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Outline
• Paired image-to-image translation 

• Unpaired image-to-image translation



Outline
• Paired image-to-image translation 

• Unpaired image-to-image translation

Acknowledgement: The slides adapted from CVPR 2018 Tutorial on GANs by Philip Isola on paired image to image translation.



Image-to-Image Translation
Object labeling

[Long et al. 2015]

Edge Detection

[Xie et al. 2015]

[Laffont et al. 2014]

Season change Artistic style transfer

[Gatys et al. 2016]
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[Zhang et al., ECCV 2016]



“What should I do” “How should I do it?”

argmin
F

Ex,y[L(F(x),y)]

Paired Image-to-Image Translation

F

Input x Output y



Input Output Ground truth

Designing loss functions





Color distribution cross-entropy loss with colorfulness enhancing term. 

Zhang et al. 2016

Designing loss functions
Input Ground truth





Designing loss functions

Be careful what you wish for!



Image colorization
Designing loss functions

L2 regression

Super-resolution

[Johnson, Alahi, Li, ECCV 2016]

L2 regression

[Zhang, Isola, Efros, ECCV 2016]



Image colorization
Designing loss functions

Cross entropy objective, 
with colorfulness term

Deep feature covariance 
matching objective

[Johnson, Alahi, Li, ECCV 2016]

Super-resolution
[Zhang, Isola, Efros, ECCV 2016]



Universal loss?

)

… …



…

)

Generated 
vs Real 
(classifier) 

[Goodfellow, Pouget-Abadie, Mirza, Xu, 
Warde-Farley, Ozair, Courville, Bengio 2014]

“Generative Adversarial Network”
 (GANs)

Real photos

Generated images

…

…



Conditional GANs

[Mirza et al. 2014] [Reed et al. 2016]
[Ledig et al. 2017]

[…]
[Isola et al. 2017]



Generator

Gx G(x)



G tries to synthesize fake images that fool D

D tries to identify the fakes

Generator Discriminator

DGx G(x)

real or fake?



DGx

Ex,y[ ]argmax
D

logD(G(x))

fake (0.9)

G(x)

+ log(1�D(y))

real (0.1)

Dy



min

G tries to synthesize fake images that fool D:

logD(G(x))Ex,y[ + log(1�D(y)) ]

real or fake?

G
arg

DGx G(x)



G tries to synthesize fake images that fool the best D:

logD(G(x))Ex,y[ + log(1�D(y))

real or fake?

DGx G(x)

argmin
G

max
D

]



D
Loss Function 

G’s perspective: D is a loss function. 

Rather than being hand-designed, it is learned.

Gx G(x)



real or fake?

DGx G(x)

logD(G(x))Ex,y[ + log(1�D(y))argmin
G

max
D

]



real!

DGx G(x)

logD(G(x))Ex,y[ + log(1�D(y))argmin
G

max
D

]

(“Aquarius”)



real or fake pair ?

D
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logD(G(x)) + log(1�D(y))Ex,y[ ]

Gx G(x)
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real or fake pair ?
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real or fake pair ?



Training Details: Loss function
Conditional GAN 



Training Details: Loss function
Conditional GAN 

Stable training + fast convergence

Gx G(x) y

-

[c.f. Pathak et al. CVPR 2016]



BW → Color
Input Output Input Output Input Output

Data from [Russakovsky et al. 2015]



Input Output Groundtruth

Data from 
[maps.google.com]



Input Output Groundtruth

Data from [maps.google.com]

http://maps.google.com


Challenges in image-to-image translation

1. Output is high-dimensional, structured object 

2. Uncertainty in mapping; many plausible outputs



Structured Prediction

y
TargetInput

x

X, or, how I learned to start worrying and love Y

August 2017

Basic idea: worry is a prediction that we are near a negative reward.

Similarly, excitement is a prediction that we are near a positive reward.

Worry and excitement smooth the energy surface.

Bigger idea: many emotions are like this.

Oh wait, are we just reinventing value functions?

ŷ = F(x)

L(ŷ,y) = kŷ � yk2

L(ŷ,y) = �
P

i ŷi logyi

1

Output
ŷ



Structured Prediction

Each pixel treated as  
independent
Y

i

p(yi|x)
1

Z

Y

i,j

p(yi, yj |x)

Models at pairwise configuration 
of pixels

CRF



y
TargetInput

x

Output  
[Johnson, Alahi, Li 2016]

ŷ

[Johnson, Alahi, Li, ECCV 2016]L(ŷ,y) = k�(ŷ)� �(y)k2

[Mostajabi, Maire, Shakhnarovich, arXiv 2018]

“Perceptual Loss”

[Chen & Koltun ICCV 2017]

[Zhang et al. CVPR 2018]



Structured Prediction

Model joint configuration 
of all pixels

p(y|x)

A GAN, with sufficient capacity, 
samples from the full joint distribution 
(at equilibrium)



1/0
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N pixels

D

Rather than penalizing if output image 
looks fake, penalize if each 
overlapping patch in output looks fake  

Patch Discriminator

[Li & Wand 2016] 
[Shrivastava et al. 2017] 

[Isola et al. 2017]



Labels → Facades
Input 1x1 Discriminator

Data from [Tylecek, 2013]



Labels → Facades
Input 16x16 Discriminator

Data from [Tylecek, 2013]



Labels → Facades
Input 70x70 Discriminator

Data from [Tylecek, 2013]



Labels → Facades
Input Full image Discriminator

Data from [Tylecek, 2013]



1/0

y

N
 p

ix
el

s

N pixels

D
Rather than penalizing if output image 
looks fake, penalize if each 
overlapping patch in output looks fake 

Patch Discriminator

• Faster, fewer parameters 
• More supervised observations 
• Applies to arbitrarily large images



1. Output is high-dimensional, structured object 

2. Uncertainty in mapping; many plausible outputs

—> Use a deep net, D, to analyze output!

Challenges in image-to-image translation





1x1 DiscriminatorL1

“Unstructured” discriminator makes images colorful!

Input



adapted from [Goodfellow, 2016]

Mode seeking property

p(y|x)
q⇤(y|x)

p(y|x)
q⇤(y|x)

p(y|x)
q⇤(y|x)

Point estimate



Input Output Groundtruth



Input GroundtruthL1 Output



Hallucinations
Input Output Input Output

Input Output Input Output



—> Use a deep net, D, to analyze output!

—> D only cares about “plausibility”, doesn’t hedge

Challenges in image-to-image translation

1. Output is high-dimensional, structured object 

2. Uncertainty in mapping; many plausible outputs



Modeling multiple possible outputs

Gx G(x)



Input

Possible outputs

??

?

?

?

Modeling multiple possible outputs



BiCycleGAN [Zhu et al., NIPS 2017] 
(c.f. InfoGAN [Chen et al. 2016])

MAD-GAN [Ghosh et al., CVPR 2018]

Gx G(x)

z

x

G1

G2



Labels

Randomly generated facades

[BiCycleGAN, Zhu et al., NIPS 2017] 



[BiCycleGAN, Zhu et al., NIPS 2017] 

Latent space exploration



—> Use a deep net, D, to analyze output!

—> Can model the distribution of possibilities

Challenges in image-to-image translation

1. Output is high-dimensional, structured object 

2. Uncertainty in mapping; many plausible outputs



Outline
• Paired image-to-image translation
• Unpaired image-to-image translation

Acknowledgement: The slides adapted from the ones prepared by Jun-Yan Zhu and Taesung Park



Image-to-Image Translation with pix2pix

Image-to-image Translation with Conditional Adversarial Nets 
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros.  CVPR 2017



Paired

⋯



- Expensive to collect pairs.
- Impossible in many scenarios.

Label ↔ photo: per-pixel labeling

Horse ↔ zebra: how to get zebras?

Paired

⋯



……

Paired Unpaired

⋯



x G(x)

Generator

G

D

No input-output pairs!



Discriminator

x G(x)

D
Generator

G Real!



Discriminator

x G(x)

D
Generator

G Real too!

GANs do not force output to 
correspond to input



mode collapse!



⋯

Cycle-Consistent Adversarial Networks

⋯

[Zhu*, Park*, Isola, and Efros, ICCV 2017]



[Mark Twain, 1903]

⋯ ⋯

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

Cycle-Consistent Adversarial Networks



G(x) F(G x )x

F G x − x
!

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

D"(G x )

Reconstruction
error

Cycle-Consistent Adversarial Networks



Cycle Consistency Loss
G(x) F(G x )x

F G x − x
!

Large cycle lossSmall cycle loss

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

D"(G x )

Reconstruction
error



G(x) F(G x )x F(y) G(F x )𝑦

Cycle Consistency Loss

F G x − x
!

G F y − 𝑦
!

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

D"(G x )

Reconstruction
error

Reconstruction
error

D#(F x )

See similar formulations [Yi et al. 2017], [Kim et al. 2017]



Cycle Consistency in Vision

Forward-Backward Error: Automatic Detection of Tracking Failures. ICPR 10’
Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.

Also see [Sundaram, Brox, Keutzer, ECCV 10’]

Consistent Track

Inconsistent Track



Shape Matching SfMCo-segmentation

Huang et al, SGP’13 Wang et al, ICCV’13 Zach et al, CVPR’10
Collection Correspondence

Zhou et al, CVPR’15 Zhou et al, ICCV’15

Cycle Consistency in Vision

slides credit @Tinghui Zhou1
6



Results



AMT ‘real vs fake’ test on maps ↔ aerial

FCN scores on cityscapes labels→ photos

Classification performance of photo→labels







Collection Style Transfer

Photograph
@ Alexei Efros Monet Van Gogh

Cezanne Ukiyo-e



Cezanne Ukiyo-eMonetInput Van Gogh



Monet’s paintings → photos



Monet’s paintings → photos





Why CycleGAN works



Style and Content Separation

Separating Style and Content with 
Bilinear Models

[Tenenbaum and Freeman 2000’]

Content

Style

Adversarial Loss: change the style

Cycle Consistency Loss: preserve the content

Two empirical assumptions:
- content is easy to keep.
- style is easy to change.

Paired Separation Unpaired Separation



Neural Style Transfer [Gatys et al. 2015]

Style and Content:
- Content: feature difference
- Style: Gram Matrix difference
- Both losses are hard-coded.



Input Style Image I CycleGANStyle image II Entire collection

Photo → Van Gogh 

horse  → zebra

Input Style image I CycleGANStyle image II Entire collection



Applications



CG2Real: GTA5 → real streetview

Inspired by [Johnson et al. 2011]GTA5 CG Input Output



Real2CG: real streetview → GTA

Cityscape Input Output



[Richter*, Vineet* et al. 2016] [Krähenbühl et al. 2018]
GTA5 images Segmentation labels

Synthetic Data as Supervision



Domain Adaptation with CycleGAN

See Judy Hoffman’s talk at 14:30 “Adversarial Domain Adaptation”

meanIOU Per-pixel accuracy
Oracle (Train and test on Real) 60.3 93.1
Train on CG, test on Real 17.9 54.0

Train on GTA5 data Test on real images



Domain Adaptation with CycleGAN

See Judy Hoffman’s talk at 14:30 “Adversarial Domain Adaptation”

meanIOU Per-pixel accuracy
Oracle (Train and test on Real) 60.3 93.1
Train on CG, test on Real 17.9 54.0
FCN in the wild [Previous STOA] 27.1 -

GTA5 data + Domain adaptation Test on real images



Domain Adaptation with CycleGAN

See Judy Hoffman’s talk at 14:30 “Adversarial Domain Adaptation”

meanIOU Per-pixel accuracy
Oracle (Train and test on Real) 60.3 93.1
Train on CG, test on Real 17.9 54.0
FCN in the wild [Previous STOA] 27.1 -
Train on CycleGAN, test on Real 34.8 82.8

Train on CycleGAN data Test on real images



Applications and Extentions
Attribute Editing [Lu et al.]

Low-res Bald Bangs

Object Editing [Liang et al.]

Mask Input Output
arXiv:1705.09966 arXiv:1708.00315

Front/Character Transfer [Ignatov et al.]

Input output
arXiv: 1801.08624

Data generation [Wang et al.]

arXiv:1707.03124
samples by CycleWGAN



Image Dehazing

Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing. CVPRW 2018
Deniz Engin∗ Anıl Genc∗, Hazım Kemal Ekenel



Manipulating
Natural Scenes*

* Joint work with Levent Karacan, Zeynep Akata and Aykut Erdem 1



What does this scene look like on a cloudy day?

2



3
… like this.



4

• requires to learn the relation between transient scene attributes and
scene elements
• demands for a dataset suitable for this task

Solving this problem

4



Related Work – Attribute Manipulation
• Different times of a day [Shih et al., 2013]

• An examplar-based local appearance transfer approach
5

(2) Compute a dense 
correspondence across the input 
image and the time-lapse , and then 
warp the time-lapse (Sec. 5.2) 

(3) Locally affine transfer from time-lapse  to the input image (Sec. 6). 

Output Input 

Warped  target frame Warped match frame 

(1)  Retrieve from database.  Time-lapse  videos similar to input image (Sec 5.1) 

Affine color mapping learned  
from the time-lapse 

R G 
B 

Figure 2: Our approach has three steps. (1) We first retrieve videos of similar scene with input (§ 5.1), and then (2) find the local correspondence
between the input and the time-lapse (courtesy of Mark D’Andrea) (§ 5.2). (c) Finally we transfer the color appearance from the time-lapse to
the input (§ 6).

Next, to locally transfer the appearance from the time-lapse videos,
we need to locally match the input and each video. We employ a
Markov random field to compute a dense correspondence for each
time-lapse video (§ 5.2). We then warp the videos to match the input
at the pixel level.

Finally, we generate a gallery of hallucinated results, one for each
retrieved time-lapse video. To transfer the appearance variations of
a time-lapse video onto the input image, we introduce an example-
based transfer technique that models the color changes using local
affine transforms (§ 6). This model learns the mapping between the
output and input from the time-lapse video, and preserves the details
of the input.

4 Database and Annotation

Our database contains 450 time-lapse videos, covering a wide range
of landscapes and cityscapes, including city skyline, lake, and moun-
tain view. In the supplemental materials, we will show a mosaic of
all the scenes in the database Unlike most web-cam clips [Lalonde
et al. 2009] or surveillance camera videos [Jacobs et al. 2007], our
time-lapse videos are taken with high-end setups, typically a DSLR
camera on a sturdy tripod, that are less prone to over-and under-
exposure, defocus, and accidental shake.

The most interesting lighting for photographers are daytime, golden
hour, blue hour (occurs between golden hour and night), and night-
time [Caputo 2005]. For each time-lapse, we label the transition
time between the above four different lightings, so that the user can
specify the hallucination time by these semantic time labels.

5 Matching Between the Input Image and
Time-lapse Data

The first step of our algorithm is to determine the correspondence
between the input image and the time-lapse data. We first find a set
of time-lapse videos with a similar scene as the input image, and
then compute a dense correspondence between the input image for
each matched time-lapse video.

5.1 Global Matching

The first step of our algorithm is to identify the videos showing
a scene similar to the given input image. We employ a standard
scene matching technique in computer vision, adapting the code
from Xiao et al. [2010] to time-lapse data. We sample 5 regularly
spaced frames from each video, and then compare the input to all
these sampled frames. To assign a score to each time-lapse video,
we use the highest similarity score in feature space of its sampled
frames. We tried the different descriptors suggested in Xiao’s paper,
and found that the Histograms of Oriented Gradients (HOG) [Dalal
and Triggs 2005] works well for our data. We show some sample
retrieval results in the supplemental document.

Now that we have a set of matching videos, for each of them, we
seek to retrieve a frame that matches the time of day of the input
image. We call this frame the matched frame. Since we already
selected videos with a similar content as the input image, this is a
significantly easier task than the general image matching problem.
We use the color histogram and L2 norm to pick the matched frame.
We show sample results in supplementary document. Our approach
finding matching videos and frames produced good results for our



Related Work– Attribute Manipulation
• Editing scene attributes, [Laffont et al., 2014]

• An examplar-based local appearance transfer approach
6

Transient Attributes
for High-Level Understanding and Editing of Outdoor Scenes

Pierre-Yves Laffont Zhile Ren Xiaofeng Tao Chao Qian James Hays
Brown University

PRUH�³ZLQWHU´ PRUH�³QLJKW´

PRUH�³ZDUP´

PRUH�³PRLVW´

PRUH�³UDLQ´PRUH�³DXWXPQ´

Figure 1: Our method enables high-level editing of outdoor photographs. In this example, the user provides an input image (left) and six
attribute queries corresponding to the desired changes, such as more “autumn”. Our method hallucinates six plausible versions of the scene
with the desired attributes (right), by learning local color transforms from a large dataset of annotated outdoor webcams.

Abstract

We live in a dynamic visual world where the appearance of scenes
changes dramatically from hour to hour or season to season. In
this work we study “transient scene attributes” – high level prop-
erties which affect scene appearance, such as “snow”, “autumn”,
“dusk”, “fog”. We define 40 transient attributes and use crowd-
sourcing to annotate thousands of images from 101 webcams. We
use this “transient attribute database” to train regressors that can
predict the presence of attributes in novel images. We demonstrate
a photo organization method based on predicted attributes. Finally
we propose a high-level image editing method which allows a user
to adjust the attributes of a scene, e.g. change a scene to be “snowy”
or “sunset”. To support attribute manipulation we introduce a novel
appearance transfer technique which is simple and fast yet compet-
itive with the state-of-the-art. We show that we can convincingly
modify many transient attributes in outdoor scenes.

CR Categories: I.4.8 [Image processing and computer vision]:
Scene analysis—Time-varying imagery

Keywords: image database, attribute-based image editing

Links: DL PDF WEB

1 Introduction

The appearance of an outdoor scene changes dramatically with
lighting, weather, and season. Fog might roll into a city as night
falls, tree branches in a forest can be dusted with light snow, and
an overcast day can clear into a gorgeous sunset. The visual world
we live in is captivating because of these constant changes. A great
deal of photography focuses on capturing images when these tran-
sient properties are interesting, unusual, or striking. This paper is
the first large scale study of “transient scene attributes” which in-
fluence scene appearance. We address questions such as: How ac-
curately can we recognize them? Can we modify scenes to change
these properties?

To support these experiments we annotate thousands of images to
create the Transient Attribute Database. A key property of the
database is that rather than using unrelated images we sample pho-
tographs from 101 webcam sequences. This allows us to reason
about intra-scene attribute changes. We can observe how a par-
ticular mountain scene changes with season or how a particular
city scene changes with weather. These examples of intra-scene
attribute variations will drive our attribute manipulation approach.
We focus on outdoor scenes because they vary in more ways than
indoor scenes (e.g. weather and seasons).

