# CMP717 Image Processing

### Image Deblurring

Erkut Erdem Hacettepe University Computer Vision Lab (HUCVL)

# Image Deblurring\*

- Introduction
- Blind deconvolution
- Non-blind deconvolution
- Deep learning based solutions

\* The slides are mostly adapted from the course "Recent Advances in Image Deblurring" given by Seungyong Lee and Sunghyun Cho @ Siggraph Asia 2013.

# Image Deblurring

- Introduction
- Blind deconvolution
- Non-blind deconvolution
- Deep learning based solutions



# **bur** [bl3:(r)]

- Long exposure
- Moving objects
- Camera motion
  - panning shot



# **blur** [bl3:(r)]

- Often degrades image/video quality severely
- Unavoidable under dim light circumstances

### Various Kinds of Blurs



Camera shake (Camera motion blur)



Object movement (Object motion blur)



Out of focus (Defocus blur)



Combinations (vibration & motion, ...)

# **Camera Motion Blur**

- Caused by camera shakes during exposure time
  - Motion can be represented as a camera trajectory







# **Object Motion Blur**

• Caused by object motions during exposure time





# Defocus Blur

• Caused by the limited depth of field of a camera



# **Optical Lens Blur**

• Caused by lens aberration



# Deblurring?

• Remove blur and restore a latent sharp image



from a given blurred image



find its latent sharp image

# Deblurring: Old Problem!

- Trott, T., "The Effect of Motion of Resolution", *Photogrammetric Engineering*, Vol. 26, pp. 819-827, 1960.
- Slepian, D., "Restoration of Photographs Blurred by Image Motion", *Bell System Tech.*, Vol. 46, No. 10, pp. 2353-2362, 1967.

| Google                                                                    | deconvolution -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ٩ | About 474,000 results |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|
| Scholar                                                                   | About 474,000 results (0.02 sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                       |
| Articles<br>Case law<br>My library                                        | An information-maximization approach to blind separation and blind<br>deconvolution<br>AJ Bell, <u>TJ Sejnowski</u> - Neural computation, 1995 - MIT Press<br>We derive a new self-organizing learning algorithm that maximizes the information<br>transferred in a network of nonlinear units. The algorithm does not assume any knowledge<br>of the input distributions, and is defined here for the zero-noise limit. Under these conditions,                                                                                                  |   |                       |
| Any time<br>Since 2017<br>Since 2016<br>Since 2013<br>Custom range        | Cited by 8401 Related articles All 36 versions Web of Science: 4298 Cite Save More  Deconvolution of impulse response in event-related bold fmri 1  GH Glover - Neuroimage, 1999 - Elsevier  The temporal characteristics of the BOLD response in sensorimotor and auditory cortices were measured in subjects performing finger tapping while listening to metronome pacing tones. A repeated trial paradigm was used with stimulus durations of 167 ms to 16 s and Cited by 1082 Related articles All 15 versions Web of Science: 707 Cite Save |   |                       |
| Sort by relevance<br>Sort by date<br>include patents<br>include citations | Fourier self-deconvolution: a method for resolving intrinsically overlapped bands<br>JK Kauppinen, DJ Moffatt, HH Mantsch Applied, 1981 - journals.sagepub.com<br>The general theory of Fourier self-deconvolution, ie, spectral deconvolution using Fourier transforms and the intrinsic lineshape, is developed. The method provides a way of computationally resolved due to Cited by 1202 Related articles All 7 versions Web of Science: 1110 Cite Save More                                                                                 |   |                       |

# Why is it important?

- Image/video in our daily lives
  - Sometimes a retake is difficult!



# Why is it important?

• Strong demand for high quality deblurring



CCTV, car black box

Medical imaging Aerial/satellite photography

Robot vision

# Deblurring



from a given blurred image



find its latent sharp image

# **Commonly Used Blur Model**



## **Blind Deconvolution**



Blurred image

Latent sharp image

Blur kernel or Point Spread Function (PSF) Convolution operator

\*

### Non-blind Deconvolution



# Uniform vs. Non-uniform Blur



### Uniform blur

- Every pixel is blurred in the same way
- Convolution based blur model

# Uniform vs. Non-uniform Blur



### Non-uniform blur

- Spatially-varying blur
- Pixels are blurred differently
- More faithful to real camera shakes

### Most Blurs Are Non-Uniform



Camera shake (Camera motion blur)



Object movement (Object motion blur)





Combinations (vibration & motion, ...)

