
CMP717
Image Processing

Image Deblurring

Erkut Erdem
Hacettepe University

Computer Vision Lab (HUCVL)

Image Deblurring*
• Introduction
• Blind deconvolution
• Non-blind deconvolution
• Deep learning based solutions

2
* The slides are mostly adapted from the course “Recent Advances in Image Deblurring” given by
Seungyong Lee and Sunghyun Cho @ Siggraph Asia 2013.

Image Deblurring
• Introduction
• Blind deconvolution
• Non-blind deconvolution
• Deep learning based solutions

3

blur [bl3:(r)]
• Long exposure
• Moving objects
• Camera motion

– panning shot

blur [bl3:(r)]
• Often degrades

image/video quality
severely

• Unavoidable under dim
light circumstances

Various Kinds of Blurs

Camera shake (Camera motion blur)

Out of focus (Defocus blur) Combinations (vibration & motion, …)

Object movement (Object motion blur)

Camera Motion Blur
• Caused by camera shakes

during exposure time
– Motion can be represented as a

camera trajectory

Object Motion Blur
• Caused by object motions during exposure time

Defocus Blur
• Caused by the limited depth of field of a camera

Optical Lens Blur
• Caused by lens aberration

Deblurring?
• Remove blur and restore a latent sharp image

from a given blurred image find its latent sharp image

Deblurring: Old Problem!
• Trott, T., “The Effect of Motion of Resolution”,

Photogrammetric Engineering, Vol. 26, pp. 819-827, 1960.
• Slepian, D., “Restoration of Photographs Blurred by Image Motion”,

Bell System Tech., Vol. 46, No. 10, pp. 2353-2362, 1967.

About 474,000 results

Why is it important?
• Image/video in our daily lives

– Sometimes a retake is difficult!

Why is it important?
• Strong demand for high quality deblurring

CCTV, car black box Medical
imaging

Aerial/satellite
photography

Robot vision

Deblurring

from a given blurred image find its latent sharp image

Commonly Used Blur Model

= *

Blurred image Latent sharp image

Blur kernel
or Point Spread
Function (PSF)

Convolution
operator

Blind Deconvolution

= *

Blurred image Latent sharp image

Blur kernel
or Point Spread
Function (PSF)

Convolution
operator

Non-blind Deconvolution

= *

Blurred image Latent sharp image

Blur kernel
or Point Spread
Function (PSF)

Convolution
operator

Uniform vs. Non-uniform Blur

Uniform blur
• Every pixel is blurred in

the same way
• Convolution based blur

model

Uniform vs. Non-uniform Blur

Non-uniform blur
• Spatially-varying blur
• Pixels are blurred

differently
• More faithful to real

camera shakes

Most Blurs Are Non-Uniform

Camera shake (Camera motion blur)

Out of focus (Defocus blur) Combinations (vibration & motion, …)

Object movement (Object motion blur)

Image Deblurring
• Introduction
• Blind deconvolution
• Non-blind deconvolution
• Deep learning based solutions

22

Blind Deconvolution
• Introduction
• Recent popular approaches
• Non-uniform blur

23

Blind Deconvolution (Uniform Blur)

= *

Blurred image Latent sharp image

Blur kernel
or Point Spread
Function (PSF)

Convolution
operator

Key challenge: Ill-posedness!
Possible solutions

• Infinite number of
solutions satisfy the blur
model

• Analogous to

100 = $
2×50
4×25

3×33.333…

*

*

*

=
Blurred image

• Parametric blur kernels
– [Yitzhakey et al. 1998], [Rav-Acha and Peleg 2005], …

– Directional blur kernels defined by (length, angle)

In The Past…

* à

In The Past…
• But real camera shakes are much more complex

In The Past…
• Parametric blur kernels

– Very restrictive assumption
– Often failed, poor quality

Blurred image Latent sharp image
* Images from [Yitzhaky et al. 1998]

Nowadays…
• Some successful approaches have been introduced…

– [Fergus et al. SIGGRAPH 2006], [Shan et al. SIGGRAPH 2008],
[Cho and Lee, SIGGRAPH Asia 2009], …

– More realistic blur kernels
– Better quality
– More robust

• Commercial software
– Photoshop CC Shake reduction

Blind Deconvolution
• Introduction
• Recent popular approaches
• Non-uniform blur

30

Popular Approaches (pre deep learning era)

• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

Which one is better?