The Transient Attribute Database uses a taxonomy of 40 attributes
related to weather (e.g. “cold” and “snow”), lighting (e.g. “sunny”),
time of day (e.g. “dawn / dusk”), season (e.g. “autumn”), and
more subjective impressions (e.g. “mysterious” and “soothing”).
While some of these scene properties could be derived from ground
truth meteorological data (e.g. when the temperature is above the
threshold we consider the scene “hot”) we instead annotate each
attribute manually. Thus our attributes are perceptual in nature. We
use a carefully cultivated pool of crowdsourced workers to annotate
each image with independent attribute labels.

We use our database to train and evaluate regressors which predict



Proposed Framework

For Peer Review
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Fig. 2. Overview of the proposed a�ribute manipulation framework. Given an input image and its semantic layout, we first resize and center-crop the layout
to 512 ⇥ 512 pixels and feed it to our scene generation network. A�er obtaining the scene synthesized according to the target transient a�ributes, we transfer
the look of the hallucinated style back to the original input image.

from [Baltenberger et al. 2016] and then manually verify the pre-
dictions. From Transient Attributes, we select all the 8,571 images.
To get the layouts, we �rst run the semantic segmentation model
by Zhao et al. [2017], the winner of the MIT Scene Parsing Challenge
2016, and assuming that each webcam image of the same scene has
the same semantic layout, we manually select the best semantic
layout prediction for each scene and use those predictions as the
ground truth layout for the related images.

In total, we collect 17,772 outdoor images (9,201 from ADE20K +
8,571 from Transient Attributes), with 150 semantic categories and
40 transient attributes. Following the train-val split from ADE20K,
8,363 out of the 9,201 images are assigned to the training set, the
other 838 testing; for the Transient Attributes dataset, 500 randomly
selected images are held out for testing. In total, we have 16,434
training examples and 1,338 testing images. More samples of our
annotations are presented in the Supplementary Material. Lastly,
we resize the height of all images to 512 pixels and apply center-
cropping to obtain 512 ⇥ 512 images.

4 ATTRIBUTE MANIPULATION FRAMEWORK
Our framework provides an easy and high-level editing system
to manipulate transient attributes of outdoor scenes (see Fig. 2).
The key component of our framework is a scene generation net-
work that is conditioned on semantic layout and continuous-valued
vector of transient attributes. This network allows us to generate
synthetic scenes consistent with the semantic layout of the input
image and having the desired transient attributes. One can play
with 40 di�erent transient attributes by increasing or decreasing
values of certain dimensions. Note that, at this stage, the semantic
layout of the input image should also be fed to the network, which
can be easily automated by a scene parsing model. Once an arti�cial
scene with desired properties is generated, we then transfer the look
of the hallucinated image to the original input image to achieve
attribute manipulation in a photorealistic manner.

In Section 4.1, we present the architectural details of our attribute
and layout conditioned scene generation network and the method-
ologies for e�ectively training our network. Finally, in Section 4.2,
we discuss the photo style transfer method that we utilize to transfer
the appearance of generated images to the input image.

4.1 Scene Generation
In this section, we �rst give a brief technical summary of GANs
and conditional GANs (CGANs), which provides the foundation for
our scene generation network (SGN). We then present architectural
details of our SGN model, followed by the two strategies applied for
improving the training process. All the implementation details are
included in the Supplementary Material.

4.1.1 Background. In Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014], a discriminator network D and a generator
network G play a two-player min-max game where D learns to
determine if an image is real or fake and G strives to output as
realistic images as possible to fool the discriminator. The G and D
are trained jointly by performing alternative updates:

min
G

max
D

LGAN (G,D) = Ex⇠pdata (x )[logD(x)] + (1)

Ez⇠pz (z)[log (1 � D(G(z)))]

where x is a natural image drawn from the true data distribution
pdata (x) and z is a random noise vector sampled from a multivariate
Gaussian distribution. The optimal solution to this min-max game
is when the distribution pG converges to pdata .
Conditional GANs [Mirza and Osindero 2014] (CGANs) engage

additional forms of side information as generation constraints, e.g.
class labels [Mirza and Osindero 2014], image captions [Reed et al.
2016b], bounding boxes and object keypoints [Reed et al. 2016a].
Given a context vector c as side information, the generator G(z, c),
taking both the random noise and the side information, tries to

, Vol. 1, No. 1, Article . Publication date: June 2019.
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Fig. 2. Overview of the proposed a�ribute manipulation framework. Given an input image and its semantic layout, we first resize and center-crop the layout
to 512 ⇥ 512 pixels and feed it to our scene generation network. A�er obtaining the scene synthesized according to the target transient a�ributes, we transfer
the look of the hallucinated style back to the original input image.

from [Baltenberger et al. 2016] and then manually verify the pre-
dictions. From Transient Attributes, we select all the 8,571 images.
To get the layouts, we �rst run the semantic segmentation model
by Zhao et al. [2017], the winner of the MIT Scene Parsing Challenge
2016, and assuming that each webcam image of the same scene has
the same semantic layout, we manually select the best semantic
layout prediction for each scene and use those predictions as the
ground truth layout for the related images.

In total, we collect 17,772 outdoor images (9,201 from ADE20K +
8,571 from Transient Attributes), with 150 semantic categories and
40 transient attributes. Following the train-val split from ADE20K,
8,363 out of the 9,201 images are assigned to the training set, the
other 838 testing; for the Transient Attributes dataset, 500 randomly
selected images are held out for testing. In total, we have 16,434
training examples and 1,338 testing images. More samples of our
annotations are presented in the Supplementary Material. Lastly,
we resize the height of all images to 512 pixels and apply center-
cropping to obtain 512 ⇥ 512 images.

4 ATTRIBUTE MANIPULATION FRAMEWORK
Our framework provides an easy and high-level editing system
to manipulate transient attributes of outdoor scenes (see Fig. 2).
The key component of our framework is a scene generation net-
work that is conditioned on semantic layout and continuous-valued
vector of transient attributes. This network allows us to generate
synthetic scenes consistent with the semantic layout of the input
image and having the desired transient attributes. One can play
with 40 di�erent transient attributes by increasing or decreasing
values of certain dimensions. Note that, at this stage, the semantic
layout of the input image should also be fed to the network, which
can be easily automated by a scene parsing model. Once an arti�cial
scene with desired properties is generated, we then transfer the look
of the hallucinated image to the original input image to achieve
attribute manipulation in a photorealistic manner.

In Section 4.1, we present the architectural details of our attribute
and layout conditioned scene generation network and the method-
ologies for e�ectively training our network. Finally, in Section 4.2,
we discuss the photo style transfer method that we utilize to transfer
the appearance of generated images to the input image.

4.1 Scene Generation
In this section, we �rst give a brief technical summary of GANs
and conditional GANs (CGANs), which provides the foundation for
our scene generation network (SGN). We then present architectural
details of our SGN model, followed by the two strategies applied for
improving the training process. All the implementation details are
included in the Supplementary Material.

4.1.1 Background. In Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014], a discriminator network D and a generator
network G play a two-player min-max game where D learns to
determine if an image is real or fake and G strives to output as
realistic images as possible to fool the discriminator. The G and D
are trained jointly by performing alternative updates:

min
G

max
D

LGAN (G,D) = Ex⇠pdata (x )[logD(x)] + (1)

Ez⇠pz (z)[log (1 � D(G(z)))]

where x is a natural image drawn from the true data distribution
pdata (x) and z is a random noise vector sampled from a multivariate
Gaussian distribution. The optimal solution to this min-max game
is when the distribution pG converges to pdata .
Conditional GANs [Mirza and Osindero 2014] (CGANs) engage

additional forms of side information as generation constraints, e.g.
class labels [Mirza and Osindero 2014], image captions [Reed et al.
2016b], bounding boxes and object keypoints [Reed et al. 2016a].
Given a context vector c as side information, the generator G(z, c),
taking both the random noise and the side information, tries to

, Vol. 1, No. 1, Article . Publication date: June 2019.
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Fig. 3. Scene Generation Network (SGN). Our proposed CGAN architecture for generating synthetic outdoor scenes consistent with given layout and transient
a�ributes.

our scene generation network (SGN). We then present architectural
details of our SGN model, followed by the two strategies applied for
improving the training process. All the implementation details are
included in the Supplementary Materials.

3.2.1 Generative Adversarial Networks. Generative Adversarial
Networks (GANs) [Goodfellow et al. 2014] have been designed as a
two-player min-max game where a discriminator network D learns
to determine if an image is real or fake and a generator network G
strives to output as realistic images as possible to fool the discrimi-
nator. Within this min-max game, G and D can be trained jointly
by performing alternative updates to solve the following objective:

min
G

max
D

V (D,G) = Ex⇠pdata (x )[logD(x)] + (1)

Ex⇠pz (z)[log (1 � D(G(z)))]

where x is a natural image drawn from the true data distribution
pdata (x) and z is a random noise vector sampled from a multivariate
Gaussian distribution. In [Goodfellow et al. 2014], it is shown that
the optimal solution to this min-max game is when the distribution
pG converges to pdata .

Conditional GANs [Mirza and Osindero 2014] (CGANs) engage
additional forms of side information as generation constraints, e.g.
class labels [Mirza and Osindero 2014], image captions [Reed et al.
2016b], bounding boxes and object keypoints [Reed et al. 2016a],
and etc. Given a context vector c as side information, the generator
G(z, c), taking both the random noise and the side information, tries
to synthesize a realistic image that satis�es the condition c . The
discriminator, now having real/fake images and context vectors
as inputs, aims at not only distinguishing real and fake images
but also whether an image satis�es the paired condition c . Such
characteristics is referred to as match-aware [Reed et al. 2016b]. In
this way, we expect the generated output of CGAN x� is controlled
by the side information c . Particularly, in our model, c is composed
of semantic layouts s and transient attributes a.

3.2.2 Proposed Architecture. We follow similar multi-scale strat-
egy with Pix2pixHD [Wang et al. 2018]. Di�erent from Pix2pixHD,

our secene generator network(SGN) takes additional noise input to
provide the stochastic diversity and transient attributes in residual
blocks as condition to control generation process. In more detail,
our multi-scale generator network G = {G1,G2} consists of coarse
(G1) and �ne (G2) scale generators as illustrated in Figure 3. Both
coarseG1 and �neG2 scale generators have similar components and
architecture except that �ne scale generator G2 has an additional
tensor input from the coarse scale generatorG1. In course generator
and �ne generator, while the semantic layout categories are encoded
into 8-bit binary codes and transient attributes are represented by a
40-d vector, we concatenate semantic layout S and noise z, feed their
concatenation into convolutional layers by downsampling with 2⇥
factor to obtain semantic feature tensor as input to the residual
blocks. Then, spatially replicated attribute vectors a are concate-
nated to input tensors of each residual block to condition transient
scene attributes and �nally, deconvolutional layers upsample the
feature tensor of the last residual block to obtain �nal image gen-
eration. As for �ne scale generator G2, after convolutional layers,
semantic feature tensor is summed with feature tensor from the
last residual block of coarse generator G1 before feeding into resid-
ual blocks of �ne scale generatorG2. The multi-scale discriminator
D = {D1,D2,D3} takes in tuples of real or generated images, match-
ing or mismatching semantic layouts and transient attributes to
decide whether the images are fake or real and whether the pairings
are valid. Note that, for each scale, identical discriminator architec-
ture is employed. Formally, we can de�ne multi-scale discriminator
for k = 1, 2, 3 scales as:

Dk (xk ,ak , sk ) =
(
1,xk 2 Pdata and xk ,ak , sk correctly match,
0, otherwise.

, Vol. 1, No. 1, Article . Publication date: April 2019.

• A multiscale strategy similar to that in Pix2pixHD [Wang et al. 2018]
• Generator network: a coarse-scale and a fine-scale generator subnets
• Discriminator: 3 discriminator subnets that operate at 3 different image

scales
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Fig. 3. Scene Generation Network (SGN). Our proposed CGAN architecture for generating synthetic outdoor scenes consistent with given layout and transient
a�ributes.

our scene generation network (SGN). We then present architectural
details of our SGN model, followed by the two strategies applied for
improving the training process. All the implementation details are
included in the Supplementary Materials.

3.2.1 Generative Adversarial Networks. Generative Adversarial
Networks (GANs) [Goodfellow et al. 2014] have been designed as a
two-player min-max game where a discriminator network D learns
to determine if an image is real or fake and a generator network G
strives to output as realistic images as possible to fool the discrimi-
nator. Within this min-max game, G and D can be trained jointly
by performing alternative updates to solve the following objective:

min
G

max
D

V (D,G) = Ex⇠pdata (x )[logD(x)] + (1)

Ex⇠pz (z)[log (1 � D(G(z)))]

where x is a natural image drawn from the true data distribution
pdata (x) and z is a random noise vector sampled from a multivariate
Gaussian distribution. In [Goodfellow et al. 2014], it is shown that
the optimal solution to this min-max game is when the distribution
pG converges to pdata .

Conditional GANs [Mirza and Osindero 2014] (CGANs) engage
additional forms of side information as generation constraints, e.g.
class labels [Mirza and Osindero 2014], image captions [Reed et al.
2016b], bounding boxes and object keypoints [Reed et al. 2016a],
and etc. Given a context vector c as side information, the generator
G(z, c), taking both the random noise and the side information, tries
to synthesize a realistic image that satis�es the condition c . The
discriminator, now having real/fake images and context vectors
as inputs, aims at not only distinguishing real and fake images
but also whether an image satis�es the paired condition c . Such
characteristics is referred to as match-aware [Reed et al. 2016b]. In
this way, we expect the generated output of CGAN x� is controlled
by the side information c . Particularly, in our model, c is composed
of semantic layouts s and transient attributes a.

3.2.2 Proposed Architecture. We follow similar multi-scale strat-
egy with Pix2pixHD [Wang et al. 2018]. Di�erent from Pix2pixHD,

our secene generator network(SGN) takes additional noise input to
provide the stochastic diversity and transient attributes in residual
blocks as condition to control generation process. In more detail,
our multi-scale generator network G = {G1,G2} consists of coarse
(G1) and �ne (G2) scale generators as illustrated in Figure 3. Both
coarseG1 and �neG2 scale generators have similar components and
architecture except that �ne scale generator G2 has an additional
tensor input from the coarse scale generatorG1. In course generator
and �ne generator, while the semantic layout categories are encoded
into 8-bit binary codes and transient attributes are represented by a
40-d vector, we concatenate semantic layout S and noise z, feed their
concatenation into convolutional layers by downsampling with 2⇥
factor to obtain semantic feature tensor as input to the residual
blocks. Then, spatially replicated attribute vectors a are concate-
nated to input tensors of each residual block to condition transient
scene attributes and �nally, deconvolutional layers upsample the
feature tensor of the last residual block to obtain �nal image gen-
eration. As for �ne scale generator G2, after convolutional layers,
semantic feature tensor is summed with feature tensor from the
last residual block of coarse generator G1 before feeding into resid-
ual blocks of �ne scale generatorG2. The multi-scale discriminator
D = {D1,D2,D3} takes in tuples of real or generated images, match-
ing or mismatching semantic layouts and transient attributes to
decide whether the images are fake or real and whether the pairings
are valid. Note that, for each scale, identical discriminator architec-
ture is employed. Formally, we can de�ne multi-scale discriminator
for k = 1, 2, 3 scales as:

Dk (xk ,ak , sk ) =
(
1,xk 2 Pdata and xk ,ak , sk correctly match,
0, otherwise.

, Vol. 1, No. 1, Article . Publication date: April 2019.

• Our multi-scale generator network consists of a coarse-scale generator
and a fine-scale generator.
• Our multi-scale discriminator includes 3 different discriminators with

similar network structures that operate at 3 different image scales.



Improved Training of SGNs
• Relative Negative Mining (RNM)

§ A “real pair” (real image paired with right conditions) should score higher
than a “fake pair” (either image is fake or context information mismatches)

§ During training SGN, sample mismatching layouts as well.

• Layout-Invariant Perceptual Loss
§ 𝔼! = 𝔼"~$! " ;&,(,)~$"#$#(&,(,)) 𝑓! 𝑥 − 𝑓! 𝐺 𝑧, 𝑠, 𝑎 ,

,

§ f is the CNN encoder for the scene parser network [Zhou et al., 2018]
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Fig. 2. Overview of the proposed a�ribute manipulation framework. Given an input image and its semantic layout, we first resize and center-crop the layout
to 512 ⇥ 512 pixels and feed it to our scene generation network. A�er obtaining the scene synthesized according to the target transient a�ributes, we transfer
the look of the hallucinated style back to the original input image.

from [Baltenberger et al. 2016] and then manually verify the pre-
dictions. From Transient Attributes, we select all the 8,571 images.
To get the layouts, we �rst run the semantic segmentation model
by Zhao et al. [2017], the winner of the MIT Scene Parsing Challenge
2016, and assuming that each webcam image of the same scene has
the same semantic layout, we manually select the best semantic
layout prediction for each scene and use those predictions as the
ground truth layout for the related images.

In total, we collect 17,772 outdoor images (9,201 from ADE20K +
8,571 from Transient Attributes), with 150 semantic categories and
40 transient attributes. Following the train-val split from ADE20K,
8,363 out of the 9,201 images are assigned to the training set, the
other 838 testing; for the Transient Attributes dataset, 500 randomly
selected images are held out for testing. In total, we have 16,434
training examples and 1,338 testing images. More samples of our
annotations are presented in the Supplementary Material. Lastly,
we resize the height of all images to 512 pixels and apply center-
cropping to obtain 512 ⇥ 512 images.

4 ATTRIBUTE MANIPULATION FRAMEWORK
Our framework provides an easy and high-level editing system
to manipulate transient attributes of outdoor scenes (see Fig. 2).
The key component of our framework is a scene generation net-
work that is conditioned on semantic layout and continuous-valued
vector of transient attributes. This network allows us to generate
synthetic scenes consistent with the semantic layout of the input
image and having the desired transient attributes. One can play
with 40 di�erent transient attributes by increasing or decreasing
values of certain dimensions. Note that, at this stage, the semantic
layout of the input image should also be fed to the network, which
can be easily automated by a scene parsing model. Once an arti�cial
scene with desired properties is generated, we then transfer the look
of the hallucinated image to the original input image to achieve
attribute manipulation in a photorealistic manner.

In Section 4.1, we present the architectural details of our attribute
and layout conditioned scene generation network and the method-
ologies for e�ectively training our network. Finally, in Section 4.2,
we discuss the photo style transfer method that we utilize to transfer
the appearance of generated images to the input image.

