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Outline

« Paired image-to-image translation

 Unpaired image-to-image translation



Outline

« Paired image-to-image translation

Labels to Street Scene Labels to Facade BW to Color

input input output
Day to Night ____ Edges to Photo

output output

Acknowledgement: The slides adapted from CVPR 2018 Tutorial on GANs by Philip Isola on paired image to image translation.



Image-to-Image Iranslation
Object labeling

W e

'Long et al. 2015]

Season change

[Laffont et al. 2014] [Gatys et al. 2016]



Paired Image-to-Image ITranslation

Input X

Training data

arg m}n <1j!:(s(,y [L(F(X)7 Y>]

Objective function Neural Network

(loss) [Zhang et al., ECCV 2016]



Paired Image-to-Image ITranslation

Input X Output y

arg min Ky
tin By [

“What should | do” “How should | do it?”



Designing loss functions

Input Qutput Ground truth
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Designing loss functions

Input /hang et al. 2016 Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.






Designing loss functions
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Designing loss functions

Image colorization

L2 regression

[Zhang, Isola, Efros, ECCV 2016]
Super-resolution

L2 regression

[Johnson, Alahi, Li, ECCV 2016]



Designing loss functions

Image colorization

Cross entropy objective,
with colorfulness term

[Zhang, Isola, Efros, ECCV 2016]
Super-resolution

Deep feature covariance
matching objective

[Johnson, Alahi, Li, ECCV 2016]



Universal loss?




Generated images

“Generative Adversarial Network”
(GANS)

Generated

vS Real
(classifier)

|Goodfellow, Pouget-Abadie, Mirza, Xu,
Warde-Farley, Ozair, Courville, Bengio 2014]




Conditional GANs

‘Mirza et al. 2014] [Reed et al. 2016]
Ledig etal. 2017] [lsola et al. 2017]







(Generat

ol

il > real or fake?

Discriminator

G tries to synthesize fake images that fool D

D tries to identity the takes



1T > fake (0.9)

v —_—

: BN o5
L ¢+

1T > real (0.1)

arg max
D




> real or fake?

G tries to synthesize fake images that fool D:

ar x.y| log D(G(x)) + log(l— D(y)) |




1T > real or fake?

G tries to synthesize fake images that fool the best D:

arg xyl log D(G(x)) + log(l —D(y)) |




| 0SS Function
, D

G’s perspective: D is a loss function.

Rather than being hand-designed, It IS learnead.



> real or fake?

arg mci¥n max x.y| log D(G(x)) + log(l— D(y)) |




real!
(“Aquarius”)

arg mci¥n max x.y| log D(G(x)) + log(l— D(y)) |




1T > real or fake pair”?

arg min max “:X,y[ log D(G(X)) an log(l — D(Y)) ]

G D
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HH — real or fake pair?

arg min max 43X,y[ log D@, G(X)) T log(l — 5@7 Y)) ]

G D
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il > real or take pair

arg min max
G D




Training Details: Loss function

Conditional GAN

G* = arg mén max L.aan(G, D)+ ALr1(G).



Training Details: Loss function

Conditional GAN

G* = arg mci:n max L.aan (G, D)+ ALp1(G).

Stable training + fast convergence

[c.f. Pathak et al. CVPR 2016]



W — Color

Input Qutput

Data from [Russakovsky et al. 2015]
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Input Output

Data from [maps.google.com]



http://maps.google.com

Challenges in image-to-image translation

1. Output is high-dimensional, structured object

O

2. Uncertainty in mapping; many plausible outputs Q<
O




Structured Prediction

Input Output larget
Yy




Structured Prediction

Each pixel treated as Models at pairwise configuration
iIndependent of pixels

| | p(yilx) % Hp(yz', y;|x)

()



‘Perceptual Loss”

Qutput
Input [Johnson, Alahi, Li 2016]

N\

L(S’, Y) — ¢(S’) o ¢(Y> 9 [Johnson, Alahi, Li, ECCV 2016]

[Chen & Koltun ICCV 2017

[Zhang et al. CVPR 2018]
[Mostajabi, Maire, Shakhnarovich, arXiv 2018]