31

Popular Approaches (pre deep learning era)

• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

Which one is better?

32

• [Shan et al. SIGGRAPH 2008],
[Krishnan et al. CVPR 2011],
[Xu et al. CVPR 2013], …

• Seek the most probable
solution, which maximizes a
posterior distribution

• Easy to understand
• Convergence problem

Popular Approaches (pre deep learning era)

• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

Which one is better?

33

• [Fergus et al. SIGGRAPH 2006],
[Levin et al. CVPR 2009],
[Levin et al. CVPR 2011], …

• Not seek for one most probable
solution, but consider all
possible solutions

• Theoretically more robust
• Slow

Popular Approaches (pre deep learning era)

• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

Which one is better?

34

• [Cho & Lee. SIGGRAPH Asia 2009],
[Xu et al. ECCV 2010],
[Hirsch et al. ICCV 2011], …

• Explicitly try to recover sharp
edges using heuristic image filters

• Fast
• Proven to be effective in practice,

but hard to analyze because of
heuristic steps

Popular Approaches (pre deep learning era)

• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

Which one is better?

35

• [Shan et al. SIGGRAPH 2008],
[Krishnan et al. CVPR 2011],
[Xu et al. CVPR 2013], …

• Seek the most probable
solution, which maximizes a
posterior distribution

• Easy to understand
• Convergence problem

Maximize a joint posterior probability with respect to 𝑘 and 𝑙

MAP based Approaches

Blur kernel k

Latent image l Blurred image b

Posterior distribution

p(k, l |b)

Bayes rule:

MAP based Approaches

Posterior distribution Likelihood Prior on l Prior on k

Blur kernel k

Latent image l Blurred image b

p(k, l |b) ∝ p(b|l,k) p(l) p(k)

Negative log-posterior:

MAP based Approaches

Regularization on
blur kernel kData fitting term

Regularization on
latent image l

Negative log-posterior:

MAP based Approaches

െ log ݇, ݈ ܾ ֜ െ log ܾ ݇, ݈ െ log ݈ െ log ݇
֜ ݇ כ ݈ െ ܾ ଶ + ߩ ݈ + ߩ ݇

Regularization on
blur kernel ݇Data fitting term Regularization on

latent image ݈

40

Negative log-posterior:

Alternatingly minimize the energy function w.r.t. k and l

MAP based Approaches

Regularization on
blur kernel kData fitting term

Regularization on
latent image l

Negative log-posterior:

MAP based Approaches

െ log ݇, ݈ ܾ ֜ െ log ܾ ݇, ݈ െ log ݈ െ log ݇
֜ ݇ כ ݈ െ ܾ ଶ + ߩ ݈ + ߩ ݇

Regularization on
blur kernel ݇Data fitting term Regularization on

latent image ݈

40

MAP based Approaches

Input blurred
image b

Latent image l
estimation

- maximizes
posterior w.r.t. l

Blur kernel k
estimation

- maximizes
posterior w.r.t. k

Output l

MAP based Approaches
• Chan and Wong, TIP 1998

– Total variation based priors for estimating a parametric blur kernel
• Shan et al. SIGGRAPH 2008

– First MAP based method to estimate a nonparametric blur kernel
• Krishnan et al. CVPR 2011

– Normalized sparsity measure, a novel prior on latent images
• Xu et al. CVPR 2013