4.1 Scene Generation
In this section, we �rst give a brief technical summary of GANs
and conditional GANs (CGANs), which provides the foundation for
our scene generation network (SGN). We then present architectural
details of our SGN model, followed by the two strategies applied for
improving the training process. All the implementation details are
included in the Supplementary Material.

4.1.1 Background. In Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014], a discriminator network D and a generator
network G play a two-player min-max game where D learns to
determine if an image is real or fake and G strives to output as
realistic images as possible to fool the discriminator. The G and D
are trained jointly by performing alternative updates:

min
G

max
D

LGAN (G,D) = Ex⇠pdata (x )[logD(x)] + (1)

Ez⇠pz (z)[log (1 � D(G(z)))]

where x is a natural image drawn from the true data distribution
pdata (x) and z is a random noise vector sampled from a multivariate
Gaussian distribution. The optimal solution to this min-max game
is when the distribution pG converges to pdata .
Conditional GANs [Mirza and Osindero 2014] (CGANs) engage

additional forms of side information as generation constraints, e.g.
class labels [Mirza and Osindero 2014], image captions [Reed et al.
2016b], bounding boxes and object keypoints [Reed et al. 2016a].
Given a context vector c as side information, the generator G(z, c),
taking both the random noise and the side information, tries to
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Style Transfer Network
• DPST [Luan et al., 2017]
• semantic segmentation to avoid content mismatch

(transfer statistics within each category)
• locally affine model as a photorealism regularization

16
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Fig. 2. System overview. We train an image transformation network to transform input
images into output images. We use a loss network pretrained for image classification
to define perceptual loss functions that measure perceptual di↵erences in content and
style between images. The loss network remains fixed during the training process.

tion problem requires a forward and backward pass through the pretrained net-
work. To overcome this computational burden, we train a feed-forward network
to quickly approximate solutions to their optimization problem. Concurrent with
our work, [26, 27] also propose feed-forward approaches for fast style transfer.

Image super-resolution. Image super-resolution is a classic problem for
which a variety of techniques have been developed. Yang et al. [28] provide an ex-
haustive evaluation of the prevailing techniques prior to the widespread adoption
of convolutional neural networks. They group super-resolution techniques into
prediction-based methods (bilinear, bicubic, Lanczos, [29]), edge-based meth-
ods [30, 31], statistical methods [32–34], patch-based methods [30, 35–41], and
sparse dictionary methods [42, 43]. Recently [1] achieved excellent performance
on single-image super-resolution using a three-layer convolutional neural network
with a per-pixel Euclidean loss. Other recent methods include [44–46].

3 Method

As shown in Figure 2, our system consists of two components: an image trans-
formation network fW and a loss network � that is used to define several loss
functions `1, . . . , `k. The image transformation network is a deep residual convo-
lutional neural network parameterized by weights W ; it transforms input images
x into output images ŷ via the mapping ŷ = fW (x). Each loss function computes
a scalar value `i(ŷ, yi) measuring the di↵erence between the output image ŷ and
a target image yi. The image transformation network is trained using stochastic
gradient descent to minimize a weighted combination of loss functions:

W
⇤ = argmin

W

Ex,{yi}

"
X

i=1

�i`i(fW (x), yi)

#
(1)

Preventing Distortion

• We tried many options
• Constraining the gradients
• Multi-scale constraints akin to Portrait Style Transfer
• Band-limiting the transformation

• All helped but none was 100% successful

• What worked was forcing the color transformation to be locally affine 
[Levin et al. 2006] !"#$

%"#$
&"#$

= ()×)
!+,
%+,
&+,
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Style Transfer Network
• FPST [Li et al. 2018]
• models photo style transfer as a close-form 

function mapping
• covariance matrix of deep features encodes

the style information
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2 Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, J. Kautz

(a) Style (b) Content (c) Gatys et al. [8] (d) Luan et al. [9] (e) Ours

Fig. 1: Given a style photo (a) and a content photo (b), photorealistic image
stylization aims at transferring style of the style photo to the content photo as
shown in (c), (d) and (e). Comparing with existing methods [8,9], the output
photos computed by our method are stylized more consistently and with fewer
artifacts. Moreover, our method runs an order of magnitude faster.

for avoiding distortions in the stylization output. However, this often results in
inconsistent stylizations in semantically uniform regions as shown in Figure 1(d).
To address the issues, we propose a photorealistic image stylization method.

Our method consists of a stylization step and a smoothing step. Both have
a closed-form solution1 and can be computed efficiently. The stylization step
is based on the whitening and coloring transform (WCT) [10], which stylizes
images via feature projections. The WCT was designed for artistic stylization.
Similar to the neural style transfer algorithm, it suffers from structural artifacts
when applied to photorealistic image stylization. Our WCT-based stylization step
resolves the issue by utilizing a novel network design for feature transform. The
WCT-based stylization step alone may generate spatially inconsistent stylizations.
We resolve this issue by the proposed smoothing step, which is based on a
manifold ranking algorithm. We conduct extensive experimental validation with
comparison to the state-of-the-art methods. User study results show that our
method generates outputs with better stylization effects and fewer artifacts.

2 Related Work

Existing stylization methods can be classified into two categories: global and local.
Global methods [1,2,11] achieve stylization through matching the means and
variances of pixel colors [1] or their histograms [2]. Local methods [12,6,13,5,14]
stylize images through finding dense correspondences between the content and
style photos based on either low-level or high-level features. These approaches
are slow in practice. Also, they are often developed for specific scenarios (e.g.,
day-time or season change).

1 A closed-form solution means that the solution can be obtained in a fixed finite
number of operations, including convolutions, max-pooling, whitening, etc.
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Fig. 1: Given a style photo (a) and a content photo (b), photorealistic image
stylization aims at transferring style of the style photo to the content photo as
shown in (c), (d) and (e). Comparing with existing methods [8,9], the output
photos computed by our method are stylized more consistently and with fewer
artifacts. Moreover, our method runs an order of magnitude faster.

for avoiding distortions in the stylization output. However, this often results in
inconsistent stylizations in semantically uniform regions as shown in Figure 1(d).
To address the issues, we propose a photorealistic image stylization method.

Our method consists of a stylization step and a smoothing step. Both have
a closed-form solution1 and can be computed efficiently. The stylization step
is based on the whitening and coloring transform (WCT) [10], which stylizes
images via feature projections. The WCT was designed for artistic stylization.
Similar to the neural style transfer algorithm, it suffers from structural artifacts
when applied to photorealistic image stylization. Our WCT-based stylization step
resolves the issue by utilizing a novel network design for feature transform. The
WCT-based stylization step alone may generate spatially inconsistent stylizations.
We resolve this issue by the proposed smoothing step, which is based on a
manifold ranking algorithm. We conduct extensive experimental validation with
comparison to the state-of-the-art methods. User study results show that our
method generates outputs with better stylization effects and fewer artifacts.

2 Related Work

Existing stylization methods can be classified into two categories: global and local.
Global methods [1,2,11] achieve stylization through matching the means and
variances of pixel colors [1] or their histograms [2]. Local methods [12,6,13,5,14]
stylize images through finding dense correspondences between the content and
style photos based on either low-level or high-level features. These approaches
are slow in practice. Also, they are often developed for specific scenarios (e.g.,
day-time or season change).

1 A closed-form solution means that the solution can be obtained in a fixed finite
number of operations, including convolutions, max-pooling, whitening, etc.

style content stylized content

Stylization Step
Decoder

whitening coloring

Architecture is similar 
to Li et al.,  but uses 
unpooling.



Training Data
• A collection of images from ADE20K [Zhou et al., 2017] and Transient

Attributes [Laffont et al., 2014]

• 9,201 images corresponding to outdoor scenes from ADE20K dataset
• Semantic layouts and predicted scene attributes

• 8,571 images from Transient Attributes dataset
• Scene attributes and predicted semantic layouts

• In total 17,772 outdoor images with 150 semantic categories and 
40 transient attributes
• 1,338 images are used for testing

18



Transient Attributes Dataset
• 101 webcams

8571 outdoor
scenes

• 40 transient
attributes for
each image

19

[Laffont et al., 2014]



ADE20K Dataset

• 9,201 outdoor images
• 150 semantic categories

20

[Zhou et al., 2017]
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Fig. 7. Gradually adding and removing elements to and from the generated images. We use a coarse spatial layout map (top le�) to generate an image from
scratch, and then keep adding new scene elements to the map to refine the synthesized images. Moreover, we also show how we can modify the look by
conditioning on di�erent transient a�ributes.

Fig. 8. Sample a�ribute manipulation results. Given an outdoor scene and its semantic layout, our proposed framework is able to produce realistic looking
results for modifying various di�erent transient a�ributes. Moreover, our approach can perform multimodal editing as well, in which we modify a combination
of a�ributes.

Additionally, we conducted a user study on Figure Eight to val-
idate our observations. In this experiment, subjects are presented
with results obtained with our approach and those of [La�ont et al.
2014] and are forced to select the one which they consider to be
visually more appealing regarding the target attributes. We have a
total of 48 questions and we collected at least 5 user responses per

each of these question. Our results are favored %70 of the time (in
33 out of 48 comparisons).
The most important advantage of our framework over existing

works is that our approach enables users to play with the degree of
desired attributes via changing the numerical values of the attribute
condition vector. As shown in Figure 10, we can increase and de-
crease the strength of speci�c attributes and smoothly walk along

, Vol. 1, No. 1, Article . Publication date: April 2019.
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Fig. 5. Comparison of our SGN model against Pix2pix [Isola et al. 2017] and Pix2pixHD [Wang et al. 2018]. Each row shows the original image and the samples
generated according to its corresponding semantic layout. Since our SGN model also takes into account a set of target transient a�ributes (only the top three
most significant ones are shown here for the sake of simplicity), it can generate diverse and more realistic results than the other methods.

Table 3. �antitative comparison of layout conditioned image synthesis
approaches. Our model consistently outperforms others in both coarse and
fine resolutions in terms of photorealism, as measured by IS and FID.

Model IS FID Seg. Acc.

Co
ar
se

Pix2pix 3.26 76.40 61.93
Pix2pixHD 4.20 47.86 75.57
Ours 4.19 35.02 71.80
Original 5.77 0.00 75.64

Fi
ne

Pix2pixHD 4.87 50.85 76.17
Ours 5.05 36.34 74.60
Original 7.37 0.00 77.14

asking workers to select among the results of our proposed model
and the Pix2pixHD method (for the same semantic layout) which
they believe is more realistic. We randomly generate 200 questions,
and let 5 di�erent subjects answer each question. We provide the
details of our user study in the Supplementary Materials. We �nd
that 66% of the subjects picked our results as more realistic. These
results suggest that besides the advantages of manipulation over
transient attributes, our model also produces higher quality images
than the Pix2pixHD model. We also compared our results to the
recently proposed Cascaded Re�nement Network [Chen and Koltun
2017], however, it did not give meaningful results on our dataset
with complex scenes6.

5.1.4 Diversity of the Generated Images. In our framework, a
user can control the diversity via three di�erent mechanisms, each

6We trained this model using the o�cial code provided by the authors.

playing a di�erent role in the generation process. Perhaps the most
important one is the input semantic layout which explicitly speci�es
the content of the synthesized image, and the other two are the
target transient attributes and the noise vector. In Fig. 6, we show
the e�ect of varying the transient attributes for a sample semantic
layout and Fig. 7 illustrates the role of noise. If we keep the layout
and the attributes �xed, the random noise vector mainly a�ects
the appearance of some local regions, especially the ones involving
irregular or stochastic textures such as the sky, the trees or the plain
grass. The transient attribute vectors, however, has a more global
e�ect, modifying the image without making any changes to the
constituent parts of the scene.

5.1.5 Adding and Subtracting Scene Elements. Here we envision
a potential application of our model as a scene editing tool that
can add or subtract scene elements. Fig. 8 demonstrates an example.
We begin with a coarse spatial layout which contains two large
segments denoting the “sky” and the “ground”. We then gradually
add new elements, namely “mountain”, “tree”, “water”. At each step,
our model inserts a new object based on the semantic layout. In fact,
such a generation process closely resembles human thought process
in imagining and painting novel scenes. The reverse process, sub-
tracting elements piece by piece, can be achieved in a similar manner.
We sample di�erent random attribute vectors to illustrate how gen-
eration diversity can enrich the outcomes of such photo-editing
tools and provide a video demo in the Supplementary Materials.

5.2 A�ribute Transfer
We demonstrate our attribute manipulation results in Fig. 9. Here
we only provide results obtained by using FPST [Li et al. 2018] as it

, Vol. 1, No. 1, Article . Publication date: May 2019.
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Fig. 4. Sample scene generation results. In these examples, the input layouts are from the test set, which are unseen during training and the transient a�ributes
are fixed to the original transient a�ributes. Incorporating Relevant Negative Mining (RNM) and Perceptual Loss (PL) significantly improves the performance
of the baseline SGN model in terms of both image quality as well as faithfulness of the end result to conditioned layouts and a�ributes.

Table 2. �antitative results. We compare visual quality with respect to
Inception Score (IS) and Fréchet Inception distance(FID), a�ribute and
semantic layout correctness via average MSE of a�ribute predictions (A�.
MSE) and segmentation accuracy (Seg. Acc.), respectively, via pre-trained
models. Our SGN model trained with RNM and PL techniques consistently
outperforms others, including the Pix2pix model [Isola et al. 2017].

Model IS FID Att. MSE Seg. Acc.
Pix2pix [Isola et al. 2017] 3.52 75.54 – %58.36
SGN 4.01 80.10 0.023 %55.93
+RNM 4.22 84.28 0.028 %51.90
+PL 4.04 60.70 0.016 %62.49
+RNM+PL 4.34 58.46 0.015 %62.39

Original 7.19 0 0.010 %72.12

MSE2 and segmentation accuracy again in Table 2. Training with
the proposed perceptual loss exhibits more advantages in preserving
the desired attributes and the semantic layout.

Our SGN model with RNM and Perceptual Loss shows clear supe-
riority to other variants both qualitatively and quantitatively. Thus
from now on, if not mentioned otherwise, all of our results are
obtained with this model.

4.1.3 Comparison with Image-to-Image Translation Models. We
compare our model to the popular Pix2pix model of Isola et al.
[2017]. We show qualitative comparisons in Figure 5. It is worth
mentioning that Pix2pix generates images only by conditioning on
the semantic layouts but not transient attributes, and moreover, it
does not utilize the noise vector. For quantitative comparison, we
compare the IS and FID scores and segmentation accuracy using all
1, 338 testing images in Table 2. Furthermore, in addition to these
metrics, we conduct a human evaluation on Figure Eight (formerly
Crowd�ower), asking workers to select among the results of our
proposed model and the Pix2pix method (for the same semantic
layout) which they believe is more realistic. 59% of the users picked
2The ground truth attributes are scalar values between 0 and 1.

our results as more realistic. These results suggest that besides the
advantages of manipulation over transient attributes, our model also
produces higher quality images than the Pix2pix model. We also
tried comparing our results against the recently proposed Cascaded
Re�nement Network [Chen and Koltun 2017], however, it did not
give meaningful results on our dataset containing complex scenes 3,
hence we left these results out.

4.1.4 Diversity of the Generated Images. One can generate di�er-
ent version of the same scene by conditioning on di�erent transient
attribute vectors, while �xing the layout. Moreover, the proposed
framework enables users to play with continuous attribute values,
o�ering re�ned control over each speci�c attribute. In Figure 6,
we show the e�ect of varying the transient attributes for a sample
semantic layout. As can be seen, our model is capable of generating
diverse samples and it also enables us to manipulate the degree of
desired transient attributes.

4.1.5 Adding and Subtracting Scene Elements. Here we envision
a potential application of our model as a scene editing tool that can
add or subtract scene elements. Figure 7 demonstrates an example.
We begin with a coarse spatial layout which contains two large
segments denoting the “sky” and the “ground”. We then gradually
add new elements, namely “mountain”, “tree”, “water”. At each step,
our model inserts a new object based on the semantic layout. In
fact, such a generation process closely resembles human thought
process in imagining and painting novel scenes. The reverse process,
subtracting elements piece by piece, can be achieved in a similar
manner. Moreover, we sample di�erent random attribute vector to
illustrate how generation diversity can enrich the outcomes of such
photo-editing tools. We provide a video demo in the Supplementary
Materials.

4.2 A�ribute Transfer
We demonstrate some attribute manipulation results obtained with
our approach in Figure 8. As can be seen, our algorithm produces
3We trained this model using the o�cial code provided by the authors,

, Vol. 1, No. 1, Article . Publication date: April 2019.
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Fig. 4. Sample scene generation results. In these examples, the input layouts are from the test set, which are unseen during training and the transient a�ributes
are fixed to the original transient a�ributes. Incorporating Relevant Negative Mining (RNM) and Perceptual Loss (PL) significantly improves the performance
of the baseline SGN model in terms of both image quality as well as faithfulness of the end result to conditioned layouts and a�ributes.

Table 2. �antitative results. We compare visual quality with respect to
Inception Score (IS) and Fréchet Inception distance(FID), a�ribute and
semantic layout correctness via average MSE of a�ribute predictions (A�.
MSE) and segmentation accuracy (Seg. Acc.), respectively, via pre-trained
models. Our SGN model trained with RNM and PL techniques consistently
outperforms others, including the Pix2pix model [Isola et al. 2017].

Model IS FID Att. MSE Seg. Acc.
Pix2pix [Isola et al. 2017] 3.52 75.54 – %58.36
SGN 4.01 80.10 0.023 %55.93
+RNM 4.22 84.28 0.028 %51.90
+PL 4.04 60.70 0.016 %62.49
+RNM+PL 4.34 58.46 0.015 %62.39

Original 7.19 0 0.010 %72.12

MSE2 and segmentation accuracy again in Table 2. Training with
the proposed perceptual loss exhibits more advantages in preserving
the desired attributes and the semantic layout.

Our SGN model with RNM and Perceptual Loss shows clear supe-
riority to other variants both qualitatively and quantitatively. Thus
from now on, if not mentioned otherwise, all of our results are
obtained with this model.

4.1.3 Comparison with Image-to-Image Translation Models. We
compare our model to the popular Pix2pix model of Isola et al.
[2017]. We show qualitative comparisons in Figure 5. It is worth
mentioning that Pix2pix generates images only by conditioning on
the semantic layouts but not transient attributes, and moreover, it
does not utilize the noise vector. For quantitative comparison, we
compare the IS and FID scores and segmentation accuracy using all
1, 338 testing images in Table 2. Furthermore, in addition to these
metrics, we conduct a human evaluation on Figure Eight (formerly
Crowd�ower), asking workers to select among the results of our
proposed model and the Pix2pix method (for the same semantic
layout) which they believe is more realistic. 59% of the users picked
2The ground truth attributes are scalar values between 0 and 1.

our results as more realistic. These results suggest that besides the
advantages of manipulation over transient attributes, our model also
produces higher quality images than the Pix2pix model. We also
tried comparing our results against the recently proposed Cascaded
Re�nement Network [Chen and Koltun 2017], however, it did not
give meaningful results on our dataset containing complex scenes 3,
hence we left these results out.