Structured Prediction

TEER
9O
. o 0.0 o= e
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Model joint configuration
of all pixels

p(y|x)

A GAN, with sufficient capaci

samples from the full joint dis

(at equilibrium)

ty,
ribution



N pixels

|

Patch Discriminator

Rather than penalizing If output image
looks fake, penalize if each
overlapping patch in output looks fake

[Li & Wand 20~
[Shrivastava et al. 20-

[Isola et al. 20°




| abels = Facades

1x1 Discriminator

Data from [Tylecek, 2013]



| abels = Facades

Input 16x16 Discriminator

Data from [Tylecek, 2013]



| abels = Facades

Input 70x/70 Discriminator

Data from [Tylecek, 2013]



| abels = Facades

Full image Discriminator

Data from [Tylecek, 2013]



Patch Discriminator

Rather than penalizing If output image
looks fake, penalize it each
overlapping patch in output looks fake

N pixels

l e Faster, fewer parameters
* More supervised observations
* Applies to arbitrarily large images




Challenges in image-to-image translation

1. Output is high-dimensional, structured object

—> Use a deep net, D, to analyze output!

O

2. Uncertainty in mapping; many plausible outputs O<O
O
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Input L1 1x1 Discriminator

“Unstructured” discriminator makes images colorful!



Probability Density

Point estimate

Mode seeking property

*

q" = argmin, Dk (p||q)

Probability Density

I

Maximum likelihood

¢ = argmin, Dk (q||p)

Probability Density

Reverse KL

adapted from [Goodfellow, 2016]



Input Groundtruth
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Input L1 Output Groundtruth
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Hallucinations

Input

Qutput

Input

Qutput

Input

Input




Challenges in image-to-image translation

1. Output is high-dimensional, structured object

—> Use a deep net, D, to analyze output!

2. Uncertainty in mapping; many plausible outputs O<O
—> D only cares about “plausibility”, doesn’t hedge O



Modeling multiple possible outputs




Modeling multiple possible outputs

INnput

Possible outputs



BiCycleGAN [Zhu et al., NIPS 2017]
(c.t. INfoGAN [Chen et al. 2016])

MAD-GAN [Ghosh et al., CVPR 2018]




Labels

Rndom\y generated facades

[BiCycleGAN, Zhu et al., NIPS 2017]



|_atent space exploration
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[BiCycleGAN, Zhu et al., NIPS 2017]




Challenges in image-to-image translation

1. Output is high-dimensional, structured object

—> Use a deep net, D, to analyze output!

2. Uncertainty iIn mapping; many plausible outputs O<O
—> Can model the distribution of possibilities O



Outline

» Unpaired image-to-image translation

Acknowledgement: The slides adapted from the ones prepared by Jun-Yan Zhu and Taesung Park



Image-to-Image Translation with pix2pix

Labels to Street Scene Labels to Facade BW to Color

input output
i Aerial to Map i

input oput input output
Day to Night

output
INPUT OUTPUT

* o Image-to-image Translation with Conditional Adversarial Nets
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. CVPR 2017

m
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Palred

Horse < zebra: how to get zebras?

- Expensive to collect pairs.
- Impossible in many scenarios.




Unpaired
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Generator — D |
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No input-output pairs!
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mode collapse!
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Cycle-Consistent Adversarial Networks

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]



Cycle-Consistent Adversarial Networks

[Mark Twain, 1903]

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]



Cycle-Consistent Adversarial Networks

. \
Reconstruction | . S\

error

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]



Cycle Consistency Loss

G(%) bangd cycle loss

iey),

oo

~_| 7
Dy (G(x)) h)
X TN () S
Reconstruction | ..
error '

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]



Cycle Consistency Loss

| F(G(X)) _Fy) G(F(X))
b G ke
~ /_\ ~
X Y|~ X Y
oo
Dg (F(x))
. X ; X ; Reconstruction
Reconstruction | . S\ \Q\ _____ iy
error ' 9