Out of focus (Defocus blur)

# Image Deblurring

- Introduction
- Blind deconvolution
- Non-blind deconvolution
- Deep learning based solutions

# **Blind Deconvolution**

- Introduction
- Recent popular approaches
- Non-uniform blur

# Blind Deconvolution (Uniform Blur)



Blurred image



Blur kernel or Point Spread Function (PSF) Convolution operator

# Key challenge: Ill-posedness!



- Infinite number of solutions satisfy the blur model
  - Analogous to  $100 = \begin{cases} 2 \times 50 \\ 4 \times 25 \\ 3 \times 33.333 \dots \end{cases}$

### In The Past...

- Parametric blur kernels
  - [Yitzhakey et al. 1998], [Rav-Acha and Peleg 2005], ...
  - Directional blur kernels defined by (length, angle)







### In The Past...

• But real camera shakes are much more complex



### In The Past...

- Parametric blur kernels
  - Very restrictive assumption
  - Often failed, poor quality



#### Blurred image

#### Latent sharp image \* Images from [Yitzhaky et al. 1998]

# Nowadays...

- Some successful approaches have been introduced...
  - [Fergus et al. SIGGRAPH 2006], [Shan et al. SIGGRAPH 2008], [Cho and Lee, SIGGRAPH Asia 2009], ...
  - More realistic blur kernels
  - Better quality
  - More robust
- Commercial software
  - Photoshop CC Shake reduction



# **Blind Deconvolution**

- Introduction
- Recent popular approaches
- Non-uniform blur

- Maximum Posterior (MAP) based
- Variational Bayesian based
- Edge Prediction based

Which one is better?

- Maximum Posterior (MAP) based
- Variational Bayesian based
- Edge Prediction based

Which one is better?

[Shan et al. SIGGRAPH 2008], [Krishnan et al. CVPR 2011], [Xu et al. CVPR 2013], ...

- Seek the most probable solution, which maximizes a posterior distribution
- Easy to understand
- Convergence problem

- Maximum Posterior (MAP) based
- Variational Bayesian based
- Edge Prediction based

Which one is better?

[Fergus et al. SIGGRAPH 2006], [Levin et al. CVPR 2009], [Levin et al. CVPR 2011], ...

- Not seek for one most probable solution, but consider all possible solutions
- Theoretically more robust
- Slow

- Maximum Posterior (MAP) based
- Variational Bayesian based
- Edge Prediction based

Which one is better?

[Cho & Lee. SIGGRAPH Asia 2009], [Xu et al. ECCV 2010], [Hirsch et al. ICCV 2011], ...

- Explicitly try to recover sharp edges using heuristic image filters
- Fast
- Proven to be effective in practice, but hard to analyze because of heuristic steps

- Maximum Posterior (MAP) based
- Variational Bayesian based
- Edge Prediction based

Which one is better?

[Shan et al. SIGGRAPH 2008], [Krishnan et al. CVPR 2011], [Xu et al. CVPR 2013], ...

- Seek the most probable solution, which maximizes a posterior distribution
- Easy to understand
- Convergence problem

# MAP based Approaches

Maximize a joint posterior probability with respect to k and l


Bayes rule:



Negative log-posterior:

$$-\log p(k,l|b) \Rightarrow -\log p(b|k,l) - \log p(l) - \log p(k)$$
  

$$\Rightarrow ||k * l - b||^{2} + \rho_{l}(l) + \rho_{k}(k)$$
  
Data fitting term  
Regularization on  
latent image 1  
Regularization on  
blur kernel k

Negative log-posterior:

$$-\log p(k,l|b) \Rightarrow -\log p(b|k,l) - \log p(l) - \log p(k)$$
  

$$\Rightarrow ||k * l - b||^{2} + \rho_{l}(l) + \rho_{k}(k)$$
  
Data fitting term  

$$Regularization on Regularization on blur kernel k$$

Alternatingly minimize the energy function w.r.t.  $\boldsymbol{k}$  and  $\boldsymbol{l}$ 