4.1.4 Diversity of the Generated Images. One can generate di�er-
ent version of the same scene by conditioning on di�erent transient
attribute vectors, while �xing the layout. Moreover, the proposed
framework enables users to play with continuous attribute values,
o�ering re�ned control over each speci�c attribute. In Figure 6,
we show the e�ect of varying the transient attributes for a sample
semantic layout. As can be seen, our model is capable of generating
diverse samples and it also enables us to manipulate the degree of
desired transient attributes.

4.1.5 Adding and Subtracting Scene Elements. Here we envision
a potential application of our model as a scene editing tool that can
add or subtract scene elements. Figure 7 demonstrates an example.
We begin with a coarse spatial layout which contains two large
segments denoting the “sky” and the “ground”. We then gradually
add new elements, namely “mountain”, “tree”, “water”. At each step,
our model inserts a new object based on the semantic layout. In
fact, such a generation process closely resembles human thought
process in imagining and painting novel scenes. The reverse process,
subtracting elements piece by piece, can be achieved in a similar
manner. Moreover, we sample di�erent random attribute vector to
illustrate how generation diversity can enrich the outcomes of such
photo-editing tools. We provide a video demo in the Supplementary
Materials.

4.2 A�ribute Transfer
We demonstrate some attribute manipulation results obtained with
our approach in Figure 8. As can be seen, our algorithm produces
3We trained this model using the o�cial code provided by the authors,

, Vol. 1, No. 1, Article . Publication date: April 2019.



Quantitative Analysis of SGN

26

• IS and FID to measure photorealism

• Attribute and segmentation
predictions to measure consistency
with the given contextual cues

• A user study containing 200 test 
questions was performed

• 66% of the users picked our results 
as more realistic.
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Fig. 5. Comparison of our SGN model against Pix2pix [Isola et al. 2017] and Pix2pixHD [Wang et al. [n. d.]]. Each row shows the original image and the
samples generated according to its corresponding semantic layout. Since our SGN model also takes into account a set of target transient a�ributes (only the
top three most significant ones are shown here for the sake of simplicity), it can generate diverse and more realistic results than the other methods.

Table 3. �antitative comparison of layout conditioned image synthesis
approaches. Our model consistently outperforms others in both coarse and
fine resolutions in terms of photorealism, as measured by IS and FID.

Model IS FID Seg. Acc.

Co
ar
se

Pix2pix 3.26 76.40 61.93
Pix2pixHD 4.20 47.86 75.57
Ours 4.19 35.02 71.80
Original 5.77 0.00 75.64

Fi
ne

Pix2pixHD 4.87 50.85 76.17
Ours 5.05 36.34 74.60
Original 7.37 0.00 77.14

asking workers to select among the results of our proposed model
and the Pix2pixHD method (for the same semantic layout) which
they believe is more realistic. We randomly generate 200 questions,
and let 5 di�erent subjects answer each question. We provide the
details of our user study in the Supplementary Material. We �nd
that 66% of the subjects picked our results as more realistic. These
results suggest that besides the advantages of manipulation over
transient attributes, our model also produces higher quality images
than the Pix2pixHD model. We also compared our results to the
recently proposed Cascaded Re�nement Network [Chen and Koltun
2017], however, it did not give meaningful results on our dataset
with complex scenes6.

5.1.4 Diversity of the Generated Images. In our framework, a
user can control the diversity via three di�erent mechanisms, each

6We trained this model using the o�cial code provided by the authors.

playing a di�erent role in the generation process. Perhaps the most
important one is the input semantic layout which explicitly speci�es
the content of the synthesized image, and the other two are the
target transient attributes and the noise vector. In Fig. 6, we show
the e�ect of varying the transient attributes for a sample semantic
layout and Fig. 7 illustrates the role of noise. If we keep the layout
and the attributes �xed, the random noise vector mainly a�ects
the appearance of some local regions, especially the ones involving
irregular or stochastic textures such as the sky, the trees or the plain
grass. The transient attribute vectors, however, has a more global
e�ect, modifying the image without making any changes to the
constituent parts of the scene.

5.1.5 Adding and Subtracting Scene Elements. Here we envision
a potential application of our model as a scene editing tool that
can add or subtract scene elements. Fig. 8 demonstrates an example.
We begin with a coarse spatial layout which contains two large
segments denoting the “sky” and the “ground”. We then gradually
add new elements, namely “mountain”, “tree”, “water”. At each step,
our model inserts a new object based on the semantic layout. In fact,
such a generation process closely resembles human thought process
in imagining and painting novel scenes. The reverse process, sub-
tracting elements piece by piece, can be achieved in a similar manner.
We sample di�erent random attribute vectors to illustrate how gen-
eration diversity can enrich the outcomes of such photo-editing
tools and provide a video demo in the Supplementary Material.

5.2 A�ribute Transfer
We demonstrate our attribute manipulation results in Fig. 9. Here
we only provide results obtained by using FPST [Li et al. 2018] as it

, Vol. 1, No. 1, Article . Publication date: July 2019.
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Fig. 4. Sample scene generation results. In these examples, the input layouts are from the test set, which are unseen during training and the transient a�ributes
are fixed to the original transient a�ributes. Incorporating Relevant Negative Mining (RNM) and Perceptual Loss (PL) significantly improves the performance
of the baseline SGN model in terms of both image quality as well as faithfulness of the end result to conditioned layouts and a�ributes. Moreover, the way we
define our perceptual loss, as compared to commonly used VGG-based one, provides be�er and more photorealistic results.

The IS correlates well with human judgment of image quality
where higher IS indicates better quality. FID has been demonstrated
to be more reliable than IS in terms of assessing the realism and
variation of the generated samples. Lower FID value means that the
distributions of generated images and real images are similar to each
other. Table 2 shows the IS and FID values for our SGNmodel trained
under various settings, together with values for the real image
space. These results agree with our qualitative analysis that training
with RNM and Perceptual Loss provides samples of the highest
quality. Additionally, for each generated image, we also predict its
attributes and semantic segmentation map using separately trained
attribute predictor by Baltenberger et al. [2016] and the semantic
segmentation model by Zhou et al. [2017] and we report the average
MSE3 and segmentation accuracy again in Table 2. Training with the
proposed perceptual loss is more e�ective in re�ecting photorealism
and preserving both the desired attributes and the semantic layout
better than the VGG-based perceptual loss.

Our SGN model with RNM and Perceptual Loss shows clear supe-
riority to other variants both qualitatively and quantitatively. Thus
from now on, if not mentioned otherwise, all of our results are
obtained with this model.

5.1.3 Comparison with Image-to-Image Translation Models. We
compare ourmodel to Pix2pix [Isola et al. 2017] and Pix2pixHD [Wang
et al. [n. d.]] models4. It is worth mentioning that both of these two
approaches generate images only by conditioning on the semantic
layout but not transient attributes, and moreover, they do not uti-
lize noise vectors. We provide qualitative comparisons in Fig. 5. As
these results demonstrate, our model not only generates realistic
looking images on par with Pix2pixHD but also has the capability to
deliver control over the attributes of the generated scenes. “Sunset”
attribute makes the horizon slightly more reddish, “Dry” attribute

during training and by using a split size of 10. While calculating FID scores, we employ
all of the test images from our dataset as the reference images.
3The ground truth attributes are scalar values between 0 and 1.
4For both of these models, we use the original source codes provided by the authors.

Table 2. Ablation study. We compare visual quality with respect to Inception
Score (IS) and Fréchet Inception distance (FID), a�ribute and semantic layout
correctness in terms of average MSE of a�ribute predictions (A�. MSE) and
segmentation accuracy (Seg. Acc.), respectively, via pre-trained models. Our
SGN model trained with RNM and PL techniques consistently outperforms
the others, including the se�ing with VGG-based perceptual loss.

Model IS FID Att. MSE Seg. Acc.
SGN 3.91 43.77 0.016 67.70
+RNM 3.89 41.84 0.016 70.11
+VGG 3.80 41.87 0.016 67.42
+PL 4.15 36.42 0.015 70.44
+RNM+PL 4.19 35.02 0.015 71.80

Original 5.77 0.00 0.010 75.64

increases the brown tones on the trees, “Snow” attribute whitens
the ground. Also note that the emergence of each attribute tends to
highly resonate with part of the image that is most related to the
attribute. That is, “Clouds” attribute primarily in�uences the sky,
whereas “Winter” attribute correlates with the ground, and “Lush”
tends to impact the trees and the grass. This further highlights
our model’s reasoning capability about the attributes in producing
realistic synthetic scenes.
For quantitative comparison, we compare the IS and FID scores

and segmentation accuracy using all 1, 338 testing images in Table 3
considering both coarse and �ne scales. These results suggest that
our proposed model produces high �delity natural images better
than Pix2pixHD in both scales. The di�erence in the segmentation
accuracy suggests that Pix2pixHD puts a more strict restraint on the
layout whereas our model o�ers �exibility in achieving a reasonable
trade-o� between capturing realism in accordance with transient
attributes vs. fully agreeingwith the layout. Furthermore, in addition
to these metrics, we conduct a human evaluation on Figure Eight5,

5Figure Eight is a web-based data annotation company which can be accessed from
https://www.�gure-eight.com/
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Fig. 8. Gradually adding and removing elements to and from the generated images. We use a coarse spatial layout map (top le�) to generate an image from
scratch, and then keep adding new scene elements to the map to refine the synthesized images. Moreover, we also show how we can modify the look by
conditioning on di�erent transient a�ributes.

Fig. 9. Sample a�ribute manipulation results. Given an outdoor scene and its semantic layout, our model produces realistic looking results for modifying
various di�erent transient a�ributes. Moreover, it can perform multimodal editing as well, in which we modify a combination of a�ributes.

the target image from a training set. This makes a di�erence since
the source and the target images always share the same semantic
layout. In this regard, our approach provides a more natural way to
edit an input image to modify its look under di�erent conditions.

Additionally, we conducted a user study on Figure Eight to val-
idate our observations. We show the participants an input image
and a pair of manipulation results along with a target attribute and
force them to select one of the manipulated images which they
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Fig. 10. Comparison with [La�ont et al. 2014]. In each row, for a given input image (first column), we respectively provide the results of [La�ont et al. 2014]
using their exemplar-based style transfer method (second column) and FPST [Li et al. 2018] (third column) between retrieved images and input images, and
the results of our method (last column) using FPST [Li et al. 2018] between generated image by proposed SGN model and input image.

Table 4. User study results for a�ribute manipulation. The preference rate
denotes the percentage of comparisons in which users favor one method
over the other.

Preference rate
Ours w/ FPST > La�ont et al. [2014] 65%
Ours w/ FPST > La�ont et al. [2014] w/ FPST 83%
Ours w/ FPST > Ours w/ DPST 52%

consider visually more appealing regarding the speci�ed target at-
tribute. The manipulation results are either our results obtained by
using DPST or FPST, or those of [La�ont et al. 2014]. We have a
total of 60 questions and we collected at least 3 user responses per
each of these question. We provide the details of our user study in
the Supplementary Materials. Table 4 summarizes these evaluation
results. We �nd that the human subjects prefer our approach against
the data-driven approach by [La�ont et al. 2014] 65% of the time.
This margin substantially increases when we replace the original
exemplar-based transfer part of [La�ont et al. 2014] with FPST as

the semantic layouts of retrieved images are most of the time not
consistent with those of the input images. We also evaluate the
results of our frameworks with FPST and DPST being used as the
style transfer network. As can be seen from Table 4, the human
subjects prefers FPST against DPST but by a very small margin.
The most important advantage of our framework over existing

works is that our approach enables users to play with the degree of
desired attributes via changing the numerical values of the attribute
condition vector. As shown in Fig. 11, we can increase and decrease
the strength of speci�c attributes and smoothly walk along the
learned attribute manifold using the outputs from the proposed
SGN model. This is nearly impossible for a retrieval-based editing
system since the style images are limited with the richness of the
database.
Although our attribute manipulation approach is designed for

natural images, we can apply it to oil paintings as well. In Fig. 12,
we manipulate transient attributes of three oil paintings to obtain
their novel versions depicting these landscapes at di�erent seasons.
As can be seen from these results, our model also gives visually
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39

Comparison against the state-of-the-art

Our results are favored 65% of the time by the users on 60 different test questions.
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Fig. 10. Comparison with [La�ont et al. 2014]. In each row, for a given input image (first column), we respectively provide the results of [La�ont et al. 2014]
using their exemplar-based style transfer method (second column) and FPST [Li et al. 2018] (third column) between retrieved images and input images, and
the results of our method (last column) using FPST [Li et al. 2018] between generated image by proposed SGN model and input image.

Table 4. User study results for a�ribute manipulation. The preference rate
denotes the percentage of comparisons in which users favor one method
over the other.

Preference rate
Ours w/ FPST > La�ont et al. [2014] 65%
Ours w/ FPST > La�ont et al. [2014] w/ FPST 83%
Ours w/ FPST > Ours w/ DPST 52%

consider visually more appealing regarding the speci�ed target at-
tribute. The manipulation results are either our results obtained by
using DPST or FPST, or those of [La�ont et al. 2014]. We have a
total of 60 questions and we collected at least 3 user responses per
each of these question. We provide the details of our user study in
the Supplementary Materials. Table 4 summarizes these evaluation
results. We �nd that the human subjects prefer our approach against
the data-driven approach by [La�ont et al. 2014] 65% of the time.
This margin substantially increases when we replace the original
exemplar-based transfer part of [La�ont et al. 2014] with FPST as

the semantic layouts of retrieved images are most of the time not
consistent with those of the input images. We also evaluate the
results of our frameworks with FPST and DPST being used as the
style transfer network. As can be seen from Table 4, the human
subjects prefers FPST against DPST but by a very small margin.
The most important advantage of our framework over existing

works is that our approach enables users to play with the degree of
desired attributes via changing the numerical values of the attribute
condition vector. As shown in Fig. 11, we can increase and decrease
the strength of speci�c attributes and smoothly walk along the
learned attribute manifold using the outputs from the proposed
SGN model. This is nearly impossible for a retrieval-based editing
system since the style images are limited with the richness of the
database.
Although our attribute manipulation approach is designed for

natural images, we can apply it to oil paintings as well. In Fig. 12,
we manipulate transient attributes of three oil paintings to obtain
their novel versions depicting these landscapes at di�erent seasons.
As can be seen from these results, our model also gives visually
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Our results are favored 65% of the time by the users on 60 different test questions.
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Fig. 10. Comparison with [La�ont et al. 2014]. In each row, for a given input image (first column), we respectively provide the results of [La�ont et al. 2014]
using their exemplar-based style transfer method (second column) and FPST [Li et al. 2018] (third column) between retrieved images and input images, and
the results of our method (last column) using FPST [Li et al. 2018] between generated image by proposed SGN model and input image.

Table 4. User study results for a�ribute manipulation. The preference rate
denotes the percentage of comparisons in which users favor one method
over the other.

Preference rate
Ours w/ FPST > La�ont et al. [2014] 65%
Ours w/ FPST > La�ont et al. [2014] w/ FPST 83%
Ours w/ FPST > Ours w/ DPST 52%

consider visually more appealing regarding the speci�ed target at-
tribute. The manipulation results are either our results obtained by
using DPST or FPST, or those of [La�ont et al. 2014]. We have a
total of 60 questions and we collected at least 3 user responses per
each of these question. We provide the details of our user study in
the Supplementary Materials. Table 4 summarizes these evaluation
results. We �nd that the human subjects prefer our approach against
the data-driven approach by [La�ont et al. 2014] 65% of the time.
This margin substantially increases when we replace the original
exemplar-based transfer part of [La�ont et al. 2014] with FPST as

the semantic layouts of retrieved images are most of the time not
consistent with those of the input images. We also evaluate the
results of our frameworks with FPST and DPST being used as the
style transfer network. As can be seen from Table 4, the human
subjects prefers FPST against DPST but by a very small margin.
The most important advantage of our framework over existing

works is that our approach enables users to play with the degree of
desired attributes via changing the numerical values of the attribute
condition vector. As shown in Fig. 11, we can increase and decrease
the strength of speci�c attributes and smoothly walk along the
learned attribute manifold using the outputs from the proposed
SGN model. This is nearly impossible for a retrieval-based editing
system since the style images are limited with the richness of the
database.
Although our attribute manipulation approach is designed for

natural images, we can apply it to oil paintings as well. In Fig. 12,
we manipulate transient attributes of three oil paintings to obtain
their novel versions depicting these landscapes at di�erent seasons.
As can be seen from these results, our model also gives visually
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Fig. 10. Comparison with [La�ont et al. 2014]. In each row, for a given input image (first column), we respectively provide the results of [La�ont et al. 2014]
using their exemplar-based style transfer method (second column) and FPST [Li et al. 2018] (third column) between retrieved images and input images, and
the results of our method (last column) using FPST [Li et al. 2018] between generated image by proposed SGN model and input image.

Table 4. User study results for a�ribute manipulation. The preference rate
denotes the percentage of comparisons in which users favor one method
over the other.