[F(GGa) =xl,  lIG(F») = ¥ll,

See similar formulations [Yi et al. 2017], [Kim et al. 2017] [Zhu™, Park*, Isola, and Efros, ICCV 2017]




Cycle Consistency in Vision

Consistent Track

Inconsistent Track

- R A' '3
R A
t Xt+1 backward trajectory
tﬁn

forward-backward
error - >
Xi+1 .
X, forward trajectory

It It+1 It+k

Forward-Backward Error: Automatic Detection of Tracking Failures. ICPR 10’
Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.
Also see [Sundaram, Brox, Keutzer, ECCV 10’]



Cycle Consistency in Vision

Shape Matching Co-segmentation SfM
Huang et al, SGP’13 Wang et al, ICCV’13 Zach et al, CVPR’10

CoIIectlon Correspondence

Zhou et al, CVPR'15 Zhou et al, ICCV'15
" slides credit @Tinghui Zhou



Results



Map — Photo Photo — Map

Loss % Turkers labeled real % Turkers labeled real
CoGAN [30] 0.6% + 0.5% 0.9% + 0.5%
BiGAN/ALI [8, 6] 2.1% + 1.0% 1.9% + 0.9%
SImGAN [45] 0.7% + 0.5% 2.6% + 1.1%
Feature loss + GAN 1.2% =+ 0.6% 0.3% =+ 0.2%
CycleGAN (ours) 26.8% + 2.8% 23.2% + 3.4%

AMT ‘real vs fake’ test on maps < aerial

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [30] 0.40 0.10 0.06
BiGAN/ALI [8, 6] 0.19 0.06 0.02
SimGAN [45] 0.20 0.10 0.04
Feature loss + GAN 0.06 0.04 0.01
CycleGAN (ours) 0.52 0.17 0.11

FCN scores on cityscapes labels— photos

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [30] 0.45 0.11 0.08
BiGAN/ALI [&, 6] 041 0.13 0.07
SimGAN [45] 0.47 0.11 0.07
Feature loss + GAN 0.50 0.10 0.06
CycleGAN (ours) 0.58 0.22 0.16

Classification performance of photo—labels









Collection Style Transfer

Photogra
@ Alexei Efros
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Monet’s paintings — photos
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Monet’s paintings — photos







Why CycleGAN works



9|A1S

Style and Content Separation

Paired Separation

Content

C
C
C
C
C

777

F G H

Separating Style and Content with
Bilinear Models
[Tenenbaum and Freeman 2000’]

Unpaired Separation

Adversarial Loss: change the style

*CGAN(Ga DY) X: Y) :Eprdata(y) [log DY (y)]
+E o pia () [108(1 — Dy (G ()]

Cycle Consistency Loss: preserve the content

Leye(G, F) =Eyopge () [I1F(G(z)) — [|1]
HEympiuav) |G (F () — ylla]-
Two empirical assumptions:
- content is easy to keep.
- style is easy to change.



Neural Style Transfer [Gatys et al. 2015]

Style and Content:

| - Content: feature difference

- Style: Gram Matrix difference
- Both losses are hard-coded.




Style Imagel | Style image |l Entire coIIectlon - CycIeGAN

Photo — Van ‘

Style image | Style image |l

horse — zebra



Applications



iew
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CG2Real: GTAS — real streetv

GTAS5 CG Input IrQpitiedtby [Johnson et al. 2011]



eaIZCG: real streetview - GTA

Cityscae Input



Synthetic Data as Supervision

GTAS images Segmentation labels
[Richter™, Vineet™ et al. 2016] [Krahenbuhl et al. 2018]




Domain Adaptation with CycleGAN

Train on GTAS data Test on real images
| meanlOU | Per-pixel accuracy
Oracle (Train and test on Real) 60.3 93.1
Train on CG, test on Real 17.9 54.0

See Judy Hoffman’s talk at 14:30 “Adversarial Domain Adaptation”



Domain Adaptation with CycleGAN

GTAS data + Domain adaptation Test on real images
| meanlOU | Per-pixel accuracy
Oracle (Train and test on Real) 60.3 93.1
Train on CG, test on Real 17.9 54.0
FCN in the wild [Previous STOA] 27.1 -