- Chan and Wong, TIP 1998
  - Total variation based priors for estimating a parametric blur kernel
- Shan et al. SIGGRAPH 2008
  - First MAP based method to estimate a nonparametric blur kernel
- Krishnan et al. CVPR 2011
  - Normalized sparsity measure, a novel prior on latent images
- Xu et al. CVPR 2013
  - L0 norm based prior on latent images

# Shan et al. SIGGRAPH 2008

• Carefully designed likelihood & priors



# Shan et al. SIGGRAPH 2008

- A few minutes for a small image
- High-quality results



# Shan et al. SIGGRAPH 2008

- Convergence problem
  - Often converge to the no-blur solution [Levin et al. CVPR 2009]
  - Natural image priors prefer blurry images



#### Popular Approaches (pre deep learning era)

- Maximum Posterior (MAP) based
- Variational Bayesian based
- Edge Prediction based

Which one is better?

[Fergus et al. SIGGRAPH 2006], [Levin et al. CVPR 2009], [Levin et al. CVPR 2011], ...

- Not seek for one most probable solution, but consider all possible solutions
- Theoretically more robust
- Slow

# Variational Bayesian



- MAP – Find the most probable solution
  - May converge to a wrong solution
- Variational Bayesian
  - Approximate the underlying distribution and find the mean
  - More stable

# Variational Bayesian

- Fergus et al. SIGGRAPH 2006
  - First approach to handle non-parametric blur kernels
- Levin et al. CVPR 2009
  - Show that variational Bayesian approaches can perform more robustly than MAP based approaches
- Levin et al. CVPR 2010
  - EM based efficient approximation to variational Bayesian approach

# Fergus et al. SIGGRAPH 2006

• Posterior distribution

 $p(k, l|b) \propto p(b|k, l)p(l)p(k)$ 



# Fergus et al. SIGGRAPH 2006

• Find an approximate distribution by minimizing Kullback-Leibler (KL) divergence

$$\arg \min_{q(k), q(l), q(\sigma^{-2})} KL(q(k)q(l)q(\sigma^{-2}) \| p(k, l|b))$$
  
approximate distributions for blur kernel k,

latent image l, and noise variance  $\sigma^2$ 

# Fergus et al. SIGGRAPH 2006

- First method to estimate a nonparametric blur kernel
- Complex optimization
- Slow: more than an hour for a small image



#### Popular Approaches (pre deep learning era)

- Maximum Posterior (MAP) based
- Variational Bayesian based
- Edge Prediction based

Which one is better?

[Cho & Lee. SIGGRAPH Asia 2009], [Xu et al. ECCV 2010], [Hirsch et al. ICCV 2011], ...

- Explicitly try to recover sharp edges using heuristic image filters
- Fast
- Proven to be effective in practice, but hard to analyze because of heuristic steps

# Edge Prediction based Approaches

- Joshi et al. CVPR 2008
  - Proposed sharp edge prediction to estimate blur kernels
  - No iterative estimation
  - Limited to small scale blur kernels
- Cho & Lee, SIGGRAPH Asia 2009
  - Proposed sharp edge prediction to estimate large blur kernels
  - Iterative framework
  - State-of-the-art results & very fast
- Cho et al. CVPR 2010
  - Applied Radon transform to estimate a blur kernel from blurry edge profiles
  - Small scale blur kernels
- Xu et al. ECCV 2010
  - Proposed a prediction scheme based on structure scales as well as gradient magnitudes
- Hirsch et al. ICCV 2011
  - Applied a prediction scheme to estimate spatially-varying camera shakes

- Key idea: blur can be estimated from a few edges
- $\rightarrow$  No need to restore every detail for kernel estimation



Blurred image





Latent image with only a few edges and no texture



Quickly restore important edges using simple image filters



Do not need complex priors for the latent image and the blur kernel
 → Significantly reduce the computation time







Blurry input

Deblurring result



- A few seconds
- 1Mpix image
- in C++

• Extended edge prediction to handle blur larger than image structures



For this complex scene, most methods fail to estimate a correct blur kernel. Why?