Preference rate
Ours w/ FPST > La�ont et al. [2014] 65%
Ours w/ FPST > La�ont et al. [2014] w/ FPST 83%
Ours w/ FPST > Ours w/ DPST 52%

consider visually more appealing regarding the speci�ed target at-
tribute. The manipulation results are either our results obtained by
using DPST or FPST, or those of [La�ont et al. 2014]. We have a
total of 60 questions and we collected at least 3 user responses per
each of these question. We provide the details of our user study in
the Supplementary Material. Table 4 summarizes these evaluation
results. We �nd that the human subjects prefer our approach against
the data-driven approach by [La�ont et al. 2014] 65% of the time.
This margin substantially increases when we replace the original
exemplar-based transfer part of [La�ont et al. 2014] with FPST as

the semantic layouts of retrieved images are most of the time not
consistent with those of the input images. We also evaluate the
results of our frameworks with FPST and DPST being used as the
style transfer network. As can be seen from Table 4, the human
subjects prefers FPST against DPST but by a very small margin.
The most important advantage of our framework over existing

works is that our approach enables users to play with the degree of
desired attributes via changing the numerical values of the attribute
condition vector. As shown in Fig. 11, we can increase and decrease
the strength of speci�c attributes and smoothly walk along the
learned attribute manifold using the outputs from the proposed
SGN model. This is nearly impossible for a retrieval-based editing
system since the style images are limited with the richness of the
database.
Although our attribute manipulation approach is designed for

natural images, we can apply it to oil paintings as well. In Fig. 12,
we manipulate transient attributes of three oil paintings to obtain
their novel versions depicting these landscapes at di�erent seasons.
As can be seen from these results, our model also gives visually
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Image Synthesis in Multi-Contrast MRI
With Conditional Generative

Adversarial Networks
Salman UH. Dar, Student Member, IEEE, Mahmut Yurt, Levent Karacan, Aykut Erdem ,

Erkut Erdem , and Tolga Çukur , Senior Member, IEEE

Abstract— Acquiring images of the same anatomy with
multiple different contrasts increases the diversity of diag-
nostic information available in an MR exam. Yet, the scan
time limitations may prohibit the acquisition of certain
contrasts, and some contrasts may be corrupted by noise
and artifacts. In such cases, the ability to synthesize
unacquired or corrupted contrasts can improve diagnos-
tic utility. For multi-contrast synthesis, the current meth-
ods learn a nonlinear intensity transformation between
the source and target images, either via nonlinear regres-
sion or deterministic neural networks. These methods
can, in turn, suffer from the loss of structural details in
synthesized images. Here, in this paper, we propose a
new approach for multi-contrast MRI synthesis based on
conditional generative adversarial networks. The proposed
approach preserves intermediate-to-high frequency details
via an adversarial loss, and it offers enhanced synthe-
sis performance via pixel-wise and perceptual losses for
registered multi-contrast images and a cycle-consistency
loss for unregistered images. Information from neighbor-
ing cross-sections are utilized to further improve syn-
thesis quality. Demonstrations on T1 - and T2- weighted
images from healthy subjects and patients clearly indicate
the superior performance of the proposed approach com-
pared to the previous state-of-the-art methods. Our synthe-
sis approach can help improve the quality and versatility
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of the multi-contrast MRI exams without the need for pro-
longed or repeated examinations.

Index Terms— Generative adversarial network, image
synthesis, multi-contrast MRI, pixel-wise loss, cycle-
consistency loss.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is pervasively
used in clinical applications due to the diversity of

contrasts it can capture in soft tissues. Tailored MRI pulse
sequences enable the generation of distinct contrasts while
imaging the same anatomy. For instance, T1-weighted brain
images clearly delineate gray and white matter tissues,
whereas T2-weighted images delineate fluid from cortical
tissue. In turn, multi-contrast images acquired in the same
subject increase the diagnostic information available in clinical
and research studies. However, it may not be possible to
collect a full array of contrasts given considerations related
to the cost of prolonged exams and uncooperative patients,
particularly in pediatric and elderly populations [1]. In such
cases, acquisition of contrasts with relatively shorter scan
times might be preferred. Even then a subset of the acquired
contrasts can be corrupted by excessive noise or artifacts that
prohibit subsequent diagnostic use [2]. Moreover, cohort stud-
ies often show significant heterogeneity in terms of imaging
protocol and the specific contrasts that they acquire [3]. Thus,
the ability to synthesize missing or corrupted contrasts from
other successfully acquired contrasts has potential value for
enhancing multi-contrast MRI by increasing availability of
diagnostically-relevant images, and improving analysis tasks
such as registration and segmentation [4].

Cross-domain synthesis of medical images has recently
been gaining popularity in medical imaging. Given a
subject’s image x in X (source domain), the aim is to accu-
rately estimate the respective image of the same subject y
in Y (target domain). Two main synthesis approaches are
registration-based [5]–[7] and intensity-transformation-based
methods [8]–[24]. Registration-based methods start by gen-
erating an atlas based on a co-registered set of images,
x1 and y1, respectively acquired in X and Y [5]. These
methods further make the assumption that within-domain
images from separate subjects are related to each other through
a geometric warp. For synthesizing y2 from x2, the warp that
transforms x1 to x2 is estimated, and this warp is then applied

0278-0062 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Motivation
• Acquiring multi-contrast MR images of 

a patient increases the diversity of diagnostic
information for the radiologists.

• Cost of prolonged exams or uncooperative 
patients might prohibit the acquisition of 
full array of contrasts.

• Can we automatically synthesize unacquired or corrupted contrasts 
from successfully acquired contrast(s) to help diagnosis?
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is acquired under multiple different tissue contrasts (e.g., T1- 
and T2-weighted images). Inspired by the recent success of 
adversarial networks, here we employed conditional GANs to 
synthesize MR images of a target contrast given as input an 
alternate contrast. For a comprehensive solution, we considered 

two distinct scenarios for multi-contrast MR image synthesis. 
First, we assumed that the images of the source and target 
contrasts are perfectly registered. For this scenario, we propose 
pGAN that incorporates a pixel-wise loss into the objective 
function as inspired by the pix2pix architecture [49]:  
 

            (4) 

 
where ,2% is the pixel-wise L1 loss function. Since the 
generator ' was observed to ignore the latent variable in pGAN, 
the latent variable was removed from the model.  

Recent studies suggest that incorporation of a perceptual loss 
during network training can yield visually more realistic results 
in computer vision tasks. Unlike loss functions based on pixel-
wise differences, perceptual loss relies on differences in higher 
feature representations that are often extracted from networks 
pre-trained for more generic tasks [25]. A commonly used 
network is VGG-net trained on the ImageNet [56] dataset for 
object classification. Here, following [25], we extracted feature 
maps right before the second max-pooling operation of VGG16 
pre-trained on ImageNet. The resulting loss function can be 
written as: 
 

 (5) 

 
where  3 is the set of feature maps extracted from VGG16.  

To synthesize each cross-section # from ! we also leveraged 
correlated information across neighboring cross-sections by 
conditioning the networks not only on ! but also on the 
neighboring cross-sections of !. By incorporating the 
neighboring cross-sections (3), (4) and (5) become: 
 

 (6) 

 
 (7) 

 
 (8) 

 
where 45 = [!789:;, … , !7&, !7%, !, !7%, !7&, … , !>89:;] is a vector 
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Fig. 1.  The pGAN method is based on a conditional adversarial network with 
a generator G, a pre-trained VGG16 network V, and a discriminator D. Given 
an input image in a source contrast (e.g., T1-weighted), G learns to generate 
the image of the same anatomy in a target contrast (e.g., T2-weighted). 
Meanwhile, D learns to discriminate between synthetic (e.g., T1-G(T1)) and 
real (e.g., T1-T2) pairs of multi-contrast images. Both subnetworks are trained 
simultaneously, where G aims to minimize a pixel-wise, a perceptual and an 
adversarial loss function, and D tries to maximize the adversarial loss function. 
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Our approaches
• We cast MRI synthesis as an image-to-image translation problem

• We propose two different MRI synthesis models
• pGAN (Dar et al., 2019) – a variant of pix2pix model (single source – single output)
• cGAN (Dar et al., 2019) – a variant of CycleGAN model (single source – single output)
•
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Related work
• REPLICA (Jog et al., Medical Image Analysis 2017)
• a supervised random forest 

image synthesis approach
• learns a nonlinear regression 

function to predict target 
contrast from a source 
contrast 
• Considers a multi-scale 

processing strategy
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Fig. 1. A graphical description of the REPLICA algorithm. The task depicted here involves predicting T 2 w images from T 1 w images. The left portion shows the training for 
all scales. The trained random forests (RF) at each level are then applied to the scaled versions of the input subject T 1 w image, starting from the coarsest scale s = 3 to the 
finest scale s = 1 . The feature extraction step extracts different features at each level. Refer to the text for the notation. 

Fig. 2. High resolution context descriptor. The voxel x at which this descriptor is calculated is at the center of this figure. The center of the slice o z is shown on the right. 
The unit vector u is directed from x to o z and is shown in red. It is rotated in increments of π /4 to identify the rest of the eight directions. At each radius ∈ { r 1 , r 2 , r 3 , r 4 }, 
along these eight different directions, we evaluate the mean of image intensities within a 3D cubic region (depicted here as colored 2D squares). The cubic widths { w 1 , w 2 , 
w 3 , w 4 } are also shown for a set of regions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 



Related work
• Multimodal (Chartsias et al., IEEE Trans. Medical Imaging 2018)
• a multi-input, multi-output fully convolutional neural network model 
• learns to embed all input modalities into a common latent space, which is used 

for MRI synthesis
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Fig. 1. Schematic for our model. X1, . . . ,Xn represent the n input
modalities and Y1, . . . ,Ym represent the m output modalities. The
f represent encoders, parametrised by their respective θi, which map
inputs into latent representations, α fuses those latent representations,
and the decoders g, each parametrised by their own ψj, decode the
representation into outputs. Full details of each component is given in
the main text.

Our model takes aligned images as input,1 making use of
multiple modalities when available, allowing users to simply
provide any of the available modalities at test time. We show
that it outperforms state of the art neural network and random
forest methods when trained on a single modality, with results
improving further when additional modalities are given as
input. Our end-to-end model, depicted in Figure 1, processes
input images in three stages: encoding, representation fusion,
and decoding. As each of these stages is independent, our
model is modular, i.e. encoders and/or decoders can be added
to accommodate additional modalities. Our contributions are:

1) We present a novel modular convolutional deep network
for MR image synthesis that improves the quality of
images synthesised from a single input modality com-
pared to current leading methods.

2) We show that our model can combine information from
multiple inputs to further improve synthesis quality.

3) By using a single shared decoder for each output modal-
ity and a custom loss function, we are able to learn
a modality-invariant latent representation to which all
input modalities are mapped. This renders the model
robust to missing inputs, and avoids the need for cur-
riculum learning [14] during training.

4) We encourage the latent representation to capture the
useful information in a simple way by restricting the
size of the decoders.

5) We demonstrate that the model can be easily extended to
new output modalities through the addition of decoders
which can be trained in isolation.

6) We improve synthesis errors of pathological images by
including information from lesion segmentation masks.
In this setting, our model can also generate on request
images with synthetic lesions by adding the affected
region as defined by a segmentation mask.

7) We show that the model works for both skull-stripped
and non skull-stripped brain data, with no change
required, demonstrating that the latent representation is
flexible, and not overly tailored to a specific task.

1Preliminary work, specialised to handle data misalignment [13] is discussed
in Section VII. In this paper we experiment with different latent representation
sizes and fusion operators, examine the way information is combined from
various inputs, carry out thorough evaluation under three metrics, and extend
to both full sized images and non skull-stripped data.

The paper is organised as follows. Section II reviews
relevant prior work. Section III discusses the requirements of
a multi-input fusion method. Section IV details our model.
Section V describes experimental setup and datasets used.
We present results in Section VI, and conclude in Section VII.

II. PREVIOUS WORK

Machine vision techniques have been extensively used in
MR image processing for image synthesis. They can be
broadly divided into those that use only one input modal-
ity (unimodal) and those that use more (multimodal). We dis-
cuss these below and mention some limitations. Since in
the multimodal case latent representation learning becomes
important, we also review key machine learning literature on
this topic.

A. Unimodal
MR synthesis has often been treated as a patch-based

regression task [3], [15]–[17]. In this setting mappings are
learnt, using various techniques, which take a patch of an
image or volume in one modality, and predict the intensity
of the central pixel of the corresponding patch in a target
modality. The performance of these approaches has been
shown to be aided by the addition of hand-crafted features
that capture elements of the global structure of the image [9].

Another common approach to synthesis is the use of an
atlas, such as in [2], [16], and [18]. Here, rather than learning
a mapping, an atlas of image pairs is leveraged, and recon-
structing a new volume from a source modality is achieved
by matching the volume with the entries in the atlas of the
same modality, and constructing the synthetic images from
the corresponding atlas images in the target modality.

A sparse dictionary representation of the source and target
modality has been proposed in [19], which synthesises new
images with patch matching. In [20], joint dictionary learning
is used to learn a cross-modality dictionary of the pair of
source and target modalities that minimises the statistical
distribution between them via optimisation. Image synthesis
has also been treated directly as an optimisation problem in
an unsupervised setting [8]. The target modality candidates are
generated by a search method and then combined to obtain a
synthetic image.

More recently, neural networks have been applied to MR
synthesis and segmentation, and like many of the sparse
coding based methods, often they approach the problem as
a patch based regression [21]. The Location Sensitive Deep
Network (LSDN) [7] is a patch-based neural network that,
given as input a patch and its spatial position within the
volume, can learn a position-dependent intensity map between
two modalities. Motivated by the observation that conditioning
on the location in the volume greatly reduces the complexity of
the intensity transforms needing to be learnt, LSDN has been
shown to produce state of the art MR synthesis results. Another
neural network approach is [22], in which a deep encoder-
decoder network synthesises images of a target modality.

Neural networks have also been employed to synthesise
pseudo-healthy images. In [23], a denoising variational autoen-
coder was used to synthesise pseudo-healthy images for the
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Fig. 2. Our U-Net [33] like encoder(s) f(·|θ). Each input modality i has its
own encoder, parametrised by θi, that maps the input image in modality
i to the latent space Zi. We use L = 16 channels in the latent space.

encoders, fusion method, and decoders. We then discuss in
depth the importance of learning good latent representations,
and detail our multi-component cost function, providing the
motivations for each component.

A. Encoding
We learn one independent encoder for each input modality

of our model, with an architecture as shown in Figure 2.
The encoders embed single-channel input images into a multi-
channel latent space. Specifically, if our input images are slices
of size W × H then out latent representation is an L channel
image of that same size. We took inspiration from U-Net [33]
to make our encoder modules. The idea behind the U-Net’s
down-sampling followed by up-sampling and skip connection
architecture is to allow the network to exploit information at
larger spatial scales than those of the filters, whilst also not
losing useful local information. In addition, skip connections
facilitate gradient flow during training, as discussed in [34].
Our encoders are shallower than the original U-Net having
only two downsample (and upsample) steps compared to U-
Net’s four downsample (and upsample) steps. This reduces the
training and run times for the model. Although the final quality
of synthesis shown herein already outperforms the compared
approaches, it may be possible to decrease the error further
through the use of deeper encoders. We also replaced the
ReLU [35] in the standard U-Net with Leaky ReLU [36], as we
found that the network is easier to train and it improves the
quality of the latent representations.2 Throughout the network,
we use a stride of 1, and pad the images by repeating the
border pixels so that the final output has the same width
and height as the original input. An encoder f is trained
for each input modality Xi to learn the set of parameters

2One common problem was that the network often got stuck in a bad local
optimum when all zero channels in the latent representation developed early
in training. The use of LeakyReLUs significantly eased the problem, resulting
in consistent performance across runs, likely due to the fact that they always
provide a small gradient, whereas ReLUs have 0 gradient when deactivated.

θi (the network’s weights) that fully describes the map from
the i -th input modality to the latent space Zi . In our model
we use a 16-channel latent representation. Experiments with
different latent representation sizes showed that this produced
good results, whilst keeping the model small enough to easily
train (see Section VI-A).

B. Fusion
During the fusion step, our model uses a fusion operation, α,

to combine each of the individual representations produced
by the encoders into a single fused representation, which we
call Zα. It is this fusion step that gives the model its robustness
to missing input data. In theory, α could be chosen to be any
function that takes as input any number of latent representa-
tions, and returns a single fused latent representation. We want
this fused representation to integrate information present in the
various inputs, in a way that we not only preserve commonly
represented features, but also retain unique features expressed
in one modality but not the others. Additionally, the fused
representation should be robust to varying numbers of inputs
and if some input modalities are missing, it should accommo-
date such missing inputs. Specifically, the aim is that, given
any subset of latent representations, we produce a fused latent
representation that is at least as good as each of the constituent
latent representations, in terms of synthesis quality.

To this end, we use the pixel-wise max function (1) to
combine our latent representations into a fused latent repre-
sentation. The use of the max means that, in each channel,
each pixel of the latent representation has exactly the value of
the corresponding pixel in one of the original latent represen-
tations. In particular, if the signal is large and positive in one
constituent latent representation, then it will be chosen for the
fused representations. Our fusion operator α is defined as:

Zα = α(Z1, . . . , Zn) = max(Z1, . . . , Zn), (1)

for n input modalities and corresponding individual latent
representations. The fused representation is exactly the same
size and shape as the individual latent representations Zi . The
performance of this fusion method is intimately linked with
the nature of the latent representations learnt, which is detailed
in Section IV-D. Note that the use of max does not bias the
method towards bright final outputs, as the intensities of the
synthesised image depend on the decoding step.

Although we use max fusion in our model, there is potential
to learn the fusion operation itself, for example by learning
an additional hyper-parameter that interpolates between mean
and max fusion. This may further regularise the model as non-
max fusion allows gradient from the fused output to flow to
all inputs, rather than just the max.

C. Decoding
The decoding stage of the model uses a fully-convolutional

network to map the latent representation to a target output
modality. Here the input is a multi-channel image-sized latent
representation, and the output is a single channel image of
the required modality. The exact architecture of our decoder
g is shown in Figure 3. We train one decoder for each output
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is acquired under multiple different tissue contrasts (e.g., T1- 
and T2-weighted images). Inspired by the recent success of 
adversarial networks, here we employed conditional GANs to 
synthesize MR images of a target contrast given as input an 
alternate contrast. For a comprehensive solution, we considered 

two distinct scenarios for multi-contrast MR image synthesis. 
First, we assumed that the images of the source and target 
contrasts are perfectly registered. For this scenario, we propose 
pGAN that incorporates a pixel-wise loss into the objective 
function as inspired by the pix2pix architecture [49]:  
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where ,2% is the pixel-wise L1 loss function. Since the 
generator ' was observed to ignore the latent variable in pGAN, 
the latent variable was removed from the model.  

Recent studies suggest that incorporation of a perceptual loss 
during network training can yield visually more realistic results 
in computer vision tasks. Unlike loss functions based on pixel-
wise differences, perceptual loss relies on differences in higher 
feature representations that are often extracted from networks 
pre-trained for more generic tasks [25]. A commonly used 
network is VGG-net trained on the ImageNet [56] dataset for 
object classification. Here, following [25], we extracted feature 
maps right before the second max-pooling operation of VGG16 
pre-trained on ImageNet. The resulting loss function can be 
written as: 
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and ,2%75 are the corresponding adversarial and pixel-wise loss 
functions. This yields the following aggregate loss function:  
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relative weighing of the pixel-wise loss and FEGHA controls the 
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Fig. 1.  The pGAN method is based on a conditional adversarial network with 
a generator G, a pre-trained VGG16 network V, and a discriminator D. Given 
an input image in a source contrast (e.g., T1-weighted), G learns to generate 
the image of the same anatomy in a target contrast (e.g., T2-weighted). 
Meanwhile, D learns to discriminate between synthetic (e.g., T1-G(T1)) and 
real (e.g., T1-T2) pairs of multi-contrast images. Both subnetworks are trained 
simultaneously, where G aims to minimize a pixel-wise, a perceptual and an 
adversarial loss function, and D tries to maximize the adversarial loss function. 
 