See Judy Hoffman’s talk at 14:30 “Adversarial Domain Adaptation”



Domain Adaptation with CycleGAN

Train on CycleGAN data Test on real images
| meanlOU | Per-pixel accuracy _
Oracle (Train and test on Real) 60.3 93.1
Train on CG, test on Real 17.9 54.0
FCN in the wild [Previous STOA] 27.1 -
Train on CycleGAN, test on Real 34.8 82.8

See Judy Hoffman’s talk at 14:30 “Adversarial Domain Adaptation”



Applications and Extentions

- Attribute Editing [Lu et al.] Object Editing [Liang et al.]

Low-res Ba]d Bangs Input
arXiv:1705.09966 arXiv:1708.00315

Output

Front/Character Transfer [Ignatov et al.] Data generatlon [Wang et al.]

Input output Samples by CycIeWGAN
arXiv: 1801.08624 arXiv:1707.03124



Image Dehazing

Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing. CVPRW 2018
Deniz Engin* Anil Genc*, Hazim Kemal Ekenel



Manipulating
Natural Scenes

* Joint work with Levent Karacan, Zeynep Akata and Aykut Erdem

Manipulating Attributes of Natural Scenes via Hallucination

LEVENT KARACAN, Hacettepe University and Iskenderun Technical University, Turkey

ZEYNEP AKATA, University of Tiibingen, Germany

AYKUT ERDEM and ERKUT ERDEM, Hacettepe University, Turkey

“

Spring & Clouds Moist,
Rain
& Fog

prediction

Fig. 1. Given a naturalimage, our approach can hallucinate different versions of the same scene in a wide range of conditions, e.g., night, sunset, winter, spring,
rain, fog, or even a combination of those. First, we utilize a generator network to imagine the scene with respect to its semantic layout and the desired set of
attributes. Then, we directly transfer the scene characteristics from the hallucinated output to the input image, without the need for a reference style image.

In this study, we explore building a two-stage framework for enabling users
to directly manipulate high-level attributes of a natural scene. The key to
our approach is a deep generative network that can hallucinate images of
a scene as if they were taken in a different season (e.g., during winter),
weather condition (e.g., on a cloudy day), or at a different time of the day
(e.g., at sunset). Once the scene is hallucinated with the given attributes, the
corresponding look is then transferred to the input image while preserv-
ing the semantic details intact, giving a photo-realistic manipulation result.
As the proposed framework hallucinates what the scene will look like, it

‘This work was supported in part by TUBA GEBIP fellowship awarded to E. Erdem.
We would like to thank NVIDIA Corporation for the donation of GPUs used in this
research. This work has been partially funded by the DFG-EXC-Nummer 2064/1-
Projektnummer 390727645,

Authors’ addresses: L. Karacan, Hacettepe University, Ankara, Turkey and Iskenderun

does not require any reference style image as commonly utilized in most of
the appearance or style transfer approaches. Moreover, it allows to simul-
taneously manipulate a given scene according to a diverse set of transient
attributes within a single model, eliminating the need of training multiple

networks per each ion task. Our ive set of q
and quantitative results d the i of our approach
against the competing methods.

CCS Concepts: - Computing methodologies — Neural networks; Im-
age i ion; Image i

Additional Key Words and Phrases: Image generation, style transfer, gen-
erative models, visual attributes
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RIGHTS LIN KO

Attributes of Natural Scenes via Hallucination. ACM Trans.
Graph. 39, 1, Article 7 (November 2019), 17 pages.
https://doi.org/10.1145/3368312

1 INTRODUCTION

“The trees, being partly covered with snow, were
outlined indistinctly against the grayish background
formed by a cloudy sky, barely whitened by the
moon.”

—Honore de Balzac (Sarrasine, 1831)

ACM Transactions on Graphics, Vol. 39, No. 1, Article 7. Publication date: November 2019.
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Related Work — Attribute Manipulation

* Different times of a day [Shih et al,, 2013]

(1) Retrieve from database. Time-lapse videos similar to input image (Sec 5.1)

(2) Compute a dense
correspondence across the input
image and the time-lapse , and then M T
warp the time-lapse (Sec. 5.2)

Warped match frame

Affine color mapping learned
B from the time-lapse

(3) Locally affine transfer from time-lapse to the input image (Sec. 6).