Blurred image

Fergus et al. SIGGRAPH 2006

Shan et al. SIGGRAPH 2008



#### Blur < structures

- Each blurry pixel is
- caused by one edge
- Easy to figure out the original sharp structure



#### Blur > structures

- Hard to tell which blur is caused by which edge
- Most method fails





Blurred image

Fergus et al. SIGGRAPH 2006

Shan et al. SIGGRAPH 2008 Xu & Jia, ECCV 2010

#### Popular Approaches (pre deep learning era)

- Maximum Posterior (MAP) based
- Variational Bayesian based
- Edge Prediction based

Which one is better?

- Many different methods...
- Which one is the best?
  - Quality
  - Speed
- Different works report different benchmark results
  - Depending on test data
  - Levin et al. CVPR 2009, 2010
  - Köhler et al. ECCV 2012

- Levin et al. CVPR 2009
  - Provide a dataset
    - 32 test images
    - 4 clear images (255x255)
    - 8 blur kernels (10x10 ~ 25x25)
    - One of the most widely used datasets
  - Evaluate blind deconvolution methods using the dataset



- Levin et al. CVPR 2009
  - Counted the number of successful results



- Cho & Lee, SIGGRAPH Asia 2009
  - Comparison based on Levin et al.'s dataset
  - Slightly different parameter settings



- Köhler et al. ECCV 2012
  - Record and analyze real camera motions
    - Recorded 6D camera shakes in the 3D space using markers
    - Played back camera shakes using a robot arm
  - Provide a benchmark dataset based on real camera shakes
  - Provide benchmark results for recent state-of-the-art methods



- Köhler et al. ECCV 2012
  - Dataset
    - 48 test images
    - 4 sharp images
    - 12 non-uniform camera shakes



• Köhler et al. ECCV 2012



- Benchmark results depend on
  - Implementation details & tricks
  - Benchmark datasets
  - Parameters used in benchmarks
- But, in general, more recent one shows better quality
- Speed?
  - Edge prediction > MAP >> Variational Bayesian

# **Blind Deconvolution**

- Introduction
- Recent popular approaches
- Non-uniform blur
#### **Convolution based Blur Model**

• Uniform and spatially invariant blur



#### Real Camera Shakes: Spatially Variant!



#### Uniform Blur Model Assumes



x & y translational camera shakes



Planar scene

#### **Real Camera Shakes**



6D real camera motion



## **Real Blurred Image**



Non-uniformly blurred image



Uniform deblurring result

## Pixel-wise Blur Model

- Dai and Wu, CVPR 2008
  - Estimate blur kernels for every pixel from a single image
  - Severely ill-posed
  - Parametric blur kernels



## Pixel-wise Blur Model

• Tai et al. CVPR 2008

Hi-res. image

- Hybrid camera to capture hi-res image & low-res video
- Estimate per-pixel blur kernels using low-res video





Low-res. video

time

## Patch-wise Blur Model

- Sorel and Sroubek, ICIP 2009
  - Estimate per-patch blur kernels from a blurred image and an underexposed noisy image



| \$ | 5  | 5  | 1  | £  | r  | 1 |
|----|----|----|----|----|----|---|
| ŝ. | 5  | ſ  | 8  | 5  |    |   |
| ¢  | ç  | ¢  | ę  | 5  | ٩, |   |
| ¢  | ¢  | ٩  | 4  | 1  | ۲  | X |
| \$ | ŝ  | 1  | \$ | \$ | ۲  | • |
| ٢. | ę. | ł, | ٩  | \$ | ,  | • |
| 4  | e. | 5  | ٩, | ٠. |    | • |

### Patch-wise Blur Model

- Hirsch et al. CVPR 2010
  - Efficient filter flow (EFF) framework
  - More accurate approximation than the naïve patch-wise blur model
- Harmeling et al. NIPS 2010
  - Estimate per-patch blur kernels based on EFF from a single image





## Patch-wise Blur Model

- Approximation
  - More patches  $\rightarrow$  more accurate
- Computationally efficient
  - Patch-wise uniform blur
  - FFTs can be used
- Physically implausible blurs
  - Adjacent blur kernels cannot be very different from each other



#### Benchmark [Köhler et al. ECCV 2012]



Due to high dimensionality, spatially-varying blur methods are less stable.