 
Fig. 2.  The cGAN method is based on a conditional adversarial network with 
two generators (GT1, GT2) and two discriminators (DT1, DT2). Given a T1-
weighted image, GT2 learns to generate the respective T2-weighted image of 
the same anatomy that is indiscriminable from real T2-weighted images of 
other anatomies, whereas DT2 learns to discriminate between synthetic and real 
T2-weighted images. Similarly, GT1 learns to generate realistic a T1-weighted 
image of an anatomy given the respective T2-weighted image, whereas DT1 
learns to discriminate between synthetic and real T1-weighted images. Since 
the discriminators do not compare target images of the same anatomy, a pixel-
wise loss cannot be used. Instead, a cycle-consistency loss is utilized to ensure 
that the trained generators enable reliable recovery of the source image from 
the generated target image. 
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Fig. 1.  The pGAN method is based on a conditional adversarial network with 
a generator G, a pre-trained VGG16 network V, and a discriminator D. Given 
an input image in a source contrast (e.g., T1-weighted), G learns to generate 
the image of the same anatomy in a target contrast (e.g., T2-weighted). 
Meanwhile, D learns to discriminate between synthetic (e.g., T1-G(T1)) and 
real (e.g., T1-T2) pairs of multi-contrast images. Both subnetworks are trained 
simultaneously, where G aims to minimize a pixel-wise, a perceptual and an 
adversarial loss function, and D tries to maximize the adversarial loss function. 
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http://github.com/icon-lab/mrirecon. Replica was based on a 
MATLAB implementation, and a Keras implementation [68] of 
Multimodal with the Theano backend [69] was used. 

III. RESULTS 

A. Comparison of GAN-based models 
We first evaluated the proposed models on T1- and T2-

weighted images from the MIDAS and IXI datasets. We 
considered two cases for T2 synthesis (a. T1→T2#, b. T1#→T2, 
where # denotes the registered image), and two cases for T1 
synthesis (c. T2→T1#, d. T2#→T1). Table I lists PSNR and SSIM 
for pGAN, cGANreg trained on registered data, and cGANunreg 
trained on unregistered data in the MIDAS dataset. We find that 
pGAN outperforms cGANunreg and cGANreg in all cases 
(p<0.05). Representative results for T1→T2# are displayed in 
Fig. 3a and T2#→T1 are displayed in Supp. Fig. Ia, respectively. 
pGAN yields higher synthesis quality compared to cGANreg. 
Although cGANunreg was trained on unregistered images, it can 
faithfully capture fine-grained structure in the synthesized 
contrast. Overall, both pGAN and cGAN yield synthetic images 
of remarkable visual similarity to the reference. Supp. Tables II 
and III (k=1) lists PSNR and SSIM across test images for T2 
and T1 synthesis with both directions of registration in the IXI 
dataset. Note that there is substantial mismatch between the 
voxel dimensions of the source and target contrasts in the IXI 
dataset, so cGANunreg must map between the spatial sampling 
grids of the source and the target. Since this yielded suboptimal 
performance, measurements for cGANunreg are not reported. 
Overall, similar to the MIDAS dataset, we observed that pGAN 
outperforms the competing methods (p<0.05). On average, 
across the two datasets, pGAN achieves 1.42dB higher PSNR 
and 1.92% higher SSIM compared to cGAN.  These 
improvements can be attributed to pixel-wise and perceptual 
losses compared to cycle-consistency loss on paired images.  

In MR images, neighboring voxels can show structural 
correlations, so we reasoned that synthesis quality can be 
improved by pooling information across cross sections. To 
examine this issue, we trained multi cross-section pGAN (k=3, 
5, 7), cGANreg and cGANunreg models (k=3; see Methods) on 
the MIDAS and IXI datasets. PSNR and SSIM measurements 
for pGAN are listed in Supp. Table II, and those for cGAN are 
listed in Supp. Table III. For pGAN, multi cross-section models 
yield enhanced synthesis quality in all cases. Overall, k=3 offers 
optimal or near-optimal performance while maintaining 
relatively low model complexity, so k=3 was considered 
thereafter for pGAN. The results are more variable for cGAN, 
with the multi-cross section model yielding a modest 
improvement only in some cases. To minimize model 
complexity, k=1 was considered for cGAN.  

Table II compares PSNR and SSIM of multi cross-section 
pGAN and cGAN models for T2 and T1 synthesis in the MIDAS 
dataset. Representative results for T1→T2# are shown in Fig. 3b 
and T2#→T1 are shown in Supp. Fig. Ib. Among multi cross-
section models, pGAN outperforms alternatives in PSNR and 
SSIM (p<0.05), except for SSIM in T2#→T1. Moreover, 
compared to the single cross-section pGAN, the multi cross-
section pGAN improves PSNR and SSIM values. These 
measurements are also affirmed by improvements in visual 

quality for the multi cross-section model in Fig. 3 and Supp. 
Fig. I. In contrast, the benefits are less clear for cGAN. Note 
that, unlike pGAN that works on paired images, the 
discriminators in cGAN work on unpaired images from the 
source and target domains. In turn, this can render incorporation 
of correlated information across cross sections less effective. 
Supp. Tables II and III compare PSNR and SSIM of multi cross-

 
Fig. 3.  The proposed approach was demonstrated for synthesis of T2-weighted 
images from T1-weighted images in the MIDAS dataset. Synthesis was 
performed with pGAN, cGAN trained on registered images (cGANreg), and 
cGAN trained on unregistered images (cGANunreg). For pGAN and cGANreg, 
training was performed using T2-weighted images registered onto T1-weighted 
images (T1→T2#). Synthesis results for (a) the single cross-section, and (b) 
multi cross-section models are shown along with the true target image 
(reference) and the source image (source). Zoomed-in portions of the images 
are also displayed. While both pGAN and cGAN yield synthetic images of 
striking visual similarity to the reference, pGAN is the top performer. Synthesis 
quality is improved as information across neighboring cross sections is 
incorporated, particularly for the pGAN method. 

TABLE I 
QUALITY OF SYNTHESIS IN THE MIDAS DATASET  

SINGLE CROSS-SECTION MODELS  

 
cGANunreg cGANreg pGAN 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.829 
±0.017 

23.66 
±0.632 

0.895 
±0.014 

26.56 
±0.432 

0.920 
±0.014 

28.79 
±0.580 

T1# ® T2 
0.823 
±0.021 

23.85 
±0.420 

0.854 
±0.024 

25.47 
±0.556 

0.876 
±0.028 

27.07 
±0.618 

T2 ® T1# 
0.826 
±0.015 

23.20 
±0.503 

0.892 
±0.017 

26.53 
±1.169 

0.912 
±0.017 

27.81 
±1.424 

T2# ® T1 
0.821 
±0.021 

22.56 
±1.008 

0.863 
±0.022 

26.15 
±0.974 

0.883 
±0.023 

27.31 
±0.983 

T1# is registered onto the respective T2 image; and T2# is registered onto the 
respective T1 image; and ® indicates the direction of synthesis. PSNR and 
SSIM measurements are reported as mean±std across test images. Boldface 
marks the model with the highest performance. 

 
TABLE II 

QUALITY OF SYNTHESIS IN THE MIDAS DATASET  
MULTI CROSS-SECTION MODELS (K=3) 

 
cGANunreg cGANreg pGAN 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.829 
±0.016 

23.65 
±0.650 

0.895 
±0.014 

26.62 
±0.489 

0.926 
±0.014 

29.34 
±0.592 

T1# ® T2 
0.797 
±0.027 

23.37 
±0.604 

0.862 
±0.022 

25.83 
±0.384 

0.883 
±0.027 

27.49 
±0.643 

T2 ® T1# 
0.824 
±0.015 

24.00 
±0.628 

0.900 
±0.017 

27.04 
±1.238 

0.920 
±0.016 

28.16 
±1.303 

T2# ® T1 
0.805 
±0.021 

23.55 
±0.782 

0.864 
±0.022 

26.44 
±0.871 

0.887 
±0.023 

27.42 
±1.127 

Boldface marks the model with the highest performance. 
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section pGAN and cGAN models for T2 and T1 synthesis in the 
IXI dataset. The multi cross-section pGAN outperforms 
cGANreg in all cases (p<0.05). Moreover, the multi cross-
section pGAN outperforms the single cross-section pGAN in 
all cases (p<0.05), except in T1→T2#. On average, across the 
two datasets, multi cross-section pGAN achieves 0.63dB higher 
PSNR and 0.89% higher SSIM compared to single cross-
section pGAN.  

B. Comparison to state-of-the-art methods 
Next, we demonstrated the proposed methods against two 

state-of-the-art techniques for multi-contrast MRI synthesis, 
Replica and Multimodal. We trained pGAN, cGANreg, Replica, 
and Multimodal on T1- and T2-weighted brain images in the 
MIDAS and IXI datasets. Note that Replica performs ensemble 
averaging across random forest trees and Multimodal uses 
mean-squared error measures that can lead to overemphasis of 
low frequency information. In contrast, conditional GANs use 
loss functions that can more effectively capture details in the 
intermediate to high spatial frequency range. Thus, pGAN 
should synthesize sharper and more realistic images as 
compared to the competing methods. Table III lists PSNR and 
SSIM for pGAN, Replica and Multimodal (cGANreg listed in 
Supp. Table I) in the MIDAS dataset. Overall, pGAN 
outperforms the competing methods in all examined cases 
(p<0.05), except for SSIM in T2 synthesis, where pGAN and 
Multimodal perform similarly. The proposed method is 
superior in depiction of detailed tissue structure as visible in 
Supp. Fig. II (for comparisons in coronal and sagittal cross-
sections see Supp. Figs. IV, V). Table IV lists PSNR and SSIM 
across test images synthesized via pGAN, Replica and 
Multimodal (cGANreg listed in Supp. Table I) for the IXI 
dataset. Overall, pGAN outperforms the competing methods in 
all examined cases (p<0.05). The proposed method is superior 
in depiction of detailed tissue structure as visible in Fig. 4 and 
Supp. Fig. III (see also Supp. Figs. IV, V).  

Following assessments on datasets comprising healthy 
subjects, we demonstrated the performance of the proposed 
methods on patients with pathology. To do this, we trained and 
tested pGAN, cGANreg, Replica, and Multimodal on T1- and T2-
weighted brain images from the BRATS dataset. Similar to the 
previous evaluations, here we expected that the proposed 
method would synthesize more realistic images with improved 
preservation of fine-grained tissue structure. Table V lists 
PSNR and SSIM across test images synthesized via pGAN, 
Replica and Multimodal (cGANreg listed in Supp. Table I; for 
measurements on background-removed images in MIDAS, IXI 
and BRATS see Supp. Table V). Overall, pGAN is the top 
performing method in all cases (p<0.05), except for SSIM in 
T1→T2 where pGAN and Multimodal perform similarly. 
Moreover, cGAN performs favorably in PSNR over competing 
methods. Representative images for T2 and T1 synthesis are 
displayed in Fig. 5 (see also Supp. Figs. IV, V). It is observed 
that regions near pathologies are inaccurately synthesized by 
Replica and Multimodal. Meanwhile, the pGAN method 
enables reliable synthesis with visibly improved depiction of 
structural details. Across the datasets, pGAN outperforms the 
state-of-the-art methods by 2.85dB PSNR and 1.23% SSIM.  

Next, we performed additional control analyses via 4-fold 

 
Fig. 4.  The proposed approach was demonstrated for synthesis of T1-weighted 
images from T2-weighted images in the IXI dataset. T2→T1# and T2#→T1 
synthesis were performed with pGAN, Multimodal and Replica. Synthesis 
results for (a) T2→T1#, and (b) T2#→T1 along with their corresponding error 
maps are shown along with the true target image (reference) and the source 
image (source). The proposed method outperforms competing methods in 
terms of synthesis quality. Regions that are inaccurately synthesized by the 
competing methods are reliably depicted by pGAN (marked with arrows). The 
use of adversarial loss enables improved accuracy in synthesis of 
intermediate-spatial-frequency texture in T2-weighted images compared to 
Multimodal and Replica that show some degree of blurring. 

 
Fig. 5.  The proposed approach was demonstrated on glioma patients for 
synthesis of T2-weighted images from T1-weighted images, and T2-weighted 
images from T1-weighted images in the BRATS dataset. Synthesis results for 
(a) T1→T2, and (b) T1→T2 along with their corresponding error maps are 
shown along with the true target image (reference) and the source image 
(source). Regions of inaccurate synthesis with Replica and Multimodal are 
observed near pathologies (marked with arrows). Meanwhile, the pGAN 
method enables reliable synthesis with visibly improved depiction of 
intermediate spatial frequency information. 
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section pGAN and cGAN models for T2 and T1 synthesis in the 
IXI dataset. The multi cross-section pGAN outperforms 
cGANreg in all cases (p<0.05). Moreover, the multi cross-
section pGAN outperforms the single cross-section pGAN in 
all cases (p<0.05), except in T1→T2#. On average, across the 
two datasets, multi cross-section pGAN achieves 0.63dB higher 
PSNR and 0.89% higher SSIM compared to single cross-
section pGAN.  

B. Comparison to state-of-the-art methods 
Next, we demonstrated the proposed methods against two 

state-of-the-art techniques for multi-contrast MRI synthesis, 
Replica and Multimodal. We trained pGAN, cGANreg, Replica, 
and Multimodal on T1- and T2-weighted brain images in the 
MIDAS and IXI datasets. Note that Replica performs ensemble 
averaging across random forest trees and Multimodal uses 
mean-squared error measures that can lead to overemphasis of 
low frequency information. In contrast, conditional GANs use 
loss functions that can more effectively capture details in the 
intermediate to high spatial frequency range. Thus, pGAN 
should synthesize sharper and more realistic images as 
compared to the competing methods. Table III lists PSNR and 
SSIM for pGAN, Replica and Multimodal (cGANreg listed in 
Supp. Table I) in the MIDAS dataset. Overall, pGAN 
outperforms the competing methods in all examined cases 
(p<0.05), except for SSIM in T2 synthesis, where pGAN and 
Multimodal perform similarly. The proposed method is 
superior in depiction of detailed tissue structure as visible in 
Supp. Fig. II (for comparisons in coronal and sagittal cross-
sections see Supp. Figs. IV, V). Table IV lists PSNR and SSIM 
across test images synthesized via pGAN, Replica and 
Multimodal (cGANreg listed in Supp. Table I) for the IXI 
dataset. Overall, pGAN outperforms the competing methods in 
all examined cases (p<0.05). The proposed method is superior 
in depiction of detailed tissue structure as visible in Fig. 4 and 
Supp. Fig. III (see also Supp. Figs. IV, V).  

Following assessments on datasets comprising healthy 
subjects, we demonstrated the performance of the proposed 
methods on patients with pathology. To do this, we trained and 
tested pGAN, cGANreg, Replica, and Multimodal on T1- and T2-
weighted brain images from the BRATS dataset. Similar to the 
previous evaluations, here we expected that the proposed 
method would synthesize more realistic images with improved 
preservation of fine-grained tissue structure. Table V lists 
PSNR and SSIM across test images synthesized via pGAN, 
Replica and Multimodal (cGANreg listed in Supp. Table I; for 
measurements on background-removed images in MIDAS, IXI 
and BRATS see Supp. Table V). Overall, pGAN is the top 
performing method in all cases (p<0.05), except for SSIM in 
T1→T2 where pGAN and Multimodal perform similarly. 
Moreover, cGAN performs favorably in PSNR over competing 
methods. Representative images for T2 and T1 synthesis are 
displayed in Fig. 5 (see also Supp. Figs. IV, V). It is observed 
that regions near pathologies are inaccurately synthesized by 
Replica and Multimodal. Meanwhile, the pGAN method 
enables reliable synthesis with visibly improved depiction of 
structural details. Across the datasets, pGAN outperforms the 
state-of-the-art methods by 2.85dB PSNR and 1.23% SSIM.  

Next, we performed additional control analyses via 4-fold 

 
Fig. 4.  The proposed approach was demonstrated for synthesis of T1-weighted 
images from T2-weighted images in the IXI dataset. T2→T1# and T2#→T1 
synthesis were performed with pGAN, Multimodal and Replica. Synthesis 
results for (a) T2→T1#, and (b) T2#→T1 along with their corresponding error 
maps are shown along with the true target image (reference) and the source 
image (source). The proposed method outperforms competing methods in 
terms of synthesis quality. Regions that are inaccurately synthesized by the 
competing methods are reliably depicted by pGAN (marked with arrows). The 
use of adversarial loss enables improved accuracy in synthesis of 
intermediate-spatial-frequency texture in T2-weighted images compared to 
Multimodal and Replica that show some degree of blurring. 

 
Fig. 5.  The proposed approach was demonstrated on glioma patients for 
synthesis of T2-weighted images from T1-weighted images, and T2-weighted 
images from T1-weighted images in the BRATS dataset. Synthesis results for 
(a) T1→T2, and (b) T1→T2 along with their corresponding error maps are 
shown along with the true target image (reference) and the source image 
(source). Regions of inaccurate synthesis with Replica and Multimodal are 
observed near pathologies (marked with arrows). Meanwhile, the pGAN 
method enables reliable synthesis with visibly improved depiction of 
intermediate spatial frequency information. 
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section pGAN and cGAN models for T2 and T1 synthesis in the 
IXI dataset. The multi cross-section pGAN outperforms 
cGANreg in all cases (p<0.05). Moreover, the multi cross-
section pGAN outperforms the single cross-section pGAN in 
all cases (p<0.05), except in T1→T2#. On average, across the 
two datasets, multi cross-section pGAN achieves 0.63dB higher 
PSNR and 0.89% higher SSIM compared to single cross-
section pGAN.  

