging across Edges

*

*

*

input output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi
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not new
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new
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Same idea: weighted average of pixels.

Bilateral Filter: An Additional Edge Term



Space and Range Parameters

• space σs : spatial extent of the kernel, size of the considered 
neighborhood.

• range σr : “minimum” amplitude of an edge
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σs = 2

σs = 6

σs = 18

σr = 0.1 σr = 0.25
σr = ∞ 

(Gaussian blur)

input

Exploring the Parameter Space
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For gray-level images 

For color images 

intensity difference

color difference

scalar

3D vector 
(RGB, Lab)

input

output

Bilateral Filtering Color Images



• Nonlinear

• Complex, spatially varying kernels
– Cannot be precomputed, no FFT…

• Brute-force implementation is slow > 10min
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Additional Reading: S. Paris and F. Durand, A Fast Approximation of 
the Bilateral Filter using a Signal Processing Approach, In Proc. ECCV, 
2006

Hard to Compute



Today

• Median filter
• Perona-Malik Type Nonlinear Diffusion
• Total Variation (TV) Regularization
• Mumford-Shah Model
• Bilateral filtering 
• Non-local means denoising 
• Image smoothing via region covariance (RegCov smoothing) 

Slides are adapted from the ones prepared by S. Paris, P. Kornprobst, J. Tumblin, and F. Durand.



NL-Means Filter (Buades 2005)

• Same goals: ‘Smooth within Similar Regions’

• KEY INSIGHT: Generalize, extend ‘Similarity’
– Bilateral: 

Averages neighbors with similar intensities;
– NL-Means:  

Averages neighbors with similar neighborhoods!



• For each and

every pixel p: 

NL-Means Method



• For each and

every pixel p: 

– Define a small, simple 
fixed size 
neighborhood;

NL-Means Method



• For each and
every pixel p: 

– Define a small, simple fixed size neighborhood;
– Define vector Vp: a list of neighboring pixel values.

Vp = 

0.74
0.32
0.41
0.55
…
…
…

NL-Means Method



‘Similar’ pixels p, q

à SMALL
vector distance;

|| Vp – Vq ||2

p

q
NL-Means Method



‘Dissimilar’ pixels  p, q

à LARGE
vector distance;

|| Vp – Vq ||2

p
q

q

NL-Means Method



‘Dissimilar’ pixels  p, q
à LARGE

vector distance;

Filter with this!

|| Vp – Vq ||2

p
q

NL-Means Method



p, q neighbors define

a vector distance;

Filter with this:
No spatial term!

|| Vp – Vq ||2 p
q
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NL-Means Method



pixels  p, q neighbors
Set a vector distance;

Vector Distance to p sets 
weight for each pixel q

|| Vp – Vq ||2 p
q
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NL-Means Method



NL-Means Method



NL-Means Method

• Noisy
source
image:



NL-Means Method

• Gaussian Filter

Low noise,
Low detail



NL-Means Method

• Anisotropic
Diffusion

Note ‘stairsteps’:
~ piecewise constant



NL-Means Method

• Bilateral Filter

Better, but similar
‘stairsteps’: 



NL-Means Method

• NL-Means:

Sharp,
Low noise,
Few artifacts.



NL-Means Method



NL-Means Method

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/



Today

• Median filter
• Perona-Malik Type Nonlinear Diffusion
• Total Variation (TV) Regularization
• Mumford-Shah Model
• Bilateral filtering 
• Non-local means denoising 
• Image smoothing via region covariance (RegCov smoothing) 



A�Modern�Paradigm:�Measuring�
Similarity�Between…

Images
Patches

Pixels

Pixels

Patches
Images

Similarities can be defined at different scales..

From pixels to patches and to images

Slides: P. Milanfar.



Pixelwise similarity metrics

• To measure the similarity of two pixels, we can consider 
– Spatial distance
– Gray‐level distance

Defining�a�pointͲwise�measure

• To�measure�the�similarity�of�two�pixels,�consider
– Spatial distance

– GrayͲlevel distance

Spatial ǻ

G
ra

y-
le

ve
l ǻ

x

y

Slides: P. Milanfar.



Euclidean metrics

• Natural ways to incorporate the two Δs:
– Bilateral Kernel [Tomasi, Manduchi, ‘98] (pixelwise)
– Non‐Local Means Kernel [Buades, et al. ‘05] (patchwise)

Euclidean�measures

• Natural�ways�to�incorporate�the�two�ȴs:
– Bilateral Kernel�[Tomasi,�Manduchi,�‘98]�(pointwise)
– NonͲLocal�Means Kernel�[Buades,�et�al.�‘05]�(patchwise)

Spatial ǻ
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lǻ

x

y “Euclidean” distance

Slides: P. Milanfar.



Bilateral�Kernel�(BL)�[Tomasi et�al.�‘98]

Pixel similarity Spatial similarity

=

Pixels

Bilateral Kernel (BL) [Tomasi et al. ‘98]

Slides: P. Milanfar.