## Summary

• Different blur models



Patch based Efficient but no global constraint



Projective Motion Path Globally consistent but inefficient



Hybrid Efficient & globally consistent

- More realistic than uniform blur model
- Still approximations
  - Real camera motions: 6 DoF + more (zoom-in, depth, etc...)
- High dimensionality
  - Less stable & slower than uniform blur model

## **Remaining Challenges**



Failure example of Photoshop Shake Reduction

- All methods still fail quite often
- Noise
- Outliers
- Non-uniform blur
- Limited amount of edges
- Speed...
- Etc...

# Image Deblurring

- Introduction
- Blind deconvolution
- Non-blind deconvolution

## Non-blind Deconvolution

- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers

#### Non-blind Deconvolution (Uniform Blur)



## Non-blind Deconvolution

- Key component in many deblurring systems
  - For example, in MAP based blind deconvolution:



## Non-blind Deconvolution



- Wiener filter
- Richardson-Lucy deconvolution
- Rudin et al. Physica 1992
- Bar et al. IJCV 2006
- Levin et al. SIGGRAPH 2007
- Shan et al. SIGGRAPH 2008
- Yuan et al. SIGGRAPH 2008
- Harmeling et al. ICIP 2010
- Etc...

## III-Posed Problem

• Even if we know the true blur kernel, we cannot restore the latent image perfectly, because



• Loss of high-freq info & noise ≈ denoising & super-resolution

## III-Posed Problem

• Deconvolution amplifies noise as well as sharpens edges



- Ringing artifacts
  - Inaccurate blur kernels, outliers cause ringing artifacts



## **Classical Methods**

- Popular methods
  - Wiener filtering
  - Richardson-Lucy deconvolution
  - Constrained least squares
- Matlab Image Processing Toolbox
  - deconvwnr, deconvlucy, deconvreg
- Simple assumption on noise and latent images
  - Simple & fast
  - Prone to noise & artifacts



## Non-blind Deconvolution

- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers

- Non-blind deconvolution: ill-posed problem
- We need to assume something on the latent image to constrain the problem.







- Natural images have a heavy-tailed distribution on gradient magnitudes
  - Mostly zero & a few edges
  - Levin et al. SIGGRAPH 2007, Shan et al. SIGGRAPH 2008, Krishnan & Fergus, NIPS 2009



- Levin et al. SIGGRAPH 2007
  - Propose a parametric model for natural image priors based on image gradients



• Levin et al. SIGGRAPH 2007



• Levin et al. SIGGRAPH 2007



Input

#### Richardson-Lucy

Gaussian prior  $\sum |\nabla l_i|^2$ 

"spread" gradients



"localizes"

## Non-blind Deconvolution

- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers

- Patches, large neighborhoods, ...
- Effective for various kinds of image restoration problems
  - Denoising, inpainting, super-resolution, deblurring, ...



- Schmidt et al. CVPR 2011
  - Fields of Experts
- Zoran & Weiss, ICCV 2011
  - Trained Gaussian mixture model for natural image patches
- Schuler et al. CVPR 2013
  - Trained Multi-layer perceptron to remove artifacts and to restore sharp patches
- Schmidt et al. CVPR 2013
  - Trained regression tree fields for 5x5 neighborhoods

- Zoran & Weiss, ICCV 2011
  - Gaussian Mixture Model (GMM) learned from natural images



- Zoran & Weiss, ICCV 2011
  - Given a patch, we can compute its likelihood based on the GMM.
  - Deconvolution can be done by solving:

$$\arg\min_{l} \left\{ \|k * l - b\|^{2} - \lambda \sum_{i} \log p(l_{i}) \right\}$$
  
Log-likelihood of a patch  $l_{i}$  at *i*-th pixel based on GMM

1

• Zoran & Weiss, ICCV 2011 Denoising



(a) Noisy Image - PSNR: 20.17



(b) KSVD - PSNR: 28.72





(c) LLSC - PSNR: 29.30 (d) EPLL GMM - PSNR: 29.39

an an Blurred



#### Deblurring



Krishnan & Fergus PSNR: 26.38



Zoran & Weiss PSNR: 27.70

## Non-blind Deconvolution

- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers

# **Ringing Artifacts**

- Wave-like artifacts around strong edges
- Caused by
  - Inaccurate blur kernels
  - Nonlinear response curve
  - Etc...