B. Comparison to state-of-the-art methods 
Next, we demonstrated the proposed methods against two 

state-of-the-art techniques for multi-contrast MRI synthesis, 
Replica and Multimodal. We trained pGAN, cGANreg, Replica, 
and Multimodal on T1- and T2-weighted brain images in the 
MIDAS and IXI datasets. Note that Replica performs ensemble 
averaging across random forest trees and Multimodal uses 
mean-squared error measures that can lead to overemphasis of 
low frequency information. In contrast, conditional GANs use 
loss functions that can more effectively capture details in the 
intermediate to high spatial frequency range. Thus, pGAN 
should synthesize sharper and more realistic images as 
compared to the competing methods. Table III lists PSNR and 
SSIM for pGAN, Replica and Multimodal (cGANreg listed in 
Supp. Table I) in the MIDAS dataset. Overall, pGAN 
outperforms the competing methods in all examined cases 
(p<0.05), except for SSIM in T2 synthesis, where pGAN and 
Multimodal perform similarly. The proposed method is 
superior in depiction of detailed tissue structure as visible in 
Supp. Fig. II (for comparisons in coronal and sagittal cross-
sections see Supp. Figs. IV, V). Table IV lists PSNR and SSIM 
across test images synthesized via pGAN, Replica and 
Multimodal (cGANreg listed in Supp. Table I) for the IXI 
dataset. Overall, pGAN outperforms the competing methods in 
all examined cases (p<0.05). The proposed method is superior 
in depiction of detailed tissue structure as visible in Fig. 4 and 
Supp. Fig. III (see also Supp. Figs. IV, V).  

Following assessments on datasets comprising healthy 
subjects, we demonstrated the performance of the proposed 
methods on patients with pathology. To do this, we trained and 
tested pGAN, cGANreg, Replica, and Multimodal on T1- and T2-
weighted brain images from the BRATS dataset. Similar to the 
previous evaluations, here we expected that the proposed 
method would synthesize more realistic images with improved 
preservation of fine-grained tissue structure. Table V lists 
PSNR and SSIM across test images synthesized via pGAN, 
Replica and Multimodal (cGANreg listed in Supp. Table I; for 
measurements on background-removed images in MIDAS, IXI 
and BRATS see Supp. Table V). Overall, pGAN is the top 
performing method in all cases (p<0.05), except for SSIM in 
T1→T2 where pGAN and Multimodal perform similarly. 
Moreover, cGAN performs favorably in PSNR over competing 
methods. Representative images for T2 and T1 synthesis are 
displayed in Fig. 5 (see also Supp. Figs. IV, V). It is observed 
that regions near pathologies are inaccurately synthesized by 
Replica and Multimodal. Meanwhile, the pGAN method 
enables reliable synthesis with visibly improved depiction of 
structural details. Across the datasets, pGAN outperforms the 
state-of-the-art methods by 2.85dB PSNR and 1.23% SSIM.  

Next, we performed additional control analyses via 4-fold 

 
Fig. 4.  The proposed approach was demonstrated for synthesis of T1-weighted 
images from T2-weighted images in the IXI dataset. T2→T1# and T2#→T1 
synthesis were performed with pGAN, Multimodal and Replica. Synthesis 
results for (a) T2→T1#, and (b) T2#→T1 along with their corresponding error 
maps are shown along with the true target image (reference) and the source 
image (source). The proposed method outperforms competing methods in 
terms of synthesis quality. Regions that are inaccurately synthesized by the 
competing methods are reliably depicted by pGAN (marked with arrows). The 
use of adversarial loss enables improved accuracy in synthesis of 
intermediate-spatial-frequency texture in T2-weighted images compared to 
Multimodal and Replica that show some degree of blurring. 

 
Fig. 5.  The proposed approach was demonstrated on glioma patients for 
synthesis of T2-weighted images from T1-weighted images, and T2-weighted 
images from T1-weighted images in the BRATS dataset. Synthesis results for 
(a) T1→T2, and (b) T1→T2 along with their corresponding error maps are 
shown along with the true target image (reference) and the source image 
(source). Regions of inaccurate synthesis with Replica and Multimodal are 
observed near pathologies (marked with arrows). Meanwhile, the pGAN 
method enables reliable synthesis with visibly improved depiction of 
intermediate spatial frequency information. 
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section pGAN and cGAN models for T2 and T1 synthesis in the 
IXI dataset. The multi cross-section pGAN outperforms 
cGANreg in all cases (p<0.05). Moreover, the multi cross-
section pGAN outperforms the single cross-section pGAN in 
all cases (p<0.05), except in T1→T2#. On average, across the 
two datasets, multi cross-section pGAN achieves 0.63dB higher 
PSNR and 0.89% higher SSIM compared to single cross-
section pGAN.  

B. Comparison to state-of-the-art methods 
Next, we demonstrated the proposed methods against two 

state-of-the-art techniques for multi-contrast MRI synthesis, 
Replica and Multimodal. We trained pGAN, cGANreg, Replica, 
and Multimodal on T1- and T2-weighted brain images in the 
MIDAS and IXI datasets. Note that Replica performs ensemble 
averaging across random forest trees and Multimodal uses 
mean-squared error measures that can lead to overemphasis of 
low frequency information. In contrast, conditional GANs use 
loss functions that can more effectively capture details in the 
intermediate to high spatial frequency range. Thus, pGAN 
should synthesize sharper and more realistic images as 
compared to the competing methods. Table III lists PSNR and 
SSIM for pGAN, Replica and Multimodal (cGANreg listed in 
Supp. Table I) in the MIDAS dataset. Overall, pGAN 
outperforms the competing methods in all examined cases 
(p<0.05), except for SSIM in T2 synthesis, where pGAN and 
Multimodal perform similarly. The proposed method is 
superior in depiction of detailed tissue structure as visible in 
Supp. Fig. II (for comparisons in coronal and sagittal cross-
sections see Supp. Figs. IV, V). Table IV lists PSNR and SSIM 
across test images synthesized via pGAN, Replica and 
Multimodal (cGANreg listed in Supp. Table I) for the IXI 
dataset. Overall, pGAN outperforms the competing methods in 
all examined cases (p<0.05). The proposed method is superior 
in depiction of detailed tissue structure as visible in Fig. 4 and 
Supp. Fig. III (see also Supp. Figs. IV, V).  

Following assessments on datasets comprising healthy 
subjects, we demonstrated the performance of the proposed 
methods on patients with pathology. To do this, we trained and 
tested pGAN, cGANreg, Replica, and Multimodal on T1- and T2-
weighted brain images from the BRATS dataset. Similar to the 
previous evaluations, here we expected that the proposed 
method would synthesize more realistic images with improved 
preservation of fine-grained tissue structure. Table V lists 
PSNR and SSIM across test images synthesized via pGAN, 
Replica and Multimodal (cGANreg listed in Supp. Table I; for 
measurements on background-removed images in MIDAS, IXI 
and BRATS see Supp. Table V). Overall, pGAN is the top 
performing method in all cases (p<0.05), except for SSIM in 
T1→T2 where pGAN and Multimodal perform similarly. 
Moreover, cGAN performs favorably in PSNR over competing 
methods. Representative images for T2 and T1 synthesis are 
displayed in Fig. 5 (see also Supp. Figs. IV, V). It is observed 
that regions near pathologies are inaccurately synthesized by 
Replica and Multimodal. Meanwhile, the pGAN method 
enables reliable synthesis with visibly improved depiction of 
structural details. Across the datasets, pGAN outperforms the 
state-of-the-art methods by 2.85dB PSNR and 1.23% SSIM.  

Next, we performed additional control analyses via 4-fold 

 
Fig. 4.  The proposed approach was demonstrated for synthesis of T1-weighted 
images from T2-weighted images in the IXI dataset. T2→T1# and T2#→T1 
synthesis were performed with pGAN, Multimodal and Replica. Synthesis 
results for (a) T2→T1#, and (b) T2#→T1 along with their corresponding error 
maps are shown along with the true target image (reference) and the source 
image (source). The proposed method outperforms competing methods in 
terms of synthesis quality. Regions that are inaccurately synthesized by the 
competing methods are reliably depicted by pGAN (marked with arrows). The 
use of adversarial loss enables improved accuracy in synthesis of 
intermediate-spatial-frequency texture in T2-weighted images compared to 
Multimodal and Replica that show some degree of blurring. 

 
Fig. 5.  The proposed approach was demonstrated on glioma patients for 
synthesis of T2-weighted images from T1-weighted images, and T2-weighted 
images from T1-weighted images in the BRATS dataset. Synthesis results for 
(a) T1→T2, and (b) T1→T2 along with their corresponding error maps are 
shown along with the true target image (reference) and the source image 
(source). Regions of inaccurate synthesis with Replica and Multimodal are 
observed near pathologies (marked with arrows). Meanwhile, the pGAN 
method enables reliable synthesis with visibly improved depiction of 
intermediate spatial frequency information. 
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section pGAN and cGAN models for T2 and T1 synthesis in the 
IXI dataset. The multi cross-section pGAN outperforms 
cGANreg in all cases (p<0.05). Moreover, the multi cross-
section pGAN outperforms the single cross-section pGAN in 
all cases (p<0.05), except in T1→T2#. On average, across the 
two datasets, multi cross-section pGAN achieves 0.63dB higher 
PSNR and 0.89% higher SSIM compared to single cross-
section pGAN.  

B. Comparison to state-of-the-art methods 
Next, we demonstrated the proposed methods against two 

state-of-the-art techniques for multi-contrast MRI synthesis, 
Replica and Multimodal. We trained pGAN, cGANreg, Replica, 
and Multimodal on T1- and T2-weighted brain images in the 
MIDAS and IXI datasets. Note that Replica performs ensemble 
averaging across random forest trees and Multimodal uses 
mean-squared error measures that can lead to overemphasis of 
low frequency information. In contrast, conditional GANs use 
loss functions that can more effectively capture details in the 
intermediate to high spatial frequency range. Thus, pGAN 
should synthesize sharper and more realistic images as 
compared to the competing methods. Table III lists PSNR and 
SSIM for pGAN, Replica and Multimodal (cGANreg listed in 
Supp. Table I) in the MIDAS dataset. Overall, pGAN 
outperforms the competing methods in all examined cases 
(p<0.05), except for SSIM in T2 synthesis, where pGAN and 
Multimodal perform similarly. The proposed method is 
superior in depiction of detailed tissue structure as visible in 
Supp. Fig. II (for comparisons in coronal and sagittal cross-
sections see Supp. Figs. IV, V). Table IV lists PSNR and SSIM 
across test images synthesized via pGAN, Replica and 
Multimodal (cGANreg listed in Supp. Table I) for the IXI 
dataset. Overall, pGAN outperforms the competing methods in 
all examined cases (p<0.05). The proposed method is superior 
in depiction of detailed tissue structure as visible in Fig. 4 and 
Supp. Fig. III (see also Supp. Figs. IV, V).  

Following assessments on datasets comprising healthy 
subjects, we demonstrated the performance of the proposed 
methods on patients with pathology. To do this, we trained and 
tested pGAN, cGANreg, Replica, and Multimodal on T1- and T2-
weighted brain images from the BRATS dataset. Similar to the 
previous evaluations, here we expected that the proposed 
method would synthesize more realistic images with improved 
preservation of fine-grained tissue structure. Table V lists 
PSNR and SSIM across test images synthesized via pGAN, 
Replica and Multimodal (cGANreg listed in Supp. Table I; for 
measurements on background-removed images in MIDAS, IXI 
and BRATS see Supp. Table V). Overall, pGAN is the top 
performing method in all cases (p<0.05), except for SSIM in 
T1→T2 where pGAN and Multimodal perform similarly. 
Moreover, cGAN performs favorably in PSNR over competing 
methods. Representative images for T2 and T1 synthesis are 
displayed in Fig. 5 (see also Supp. Figs. IV, V). It is observed 
that regions near pathologies are inaccurately synthesized by 
Replica and Multimodal. Meanwhile, the pGAN method 
enables reliable synthesis with visibly improved depiction of 
structural details. Across the datasets, pGAN outperforms the 
state-of-the-art methods by 2.85dB PSNR and 1.23% SSIM.  

Next, we performed additional control analyses via 4-fold 
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images from T2-weighted images in the IXI dataset. T2→T1# and T2#→T1 
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maps are shown along with the true target image (reference) and the source 
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terms of synthesis quality. Regions that are inaccurately synthesized by the 
competing methods are reliably depicted by pGAN (marked with arrows). The 
use of adversarial loss enables improved accuracy in synthesis of 
intermediate-spatial-frequency texture in T2-weighted images compared to 
Multimodal and Replica that show some degree of blurring. 
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section pGAN and cGAN models for T2 and T1 synthesis in the 
IXI dataset. The multi cross-section pGAN outperforms 
cGANreg in all cases (p<0.05). Moreover, the multi cross-
section pGAN outperforms the single cross-section pGAN in 
all cases (p<0.05), except in T1→T2#. On average, across the 
two datasets, multi cross-section pGAN achieves 0.63dB higher 
PSNR and 0.89% higher SSIM compared to single cross-
section pGAN.  

B. Comparison to state-of-the-art methods 
Next, we demonstrated the proposed methods against two 

state-of-the-art techniques for multi-contrast MRI synthesis, 
Replica and Multimodal. We trained pGAN, cGANreg, Replica, 
and Multimodal on T1- and T2-weighted brain images in the 
MIDAS and IXI datasets. Note that Replica performs ensemble 
averaging across random forest trees and Multimodal uses 
mean-squared error measures that can lead to overemphasis of 
low frequency information. In contrast, conditional GANs use 
loss functions that can more effectively capture details in the 
intermediate to high spatial frequency range. Thus, pGAN 
should synthesize sharper and more realistic images as 
compared to the competing methods. Table III lists PSNR and 
SSIM for pGAN, Replica and Multimodal (cGANreg listed in 
Supp. Table I) in the MIDAS dataset. Overall, pGAN 
outperforms the competing methods in all examined cases 
(p<0.05), except for SSIM in T2 synthesis, where pGAN and 
Multimodal perform similarly. The proposed method is 
superior in depiction of detailed tissue structure as visible in 
Supp. Fig. II (for comparisons in coronal and sagittal cross-
sections see Supp. Figs. IV, V). Table IV lists PSNR and SSIM 
across test images synthesized via pGAN, Replica and 
Multimodal (cGANreg listed in Supp. Table I) for the IXI 
dataset. Overall, pGAN outperforms the competing methods in 
all examined cases (p<0.05). The proposed method is superior 
in depiction of detailed tissue structure as visible in Fig. 4 and 
Supp. Fig. III (see also Supp. Figs. IV, V).  

Following assessments on datasets comprising healthy 
subjects, we demonstrated the performance of the proposed 
methods on patients with pathology. To do this, we trained and 
tested pGAN, cGANreg, Replica, and Multimodal on T1- and T2-
weighted brain images from the BRATS dataset. Similar to the 
previous evaluations, here we expected that the proposed 
method would synthesize more realistic images with improved 
preservation of fine-grained tissue structure. Table V lists 
PSNR and SSIM across test images synthesized via pGAN, 
Replica and Multimodal (cGANreg listed in Supp. Table I; for 
measurements on background-removed images in MIDAS, IXI 
and BRATS see Supp. Table V). Overall, pGAN is the top 
performing method in all cases (p<0.05), except for SSIM in 
T1→T2 where pGAN and Multimodal perform similarly. 
Moreover, cGAN performs favorably in PSNR over competing 
methods. Representative images for T2 and T1 synthesis are 
displayed in Fig. 5 (see also Supp. Figs. IV, V). It is observed 
that regions near pathologies are inaccurately synthesized by 
Replica and Multimodal. Meanwhile, the pGAN method 
enables reliable synthesis with visibly improved depiction of 
structural details. Across the datasets, pGAN outperforms the 
state-of-the-art methods by 2.85dB PSNR and 1.23% SSIM.  

Next, we performed additional control analyses via 4-fold 
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synthesis were performed with pGAN, Multimodal and Replica. Synthesis 
results for (a) T2→T1#, and (b) T2#→T1 along with their corresponding error 
maps are shown along with the true target image (reference) and the source 
image (source). The proposed method outperforms competing methods in 
terms of synthesis quality. Regions that are inaccurately synthesized by the 
competing methods are reliably depicted by pGAN (marked with arrows). The 
use of adversarial loss enables improved accuracy in synthesis of 
intermediate-spatial-frequency texture in T2-weighted images compared to 
Multimodal and Replica that show some degree of blurring. 
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shown along with the true target image (reference) and the source image 
(source). Regions of inaccurate synthesis with Replica and Multimodal are 
observed near pathologies (marked with arrows). Meanwhile, the pGAN 
method enables reliable synthesis with visibly improved depiction of 
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cross validation to rule out potential biases due to subject 
selection. Supp. Tables IX-XI list PSNR and SSIM across test 
images synthesized via pGAN and Multimodal separately for 
all 4 folds. We find that there is minimal variability in pGAN 
performance across folds. Across the datasets, pGAN 
variability is merely 0.70% in PSNR and 0.37% in SSIM, 
compared to Multimodal variability of 2.26% in PSNR and 
0.46% in SSIM. The results of these control analyses are also 
highly consistent with those in the original set of subjects 
reported in Supp. Table I. We find that there is minimal 
variability in pGAN performance between the main and control 
analyses. Across the datasets, pGAN variability is 1.42% in 
PSNR and 0.73% in SSIM, compared to Multimodal variability 
of 2.98% in PSNR and 0.97% in SSIM.  

C. Spectral density analysis 
To corroborate visual observations regarding improved 

depiction of structural details, we measured spectral density 
similarity (SDS) between synthesized and reference images 
across low, intermediate, high-intermediate and high spatial 
frequencies (see Methods). Fig. 6 shows filtered versions of a 
T1-weighted image in the MIDAS dataset, where the filter is 
broadened sequentially to include higher frequencies so as to 
visualize the contribution of individual bands. Intermediate and 
high-intermediate frequencies primarily correspond to edges 
and other structural details in MR images, so we expected 
pGAN to outperform competing methods in these bands. Fig. 7 
shows representative synthesis results in the image and spatial 
frequency (k-space) domains. Supp. Table VI lists SDS across 
the test images synthesized via pGAN, cGANreg, Replica and 
Multimodal in the all datasets. In the MIDAS dataset, pGAN 
outperforms the competing methods at low and intermediate 
frequencies (p<0.05), except in T1 synthesis where it performs 
similarly to Multimodal. In the IXI dataset, pGAN yields 
superior performance to competing methods in all frequency 
bands (p<0.05). In the BRATS dataset, pGAN achieves higher 
SDS than the competing methods at low, intermediate and high-
intermediate frequencies in T2 synthesis and at low frequencies 
in T1 synthesis (p<0.05). Across the datasets, pGAN 
outperforms the state-of-the-art methods by 0.056 at low, 0.061 
at intermediate and 0.030 at high-intermediate frequencies.  