* An examplar-based local appearance transfer approach



Related Work— Attribute Manipulation

 Editing scene attributes, [Laffont et al, 2014]

more “autumn” more “rain”

more “winter” more “moist” more “night”

* An examplar-based local appearance transtfer approach



Proposed Framework

Style Transfer Network

v

--»
1

L

Center Crop
and Resizing

________________ B

Source Image

Source Layout

Target Attributes
Flowers 1, Cloudy 1

Scene Generation Network

—/J01oof]

—ly A_

Hallucinated
Style Image

Final Output

10



Proposed Framework

Source Image

Source Layout

Target Attributes

Center Crop
and Resizing

Scene Generation Network

Flowers 1, Cloudy 1

Hallucinated
Style Image

11



Generator Network

Scene Generation Network (SGN)

Discriminator Network

= Deconvs

(/A

S Binary coding

a =
40

= Convs

Spatial Replication

G,

Z~N(O,1) —

100 8

real

* A multiscale strategy similar to that in Pix2pixHD [Wang et al. 2018]
» Generator network: a coarse-scale and a fine-scale generator subnets

* Discriminator; 3 discriminator subnets that operate at 3 different image
scales

12



Scene Generation Network (SGN)
Generator Network a -
kil o1

S Binary coding Gll 100 s Residual | o - ““: .
- : D il :
i . I i
| | | S > |
| E | |
— & e -
atial Replication { '
a = e Y E P — /

40 Gz ﬁbv
-y —
1x1

Convolution i

{0,1}

= Deconvs

(/A

Discriminator Network

= Convs

z~N(O, 1) ——

Residual Blocks

100 8

» Our multi-scale generator network consists of a coarse-scale generator
and a fine-scale generator.

« Our multi-scale discriminator includes 3 different discriminators with
similar network structures that operate at 3 different image scales.

13



Improved Training of SGNs

 Relative Negative Mining (RNM)

» A'real pair’ (real image paired with right conditions) should score higher
than a "fake pair” (either image Is fake or context information mismatches)

» During training SGN, sample mismatching layouts as well.

 Layout-Invariant Perceptual Loss

2
" Ep = IIEz~pz(z);x,s,0L~pdaLm(x,s,a,) [”fP(x) - fP(G(Z; S, a))”2]
= {is the CNN encoder for the scene parser network [Zhou et al, 2018]

14



Proposed Framework

Style Transfer Network

|

v

& Center Crop .
) . Scene Generation Network
g and Resizing
H —
N N e =
g | ' i I
= : N ||
o | U L
: -->
Source Layout L-» — D D —»" e
Target Attributes r L |

Flowers 1, Cloudy !

Hallucinated
Style Image

b ete. S
Final Output

15



Style Target

Style Transfer Network R m
* DPST [Luan et al,, 2017] }A’E
e semantic segmentation to avoid content mismatch mage 111268 Transform Net Yc

(transfer statistics within each category)
» locally affine model as a photorealism regularization (;ZZ';):ABXg (gi;>+33x1

bout

Content Target

n

style content stylized content

16



Style Transfer Network : W-HH[@%% HIHP

N
. Pe = EcAL*EL Ps = EsAIEY
« FPST [Li et al. 2018]
B Stylization step Photo smoothing step
« models photo style transfer as a close-form . )Y =retsy [/
' ' Style S
function mapping - | |

 covariance matrix of deep features encodes
the style information

Content

content stylized content

17



Training Data

* A collection of images from ADE20K [Zhou et al, 2017] and Transient
Attributes [Laffont et al, 2014]

* 9,201 images corresponding to outdoor scenes from ADE20K dataset
« Semantic layouts and predicted scene attributes

* 8,571 Images from Transient Attributes dataset
« Scene attributes and predicted semantic layouts