# **Ringing Artifacts**

- Noise
  - High-freq
  - Independent and identical distribution
  - Priors on image gradients work well



- Ringing
  - Mid-freq
  - Spatial correlation
  - Priors on image gradients are not very effective


# **Ringing Artifacts**

- Yuan et al. SIGGRAPH 2007
  - Residual deconvolution & de-ringing
- Yuan et al. SIGGRAPH 2008
  - Multi-scale deconvolution framework based on residual deconvolution



Blurred image

Richardson-Lucy

Yuan et al. SIGGRAPH 2008

#### Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]



#### Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]



#### Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]



#### Progressive Inter-scale & Intra-scale Deconvolution [Yuan et al. SIGGRAPH 2008]

• Progressive inter-scale & intra-scale deconvolution

Progressive inter-scale deconvolution



scale 0 scale 2 scale 4 scale 6
Progressive intra-scale deconvolution

guide image

detail layer (1)

detail layer (2)

detail layer (3)



## Non-blind Deconvolution

- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers

## Outliers

• A main source of severe ringing artifacts



Blurred image with outliers

Deblurring result [Levin et al. SIGGRAPH 2007]

## Outliers

• Saturated pixels caused by limited dynamic range of sensors





#### Blurred image

[Levin et al. 2007]

### Outliers

• Hot pixels, dead pixels, compression artifacts, etc...



Blurred image with outliers [Levin et al. 2007]

## **Outlier Handling**

• Most common blur model:



## **Outlier Handling**

• An energy function derived from this model:

$$E(l) = ||k * l - b||^{2} + \rho(l)$$

$$L^{2} \text{-norm based data term:} \text{Regularization term on} \text{a latent image } l$$

- More robust norms to outliers
  - L<sup>1</sup>-norm, other robust statistics...

$$E(l) = \|k * l - b\|_{1} + \rho(l)$$

- Bar et al. IJCV 2006, Xu et al. ECCV 2010, ...

# **Outlier Handling**

- *L*<sup>1</sup>--norm based data term
  - Simple & efficient
  - Effective on salt & pepper noise
  - Not effective on saturated pixels



#### $L^2$ -norm based data term



#### L<sup>1</sup>-norm based data term

• More accurate blur model reflecting outliers



• Classification mask

$$m(x) = \begin{cases} 1 & \text{if } b(x) \text{ is an inlier} \\ 0 & \text{if } b(x) \text{ is an outlier} \end{cases}$$



Blurred image b



Classification mask  $\mathbf{m}$ 

• MAP estimation



Given **b** & **k**, find the most probable 1  

$$l_{MAP} = \arg \max_{l} p(l|b,k)$$

$$= \arg \max_{l} \sum_{m \in M} p(b|m,k,l)p(m|k,l)p(l)$$

Classification mask m

• EM based optimization





Blurred image



Blurred image



[Levin et al. 2007]



L1-norm based deconv.



[Harmeling et al. 2010]



[Cho et al. ICCV 2011]



Blurred image



Blurred image



[Levin et al. 2007]



L1-norm based deconv.



[Harmeling et al. 2010]



[Cho et al. ICCV 2011]

## Summary & Remaining Challenges

- Ill-posed problem Noise & blur
- Noise
  - High-freq & unstructured
  - Natural image priors
- Ringing
  - Mid-freq & structured
  - More difficult to handle
- Outliers
  - Cause severe ringing artifacts
  - More accurate blur model
- Speed
  - More complex model  $\rightarrow$  Slower
- Many source codes are available on the authors' website

# Image Deblurring

- Introduction
- Blind deconvolution
- Non-blind deconvolution
- Deep learning based solutions

# Deep learning based image deblurring

- Convolutional neural networks based solutions
  - Sun et al., CVPR 2015
  - Gong et al., CVPR 2017

- Solutions depend on generative models
  - Nah et al., CVPR 2017
  - Kupyn et al., CVPR 2018
  - ...