D. Generalizability 
Next, we examined synthesis methods in terms of their 

generalization performance. Supp. Table VII lists SSIM and 
PSNR for pGAN, cGANreg, Replica and Multimodal trained on 
the IXI dataset and tested on the MIDAS dataset. Overall, the 
proposed methods are the top performers. In T1→T2#, 
Multimodal is the leading performer with 1.9% higher SSIM 
SSIM (p<0.05) than pGAN. In T1#→T2, pGAN outperforms 
competing methods in PSNR (p<0.05). In T2→T1#, pGAN is 
again the leading performer with 1.9% higher SSIM (p<0.05) 
than Multimodal. In T2#→T1, cGANreg is the leading performer 
with 1.22dB higher PSNR (p<0.05) SSIM than pGAN. We also 
assessed the level of performance degradation between within-
dataset synthesis (trained and tested on MIDAS) and across-
dataset synthesis (trained on IXI, tested on MIDAS). Overall, 
pGAN and Multimodal show similar degradation levels. While 
pGAN is the top performer in terms of SSIM, cGAN yields a 
modest advantage in PSNR. On average, percentage 

degradation is 20.83% in PSNR and 11.70% in SSIM for 
pGAN, 22.22% in PSNR and 10.12% in SSIM for Multimodal, 
15.85% in PSNR and 12.85% in SSIM for cGANreg, and 
11.40% in PSNR and 14.51% in SSIM for Replica. Note that 
percentage degradation in PSNR is inherently limited for 
Replica, which yields low PSNR for within-dataset synthesis.  

E. Reliability against noise 
Lastly, we examined reliability of synthesis against noise 

(Supp. Fig. VI). Supp. Table VIII list SSIM and PSNR for 
pGAN and Multimodal trained on noise-added source and 
target images from IXI, respectively. For noisy source images, 
pGAN outperforms Multimodal in all examined cases (p<0.05) 
except for SSIM in T1→T2#. On average, pGAN achieves 
1.74dB higher PSNR and 2.20% higher SSIM than Multimodal. 
For noisy target images, pGAN is the top performer in PSNR in 
T1#→T2, T2→T1# (p<0.05) and performs similarly to 
Multimodal in the remaining cases. On average, pGAN 
improves PSNR by 0.61dB. (Note, however, that for noisy 
target images, reference-based quality measurements are biased 
by noise particularly towards higher frequency bands; see Supp. 
Fig. VII.) Naturally, synthesis performance is lowered in the 
presence of noise. We assessed the performance degradation 
when the models were trained on noise-added images as 
compared to when the models were trained on original images. 
Overall, pGAN and Multimodal show similar performance 
degradation with noise. For noisy source images, degradation is 

TABLE III 
A - QUALITY OF SYNTHESIS IN THE MIDAS DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 0.926 
±0.014 

29.34 
±0.592 

0.877 
±0.027 

26.18 
±0.638 

0.924 
±0.012 

28.33 
±0.501 

T1# ® T2 
0.883 
±0.027 

27.49 
±0.643 

0.838 
±0.039 

25.27 
±0.468 

0.889 
±0.020 

26.73 
±0.461 

T2 ® T1# 0.920 
±0.016 

28.16 
±1.303 

0.840 
±0.028 

20.00 
±1.207 

0.886 
±0.022 

22.13 
±1.325 

T2# ®T1 
0.887 
±0.023 

27.42 
±1.127 

0.827 
±0.031 

20.29 
±1.066 

0.872 
±0.020 

23.08 
±1.280 

Boldface marks the model with the highest performance. 
 

TABLE IV 
QUALITY OF SYNTHESIS IN THE IXI DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 0.948 
±0.014 

29.77 
±1.568 

0.912 
±0.028 

25.40 
±2.084 

0.936 
±0.015 

27.72 
±0.910 

T1# ® T2 
0.917 
±0.012 

27.89 
±0.887 

0.863 
±0.023 

24.08 
±1.427 

0.898 
±0.014 

26.11 
±0.769 

T2 ® T1# 0.926 
±0.013 

27.27 
±0.960 

0.865 
±0.013 

20.46 
±0.921 

0.895 
±0.015 

22.61 
±1.105 

T2# ®T1 
0.953 
±0.012 

29.55 
±1.423 

0.887 
±0.033 

21.82 
±1.600 

0.936 
±0.017 

25.91 
±1.689 

Boldface marks the model with the highest performance. 
 

TABLE V 
QUALITY OF SYNTHESIS IN THE BRATS DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 
T1 ® 

T2 
0.946 
±0.009 

27.19 
±1.456 

0.924 
±0.014 

24.64 
±1.615 

0.939 
±0.011 

25.09 
±1.013 

T2 ® 
T1 

0.940 
±0.009 

25.80 
±1.867 

0.917 
±0.007 

24.49 
±1.230 

0.935 
±0.010 

23.78 
±2.080 

Boldface marks the model with the highest performance. 
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cross validation to rule out potential biases due to subject 
selection. Supp. Tables IX-XI list PSNR and SSIM across test 
images synthesized via pGAN and Multimodal separately for 
all 4 folds. We find that there is minimal variability in pGAN 
performance across folds. Across the datasets, pGAN 
variability is merely 0.70% in PSNR and 0.37% in SSIM, 
compared to Multimodal variability of 2.26% in PSNR and 
0.46% in SSIM. The results of these control analyses are also 
highly consistent with those in the original set of subjects 
reported in Supp. Table I. We find that there is minimal 
variability in pGAN performance between the main and control 
analyses. Across the datasets, pGAN variability is 1.42% in 
PSNR and 0.73% in SSIM, compared to Multimodal variability 
of 2.98% in PSNR and 0.97% in SSIM.  

C. Spectral density analysis 
To corroborate visual observations regarding improved 

depiction of structural details, we measured spectral density 
similarity (SDS) between synthesized and reference images 
across low, intermediate, high-intermediate and high spatial 
frequencies (see Methods). Fig. 6 shows filtered versions of a 
T1-weighted image in the MIDAS dataset, where the filter is 
broadened sequentially to include higher frequencies so as to 
visualize the contribution of individual bands. Intermediate and 
high-intermediate frequencies primarily correspond to edges 
and other structural details in MR images, so we expected 
pGAN to outperform competing methods in these bands. Fig. 7 
shows representative synthesis results in the image and spatial 
frequency (k-space) domains. Supp. Table VI lists SDS across 
the test images synthesized via pGAN, cGANreg, Replica and 
Multimodal in the all datasets. In the MIDAS dataset, pGAN 
outperforms the competing methods at low and intermediate 
frequencies (p<0.05), except in T1 synthesis where it performs 
similarly to Multimodal. In the IXI dataset, pGAN yields 
superior performance to competing methods in all frequency 
bands (p<0.05). In the BRATS dataset, pGAN achieves higher 
SDS than the competing methods at low, intermediate and high-
intermediate frequencies in T2 synthesis and at low frequencies 
in T1 synthesis (p<0.05). Across the datasets, pGAN 
outperforms the state-of-the-art methods by 0.056 at low, 0.061 
at intermediate and 0.030 at high-intermediate frequencies.  

D. Generalizability 
Next, we examined synthesis methods in terms of their 

generalization performance. Supp. Table VII lists SSIM and 
PSNR for pGAN, cGANreg, Replica and Multimodal trained on 
the IXI dataset and tested on the MIDAS dataset. Overall, the 
proposed methods are the top performers. In T1→T2#, 
Multimodal is the leading performer with 1.9% higher SSIM 
SSIM (p<0.05) than pGAN. In T1#→T2, pGAN outperforms 
competing methods in PSNR (p<0.05). In T2→T1#, pGAN is 
again the leading performer with 1.9% higher SSIM (p<0.05) 
than Multimodal. In T2#→T1, cGANreg is the leading performer 
with 1.22dB higher PSNR (p<0.05) SSIM than pGAN. We also 
assessed the level of performance degradation between within-
dataset synthesis (trained and tested on MIDAS) and across-
dataset synthesis (trained on IXI, tested on MIDAS). Overall, 
pGAN and Multimodal show similar degradation levels. While 
pGAN is the top performer in terms of SSIM, cGAN yields a 
modest advantage in PSNR. On average, percentage 

degradation is 20.83% in PSNR and 11.70% in SSIM for 
pGAN, 22.22% in PSNR and 10.12% in SSIM for Multimodal, 
15.85% in PSNR and 12.85% in SSIM for cGANreg, and 
11.40% in PSNR and 14.51% in SSIM for Replica. Note that 
percentage degradation in PSNR is inherently limited for 
Replica, which yields low PSNR for within-dataset synthesis.  

E. Reliability against noise 
Lastly, we examined reliability of synthesis against noise 

(Supp. Fig. VI). Supp. Table VIII list SSIM and PSNR for 
pGAN and Multimodal trained on noise-added source and 
target images from IXI, respectively. For noisy source images, 
pGAN outperforms Multimodal in all examined cases (p<0.05) 
except for SSIM in T1→T2#. On average, pGAN achieves 
1.74dB higher PSNR and 2.20% higher SSIM than Multimodal. 
For noisy target images, pGAN is the top performer in PSNR in 
T1#→T2, T2→T1# (p<0.05) and performs similarly to 
Multimodal in the remaining cases. On average, pGAN 
improves PSNR by 0.61dB. (Note, however, that for noisy 
target images, reference-based quality measurements are biased 
by noise particularly towards higher frequency bands; see Supp. 
Fig. VII.) Naturally, synthesis performance is lowered in the 
presence of noise. We assessed the performance degradation 
when the models were trained on noise-added images as 
compared to when the models were trained on original images. 
Overall, pGAN and Multimodal show similar performance 
degradation with noise. For noisy source images, degradation is 

TABLE III 
A - QUALITY OF SYNTHESIS IN THE MIDAS DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 0.926 
±0.014 

29.34 
±0.592 

0.877 
±0.027 

26.18 
±0.638 

0.924 
±0.012 

28.33 
±0.501 

T1# ® T2 
0.883 
±0.027 

27.49 
±0.643 

0.838 
±0.039 

25.27 
±0.468 

0.889 
±0.020 

26.73 
±0.461 

T2 ® T1# 0.920 
±0.016 

28.16 
±1.303 

0.840 
±0.028 

20.00 
±1.207 

0.886 
±0.022 

22.13 
±1.325 

T2# ®T1 
0.887 
±0.023 

27.42 
±1.127 

0.827 
±0.031 

20.29 
±1.066 

0.872 
±0.020 

23.08 
±1.280 

Boldface marks the model with the highest performance. 
 

TABLE IV 
QUALITY OF SYNTHESIS IN THE IXI DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 0.948 
±0.014 

29.77 
±1.568 

0.912 
±0.028 

25.40 
±2.084 

0.936 
±0.015 

27.72 
±0.910 

T1# ® T2 
0.917 
±0.012 

27.89 
±0.887 

0.863 
±0.023 

24.08 
±1.427 

0.898 
±0.014 

26.11 
±0.769 

T2 ® T1# 0.926 
±0.013 

27.27 
±0.960 

0.865 
±0.013 

20.46 
±0.921 

0.895 
±0.015 

22.61 
±1.105 

T2# ®T1 
0.953 
±0.012 

29.55 
±1.423 

0.887 
±0.033 

21.82 
±1.600 

0.936 
±0.017 

25.91 
±1.689 

Boldface marks the model with the highest performance. 
 

TABLE V 
QUALITY OF SYNTHESIS IN THE BRATS DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 
T1 ® 

T2 
0.946 
±0.009 

27.19 
±1.456 

0.924 
±0.014 

24.64 
±1.615 

0.939 
±0.011 

25.09 
±1.013 

T2 ® 
T1 

0.940 
±0.009 

25.80 
±1.867 

0.917 
±0.007 

24.49 
±1.230 

0.935 
±0.010 

23.78 
±2.080 

Boldface marks the model with the highest performance. 
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cross validation to rule out potential biases due to subject 
selection. Supp. Tables IX-XI list PSNR and SSIM across test 
images synthesized via pGAN and Multimodal separately for 
all 4 folds. We find that there is minimal variability in pGAN 
performance across folds. Across the datasets, pGAN 
variability is merely 0.70% in PSNR and 0.37% in SSIM, 
compared to Multimodal variability of 2.26% in PSNR and 
0.46% in SSIM. The results of these control analyses are also 
highly consistent with those in the original set of subjects 
reported in Supp. Table I. We find that there is minimal 
variability in pGAN performance between the main and control 
analyses. Across the datasets, pGAN variability is 1.42% in 
PSNR and 0.73% in SSIM, compared to Multimodal variability 
of 2.98% in PSNR and 0.97% in SSIM.  

C. Spectral density analysis 
To corroborate visual observations regarding improved 

depiction of structural details, we measured spectral density 
similarity (SDS) between synthesized and reference images 
across low, intermediate, high-intermediate and high spatial 
frequencies (see Methods). Fig. 6 shows filtered versions of a 
T1-weighted image in the MIDAS dataset, where the filter is 
broadened sequentially to include higher frequencies so as to 
visualize the contribution of individual bands. Intermediate and 
high-intermediate frequencies primarily correspond to edges 
and other structural details in MR images, so we expected 
pGAN to outperform competing methods in these bands. Fig. 7 
shows representative synthesis results in the image and spatial 
frequency (k-space) domains. Supp. Table VI lists SDS across 
the test images synthesized via pGAN, cGANreg, Replica and 
Multimodal in the all datasets. In the MIDAS dataset, pGAN 
outperforms the competing methods at low and intermediate 
frequencies (p<0.05), except in T1 synthesis where it performs 
similarly to Multimodal. In the IXI dataset, pGAN yields 
superior performance to competing methods in all frequency 
bands (p<0.05). In the BRATS dataset, pGAN achieves higher 
SDS than the competing methods at low, intermediate and high-
intermediate frequencies in T2 synthesis and at low frequencies 
in T1 synthesis (p<0.05). Across the datasets, pGAN 
outperforms the state-of-the-art methods by 0.056 at low, 0.061 
at intermediate and 0.030 at high-intermediate frequencies.  

D. Generalizability 
Next, we examined synthesis methods in terms of their 

generalization performance. Supp. Table VII lists SSIM and 
PSNR for pGAN, cGANreg, Replica and Multimodal trained on 
the IXI dataset and tested on the MIDAS dataset. Overall, the 
proposed methods are the top performers. In T1→T2#, 
Multimodal is the leading performer with 1.9% higher SSIM 
SSIM (p<0.05) than pGAN. In T1#→T2, pGAN outperforms 
competing methods in PSNR (p<0.05). In T2→T1#, pGAN is 
again the leading performer with 1.9% higher SSIM (p<0.05) 
than Multimodal. In T2#→T1, cGANreg is the leading performer 
with 1.22dB higher PSNR (p<0.05) SSIM than pGAN. We also 
assessed the level of performance degradation between within-
dataset synthesis (trained and tested on MIDAS) and across-
dataset synthesis (trained on IXI, tested on MIDAS). Overall, 
pGAN and Multimodal show similar degradation levels. While 
pGAN is the top performer in terms of SSIM, cGAN yields a 
modest advantage in PSNR. On average, percentage 

degradation is 20.83% in PSNR and 11.70% in SSIM for 
pGAN, 22.22% in PSNR and 10.12% in SSIM for Multimodal, 
15.85% in PSNR and 12.85% in SSIM for cGANreg, and 
11.40% in PSNR and 14.51% in SSIM for Replica. Note that 
percentage degradation in PSNR is inherently limited for 
Replica, which yields low PSNR for within-dataset synthesis.  

E. Reliability against noise 
Lastly, we examined reliability of synthesis against noise 

(Supp. Fig. VI). Supp. Table VIII list SSIM and PSNR for 
pGAN and Multimodal trained on noise-added source and 
target images from IXI, respectively. For noisy source images, 
pGAN outperforms Multimodal in all examined cases (p<0.05) 
except for SSIM in T1→T2#. On average, pGAN achieves 
1.74dB higher PSNR and 2.20% higher SSIM than Multimodal. 
For noisy target images, pGAN is the top performer in PSNR in 
T1#→T2, T2→T1# (p<0.05) and performs similarly to 
Multimodal in the remaining cases. On average, pGAN 
improves PSNR by 0.61dB. (Note, however, that for noisy 
target images, reference-based quality measurements are biased 
by noise particularly towards higher frequency bands; see Supp. 
Fig. VII.) Naturally, synthesis performance is lowered in the 
presence of noise. We assessed the performance degradation 
when the models were trained on noise-added images as 
compared to when the models were trained on original images. 
Overall, pGAN and Multimodal show similar performance 
degradation with noise. For noisy source images, degradation is 

TABLE III 
A - QUALITY OF SYNTHESIS IN THE MIDAS DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 0.926 
±0.014 

29.34 
±0.592 

0.877 
±0.027 

26.18 
±0.638 

0.924 
±0.012 

28.33 
±0.501 

T1# ® T2 
0.883 
±0.027 

27.49 
±0.643 

0.838 
±0.039 

25.27 
±0.468 

0.889 
±0.020 

26.73 
±0.461 

T2 ® T1# 0.920 
±0.016 

28.16 
±1.303 

0.840 
±0.028 

20.00 
±1.207 

0.886 
±0.022 

22.13 
±1.325 

T2# ®T1 
0.887 
±0.023 

27.42 
±1.127 

0.827 
±0.031 

20.29 
±1.066 

0.872 
±0.020 

23.08 
±1.280 

Boldface marks the model with the highest performance. 
 

TABLE IV 
QUALITY OF SYNTHESIS IN THE IXI DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 0.948 
±0.014 

29.77 
±1.568 

0.912 
±0.028 

25.40 
±2.084 

0.936 
±0.015 

27.72 
±0.910 

T1# ® T2 
0.917 
±0.012 

27.89 
±0.887 

0.863 
±0.023 

24.08 
±1.427 

0.898 
±0.014 

26.11 
±0.769 

T2 ® T1# 0.926 
±0.013 

27.27 
±0.960 

0.865 
±0.013 

20.46 
±0.921 

0.895 
±0.015 

22.61 
±1.105 

T2# ®T1 
0.953 
±0.012 

29.55 
±1.423 

0.887 
±0.033 

21.82 
±1.600 

0.936 
±0.017 

25.91 
±1.689 

Boldface marks the model with the highest performance. 
 

TABLE V 
QUALITY OF SYNTHESIS IN THE BRATS DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 
T1 ® 

T2 
0.946 
±0.009 

27.19 
±1.456 

0.924 
±0.014 

24.64 
±1.615 

0.939 
±0.011 

25.09 
±1.013 

T2 ® 
T1 

0.940 
±0.009 

25.80 
±1.867 

0.917 
±0.007 

24.49 
±1.230 

0.935 
±0.010 

23.78 
±2.080 

Boldface marks the model with the highest performance. 
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