* In total 17,772 outdoor iImages with 150 semantic categories and
40 transient attributes

* 1,338 images are used for testing

18



Transient Attributes Dataset [Laffont et al, 2014]

* 101 webcams
8571 outdoor
scenes

e 40 transient
attributes for
each image

19



ADE20K Dataset [zhou et al, 2017

e 9,201 outdoor images
« 150 semantic categories




Sample generations

"mountain” "tree" "water"
added added

Spring Summer Autumn Winter

Sunset

21



Comparison against pix2pix and pix2pixHD
Original Layout Pix2pix Pix2pixHD Ours

Clouds: 0.5 | 9 Dull: 1.0
Boring: 0.7 Sunset: 0.8 |
Moist: 0.6 [@iti. cd: 0.6

g 3

—
Daylight: 0.9 Lush: 0.9 Snow: 1.0
s - (). Gl Qs

Sentimental: 1.
icht: 0.8 Ice: 1.0 " Swessful: 0.8

: 0. V ver: 0. Winter: 1.0 yRUgged: 0.8

Lush: 0.8 4 Night Clouds:
‘Daylight: 0.8 Dark L Lush:
iful: Soothing ‘ Daylight:

Bright: 0.9 Lush: 0. Winter: 1.0
Busy: 0.8 Daylight: 0. Cold: 1.0 ! Daylight: 0.
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Ablation Study
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Ablation Study

Layout  Original Baseline
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Quantitative Analysis of SGN

Model IS FID Att. MSE Seg. Acc.
SGN 3.91  43.77 0.016 67.70
+RNM 3.89  41.84 0.016 70.11
+VGG 3.80 41.87 0.016 67.42
+PL 415  36.42 0.015 70.44
+RNM+PL  4.19 35.02 0.015 71.80
Original 577  0.00 0.010 75.64
Model IS FID Seg. Acc.
Pix2pix 3.26  76.40 61.93
% Pix2pixHD 420  47.86 75.57
S Ours 4.19 35.02 71.80
Original 577  0.00 75.64
_ Pix2pixHD 487  50.85 76.17
.E Ours 505 36.34 74.60
Original 737 0.00 77.14

 |S and FID to measure photorealism

 Attribute and segmentation
predictions to measure consistency
with the given contextual cues

A user study containing 200 test
questions was performed

* 66% of the users picked our results
as more realistic.
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Comparison agamst the state-of- the-art
"

" retrieved ™ o “retrieved

.

retrieved retrleved

E

Input Laffont et al., 2014 Laffont et al,, 2014 Ours
+ FPST
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Comparison against the state-of-the-art

retrieved retrieved predicted

e

Dawndusk

R oo =
i
“n

" W predicted 7

Moist

Input Laffont et al., 2014 Laffont et al,, 2014 + FPST Ours

Our results are favored 65% of the time by the users on 60 different test questions.
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Comparison against the state-of-the-art

| & e
. o

Preference rate
Ours w/ FPST > Laffont et al. [2014] 65%
. Ours w/ FPST = Laffont et al. [2014] w/ FPST 83%
e Ours w/ FPST > Ours w/ DPST 52%

Dawndusk

Moist

Input Laffont et al., 2014 Laffont et al,, 2014 + FPST Ours

Our results are favored 65% of the time by the users on 60 different test questions.
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Manipulating Attributes of Natural Scenes via Hallucination
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Manipulating
MR Images

E";T‘B %:5:; - % % IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 10, OCTOBER 2019 2375
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Image Synthesis in Multi-Contrast MRI
With Conditional Generative
Adversarial Networks

Salman UH. Dar, Student Member, IEEE, Mahmut Yurt, Levent Karacan, Aykut Erdem™,
Erkut Erdem™, and Tolga Gukur™, Senior Member, IEEE