NonͲlocal�Means�(NLM)��[Buades et�al.�‘05]

Patch similarity Spatial similarity

=

Æ Smoothing�effect

Patches

Smoothing effect

Non-local Means (NLM) [Buades et al. ‘05]



• Decomposing an image into structure and texture components

Input Image

Structure-Texture Decomposition



Structure Component

• Decomposing an image into structure and texture components

Structure-Texture Decomposition



Texture Component

• Decomposing an image into structure and texture components

Structure-Texture Decomposition



Structure

Texture

Input Image

• Decomposing an image into structure and texture components

Structure-Texture Decomposition



Tuzel et al., ECCV 2006

F x, y = ϕ(I, x, y)
image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Figure 2: Region covariance descriptors for different regions of

the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =

⇢
↵

p
dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
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the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =
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↵
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dLi if 1  i  d

�↵
p
dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
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the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =
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↵
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dLi if 1  i  d
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dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
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the publicly available Barbara image. Regions having similar vi-

sual characteristics are represented by similar covariance descrip-

tors. In this example, the covariance representations are based on

very simple image features, namely intensity, orientation, and pixel

coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix CR

of the feature points:

CR =
1

n� 1

nX

i=0

(zk � µ)(zk � µ)T (2)

with zk=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {si}, referred to as Sigma Points, can be computed as:

si =
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dLi if 1  i  d
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dLi if d+ 1  i  2d

(3)

where Li is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-

gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Final representation

Resulting kernel function

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�
k (Cp)� (Cq)k

2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�
d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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�
d(p,q)2
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(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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RegCov Smoothing – Model 1



• An alternative way is to use statistical similarity measures.

• A Mahalanobis-like distance measure to compare to image patches.
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image pixel is represented with a 7-dimensional feature vector:
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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k (Cp)� (Cq)k

2

2�2
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(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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�
d(p,q)2
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(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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image pixel is represented with a 7-dimensional feature vector:
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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image pixel is represented with a 7-dimensional feature vector:
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1(µp � µq)T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do

3: compute first and second order region statistics, µp and Cp

4: end for

5: for each: image pixel p do

6: for each: neighboring image pixel q do

7: compute weight wpq using either Eq. 8 (Model 1) or
Eq. 10 (Model 2)

8: end for

9: estimate structure component S(p) using Eq. 5
10: end for

Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k

(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

Ti(p) + Sn(p) (11)
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resulted from a discussion with Rahul Narain (Berkeley University)

• We use Kullback-Leibler(KL)-Divergence measure from probability 
theory.

• A KL-Divergence form  is used to calculate statistical distance 
between two multivariate normal distribution

p
q

Algorithm 1 Structure preserving image smoothing
Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.( 28) (Model 1), Eq.( 30) (Model 2),or

Eq.( 32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.

dKL(p,q) =
1

2

 
tr(Cq

�1Cp) + (µp � µq)
TCq

�1(µp � µq)� k � ln
⇣detCp

detCq

⌘!
(31)

wpq /
dKL(p,q)

2�2
(32)

Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).
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Input: image I , scale parameter k, smoothing parameter �

1: extract visual features F via Eq. 26
2: for each: image pixel p do
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5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq.( 28) (Model 1), Eq.( 30) (Model 2),or

Eq.( 32) (Model 3)
8: end for
9: estimate structure component S(p) using Eq. 25

10: end for
Output: structure image S

3.5. Model 3

From the probability theory, we apply Kullback-Leibler(KL) divergence measure for two
multivariate normal distribution of 7-dimension features to determine filtering weights.
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Our model 2 gives better structure-texture decomposition results than Model 1 but if the
distributions have the same mean but very different covariances, distance measure we use in
Model 2 still gives zero so that some small structures may be lost.

Figure 3.3. shows sample structure-texture decompositions obtained with our smoothing
models (Model 1, Model 2 and Model 3). The input image contains various textured regions
with different characteristics, such as the cloth spread over the table, the pants and the scarf
of the girl. It may be seen that both of the proposed models successfully separated texture
from structure, with Model 2 and Model 3 slightly better than Model 1 and Model 3 preserve
small structures better than Model 2. (see Figure 3.4.).

22

Resulting kernel

RegCov Smoothing – Model 3



N
ei

gh
bo

rh
oo

d
B

LF
N

LM
M

od
el

2

FIGURE 3.2.: Our filtering kernels consider local image geometry on calculation of filtering
weights by capturing texture information.

[�1 2 � 1], and (x, y) denotes the pixel location. Hence, the covariance descriptor of an
image patch is computed as a 7⇥ 7 matrix. Including (x, y) into the feature set is important
since it allows us to encode the correlation of other features with the spatial coordinates. The
feature set can be extended to include other features, like for example rotationally invariant
forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch similarity weights wpq

using the intensity information and taking the weighted average over the corresponding RGB
vectors rather than the intensity values in Equation 23. We empirically found that including
RGB components to the feature set does not change the results much but increases the run-
ning times.

3.3. Model 1

Using the set S defined by Equation (21), a vectorial representation of a covariance matrix
can be obtained by simply concatenating the elements of S . Moreover, first-order statistics
can be easily incorporated to this representation scheme by including the mean vector of the
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