# Deep learning based image deblurring

- Convolutional neural networks based solutions
  - Sun et al., CVPR 2015
  - Gong et al., CVPR 2017

- Solutions depend on generative models
  - Nah et al., CVPR 2017
  - Kupyn et al., CVPR 2018
  - …

...

- non-uniform motion blur from a single blurry image.
- Key idea: Use CNNs to estimate blurring kernels



(a) Input image



(b) Estimated motion blur field by CNN



(c) Result after deblurring

- A CNN model for motion kernels prediction.
  - composed of 6 layers of convolutional layers and fully connected layers.



(c) Candidate motion kernel set for learning CNN



#### Blurred images



Estimated kernels







Input





Ours





- non-uniform motion blur from a single blurry image.
- Key idea: directly estimate the motion flow from the blurred image through a fully-convolutional deep neural network (FCN)



• A FCN model to produce a pixel-wise dense motion flow map





(a) Motion blur and motion flow

(b) Domain of motion





[33] Sun et al., CVPR 2015

• Deblurring results on an image with camera motion blur.



(a) Blurry image

(b) Whyte et al. [40]

(c) Sun *et al.* [33]

(d) Ours

• Deblurring results on an non-uniform blur image with strong blur on background.



(a) Blurry image

(b) Whyte *et al.* [40]

(c) Kim and Lee [18]

(d) Sun et al. [33]

(e) Ours

• Deblurring results on an image with large scale motion blur caused by moving object.



(a) Blurry image

(b) Pan *et al.* [26]

(c) Sun *et al.* [33]

(d) Ours

# Deep learning based image deblurring

- Convolutional neural networks based solutions
  - Sun et al., CVPR 2015
  - Gong et al., CVPR 2017

- Solutions depend on generative models
  - Nah et al., CVPR 2017
  - Kupyn et al., CVPR 2018
  - ...

. . .

## Nah et al., CVPR 2017

- non-uniform motion blur from a single blurry image.
- Key idea: Use multiscale CNNs to restore sharp images in an end-to-end manner

$$\mathcal{L}_{cont} = \frac{1}{2K} \sum_{k=1}^{K} \frac{1}{c_k w_k h_k} \|L_k - S_k\|^2$$

- can be interpreted as a kind of image to image translation
- An additional adversarial loss

$$\mathcal{L}_{adv} = \underset{S \sim p_{sharp}(S)}{\mathbb{E}} [\log D(S)] + \underset{B \sim p_{blurry}(B)}{\mathbb{E}} [\log(1 - D(G(B)))]$$
### Nah et al., Cvrn Luiz

• coarser scale features aid finer scale image deblurring

(b)

(a)



ResBlock

(c)



### Nah et al., CVPR 2017



Blurred images

Sun et al., CVPR 2015

Nah et al., CVPR 2017

- non-uniform motion blur from a single blurry image.
- Key idea: Use a conditional GAN and content loss

$$\mathcal{L} = \underbrace{\mathcal{L}_{GAN}}_{adv \ loss} + \underbrace{\lambda \cdot \mathcal{L}_X}_{content \ loss} \qquad \mathcal{L}_{GAN} = \sum_{n=1}^N -D_{\theta_D}(G_{\theta_G}(I^B)) \qquad \mathcal{L}_X = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^S)_{x,y} - \phi_{i,j}(G_{\theta_G}(I^B))_{x,y})^2$$

$$= \underbrace{\mathsf{V}_{GAN}}_{total \ loss} \qquad \underbrace{\mathsf{V}_{GAN}}_{total \ loss} = \underbrace{\mathsf{V}$$

Blurred images

Groundtruth

Predicted

• An image to image translation model that learns the residual to sharpen the blurred image





#### Blurred images

#### Nah et al., CVPR 2017 Kupyr

#### Kupyn et al., CVPR 2018



#### Blurred images Nah et al., CVPR 2017 Kupyn et al., CVPR 2018



Blurred images

Nah et al., CVPR 2017 Kupyn et al., CVPR 2018

# Image Deblurring

- Introduction
- Blind deconvolution
- Non-blind deconvolution
- Deep learning based solutions