Abstract— Acquiring images of the same anatomy with
multiple different contrasts increases the diversity of diag-
nostic information available in an MR exam. Yet, the scan
time limitati may prohibit the isition of certain
contrasts, and some contrasts may be corrupted by noise
and artifacts. In such cases, the ability to synthesize
unacquired or corrupted contrasts can improve diagnos-
tic utility. For mulll-contrast syntheS|s the current meth-
ods learn a ‘mation
the source and target images, either via nonlinear regres-
sion or deterministic neural networks. These methods
can, in turn, suffer from the loss of structural details in
synthesized images. Here, in this paper, we propose a

new app! 1 for Iti ast MRI sy is based on
conditi generative ial networks. The proposed
pp preserves inter iate-to-high frequency details

via an adversarial loss, and it offers enhanced synthe-
sis performance via pixel-wise and perceptual losses for
registered multi-contrast images and a cycle-consistency
loss for unregistered images. Information from neighbor-
ing cross-sections are zed to further improve syn-
thesis quality. Demonstrations on Ty - and T,- weighted
images from healthy subjects and patients clearly indicate
the superior performance of the proposed approach com-
pared to the previous state-of-the-art methods. Our synthe-
sis approach can help improve the quality and versatility
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of the multi-contrast MRI exams without the need for pro-
longed or repeated examinations.

Index Terms— Generative adversarial network, image
synthesis, multi-contrast MRI, pixel-wise loss, cycle-
consistency loss.

|. INTRODUCTION

AGNETIC resonance imaging (MRI) is pervasively

used in clinical applications due to the diversity of
contrasts it can capture in soft tissues. Tailored MRI pulse
sequences enable the generation of distinct contrasts while
imaging the same anatomy. For instance, Tj-weighted brain
images clearly delineate gray and white matter tissues,
whereas T,-weighted images delineate fluid from cortical
tissue. In turn, multi-contrast images acquired in the same
subject increase the diagnostic information available in clinical
and research studies. However, it may not be possible to
collect a full array of contrasts given considerations related
to the cost of prolonged exams and uncooperative patients,
particularly in pediatric and elderly populations [1]. In such
cases, acquisition of contrasts with relatively shorter scan
times might be preferred. Even then a subset of the acquired
contrasts can be corrupted by excessive noise or artifacts that
prohibit subsequent diagnostic use [2]. Moreover, cohort stud-
ies often show significant heterogeneity in terms of imaging
protocol and the specific contrasts that they acquire [3]. Thus,
the ability to synthesize missing or corrupted contrasts from
other successfully acquired contrasts has potential value for
enhancing multi-contrast MRI by increasing availability of
diagnostically-relevant images, and improving analysis tasks
such as registration and segmentation [4].

Cross-domain synthesis of medical images has recently
been gaining popularity in medical imaging. Given a
subject’s image x in X (source domain), the aim is to accu-
rately estimate the respective image of the same subject y
in Y (target domain). Two main synthesis approaches are
registration-based [5]-[7] and intensity-transformation-based
methods [8]-[24]. Registration-based methods start by gen-
erating an atlas based on a co-registered set of images,
x1 and yj, respectively acquired in X and Y [5]. These
methods further make the assumption that within-domain
images from separate subjects are related to each other through
a geometric warp. For synthesizing y, from x,, the warp that
transforms x; to x is estimated, and this warp is then applied

0278-0062 © 2019 IEEE. Personal use is permitted, but republ\cal\on/redlstr\bunon requires |IEEE permission.

See http://www.ieee.org/pt 1s_standard:

1s/rights/index.html for more information.

* Joint works with Salman UH. Dar, Mahmut Yurt, Levent Karacan, Tolga Cukur and Aykut Erdem

47



Motivation

 Acquiring multi-contrast MR images of
a patient increases the diversity of diagnostic
information for the radiologists.

» Cost of prolonged exams or uncooperative
patients might prohibit the acquisition of
full array of contrasts.

« Can we automatically synthesize unacquired or corrupted contrasts
from successfully acquired contrast(s) to help diagnosis?
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Our approaches

* We cast MRI synthesis as an image-to-image translation problem

* We propose two different MRI synthesis models
* pGAN (Dar et al, 2019) - a variant of pix2pix model (single source - single output)
* cGAN (Dar et al, 2019) - a variant of CycleGAN model (single source - single output)
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Related work

« REPLICA (Jog et al, Medical Image Analysis 2017)

* a supervised random forest
image synthesis approach

* learns a nonlinear regression
function to predict target
contrast from a source
contrast

« Considers a multi-scale
processing strategy
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Related work

* Multimodal (Chartsias et al, IEEE Trans, Medical Imaging 2018)

« a multi-input, multi-output fully convolutional neural network model
* learns to embed all input modalities into a common latent space, which is used

for MRI synthesis
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Multi-Contrast MRI systhesis with pGAN

* a variant of pix2pix model Real/Synthesized|  -(D(T+,T2)-1)%-D(T1, G(T1))?
label Adversarial loss
* requires paired data )
dUI’iﬂg training >|Discriminator |

1G(T1)-T2[4
Pixel-wise loss

J Generator J

|
VGG

VGG
IV(G(T1))-V(T2)ll4

Perceptual loss
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Multi-Contrast MRI systhesis with cGAN

* a variant of CycleGAN model

 does not require paired data during training

|G12(Gr1(T2))-T2ll4
Cycle consistency loss

Real/Synthesized
label

Gra(Grq(T2)) ~(D11(T1)-1)%D14(G14(T5))?
Adversarial loss
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Multi-Contrast MRI systhesis with cGAN

* a variant of CycleGAN model

 does not require paired data during training

1G71(Gr2(T1))-T1ll4
Cycle consistency loss

Real/Synthesized
label

Gr11(Gra(T1)) ~(Dr2(T2)-1)?-D1o(Gra(T4))?
Adversarial loss
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Qualitative Results

PGAN CGAN,, CGAN,reqg Reference Source

Multi
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Comparison against the state-of-the-art

PGAN Multimodal Replica Reference Source
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Comparison against the state-of-the-art

pGAN Multimodal Replica Reference Source
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Comparison against the state-of-the-art

PGAN Multimodal Replica Reference Source
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Comparison against the state-of-the-art

PGAN Multimodal Replica  Reference Source
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Comparison against the state-of-the-art

QUALITY OF SYNTHESIS IN THE MIDAS DATASET

pGAN Replica Multimodal
SSIM PSNR  SSIM  PSNR  SSIM  PSNR
0.926 2934 0877 2618 0924 2833
Ti—>T12% 10014 40592 +0.027 +0.638 +0.012 +0.501
0.883  27.49 0838 2527  0.889  26.73
T=>T2 10027  +0.643 +0.039 +0468 +0.020 +0.461
0.920 2816 0840  20.00 0886  22.13
=T 10016 +1.303 +0.028 +1.207 40022 +1.325
0.887  27.42 0827 2029 0872  23.08
T2#>Te 10023 +1.127 40031  +1.066 +0.020 +1.280

Boldface marks the model with the highest performance.
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Comparison against the state-of-the-art

QUALITY OF SYNTHESIS IN THE IXI DATASET

pPGAN Replica Multimodal
SSIM PSNR  SSIM  PSNR  SSIM  PSNR
0.948 2977 0912 2540 0936  27.72
Ti—>T2% 0014 +1.568 +0.028 +2.084 +0.015 +0.910
0917 27.89 0863 2408 0898  26.11
Ti=>12 10012 +0.887 +0.023  +1.427  +0.014  +0.769
0.926 2727 0865 2046 0895  22.61
=T 10013 +0960 +0.013 +0921 40015 +1.105
0.953 2955 0887 2182 0936 2591
T2#=>T0 L0012 +1.423 40033 +£1.600 +0.017 +1.689

Boldface marks the model with the highest performance.
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Comparison against the state-of-the-art

QUALITY OF SYNTHESIS IN THE BRATS DATASET
pGAN Replica Multimodal

SSIM PSNR SSIM PSNR SSIM PSNR

Ti—> 0.946 27.19 0.924 24.64 0.939 25.09
T +0.009 +1.456 +0.014 +1.615 +0.011 +1.013
T.—> 0.940 25.80 0.917 24.49 0.935 23.78
T, +0.009 +1.867 +0.007 +1.230 +0.010 +2.080
Boldface marks the model with the highest performance.
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