– L0 norm based prior on latent images

Shan et al. SIGGRAPH 2008
• Carefully designed likelihood & priors

Natural image
statistics based

prior on l

Likelihood based on
intensities & derivatives

Kernel statistics
based prior on k

Shan et al. SIGGRAPH 2008
• Carefully designed likelihood & priors

 ݇, ݈ ܾ ן ܾ ݈, ݇ ݈ ݇

Natural image
statistics based

prior on ݈

Likelihood based on
intensities & derivatives

Kernel statistics
based prior on ݇

45

Shan et al. SIGGRAPH 2008
• A few minutes for a small image
• High-quality results

Shan et al. SIGGRAPH 2008
• Convergence problem

– Often converge to the no-blur solution [Levin et al. CVPR 2009]
– Natural image priors prefer blurry images

Shan et al. SIGGRAPH 2008 Fergus et al. SIGGRAPH
2006

(variational Bayesian based)

0

20

40

60

80

100

1 2

Su
cc

es
s

R
at

e

Error ratio = 2

Popular Approaches (pre deep learning era)

• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

Which one is better?

45

• [Fergus et al. SIGGRAPH 2006],
[Levin et al. CVPR 2009],
[Levin et al. CVPR 2011], …

• Not seek for one most probable
solution, but consider all
possible solutions

• Theoretically more robust
• Slow

Variational Bayesian
• MAP

– Find the most
probable solution

– May converge to a
wrong solution

• Variational Bayesian
– Approximate the

underlying
distribution and find
the mean

– More stable
– Slower

Variational
Bayes

Maximum
a-Posteriori (MAP)

Pixel intensity

Sc
or

e

MAP v.s. Variational Bayes

Variational Bayesian
• Fergus et al. SIGGRAPH 2006

– First approach to handle non-parametric blur kernels
• Levin et al. CVPR 2009

– Show that variational Bayesian approaches can perform more
robustly than MAP based approaches

• Levin et al. CVPR 2010
– EM based efficient approximation to variational Bayesian

approach

Fergus et al. SIGGRAPH 2006
• Posterior distribution

Fergus et al. SIGGRAPH 2006
• Posterior distribution

 ݇, ݈ b ן ܾ ݇, ݈ ݈ ݇

53

Fergus et al. SIGGRAPH 2006
• Find an approximate distribution by minimizing Kullback-

Leibler (KL) divergence

• cf MAP based approach:

Fergus et al. SIGGRAPH 2006
– Find an approximate distribution by minimizing Kullback-Leibler (KL)

divergence

– cf) MAP based approach:

argminݍ)ܮܭ ݇ ݍ ݈ ݍ ଶିߪ ݇, ݈ ܾ
approximate distributions for blur kernel ݇,

latent image ݈, and noise variance ߪଶ

ݍ ݇ , ݍ ݈ , ݍ ଶିߪ

argmin
, ݇, ݈ b

54

Fergus et al. SIGGRAPH 2006
– Find an approximate distribution by minimizing Kullback-Leibler (KL)

divergence

– cf) MAP based approach:

argminݍ)ܮܭ ݇ ݍ ݈ ݍ ଶିߪ ݇, ݈ ܾ
approximate distributions for blur kernel ݇,

latent image ݈, and noise variance ߪଶ

ݍ ݇ , ݍ ݈ , ݍ ଶିߪ

argmin
, ݇, ݈ b

54

Fergus et al. SIGGRAPH 2006
• First method to estimate a nonparametric blur kernel
• Complex optimization
• Slow: more than an hour for a small image

Popular Approaches (pre deep learning era)

• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

Which one is better?

51

• [Cho & Lee. SIGGRAPH Asia 2009],
[Xu et al. ECCV 2010],
[Hirsch et al. ICCV 2011], …

• Explicitly try to recover sharp
edges using heuristic image filters

• Fast
• Proven to be effective in practice,

but hard to analyze because of
heuristic steps

Edge Prediction based Approaches
• Joshi et al. CVPR 2008

– Proposed sharp edge prediction to estimate blur kernels
– No iterative estimation
– Limited to small scale blur kernels

• Cho & Lee, SIGGRAPH Asia 2009
– Proposed sharp edge prediction to estimate large blur kernels
– Iterative framework
– State-of-the-art results & very fast

• Cho et al. CVPR 2010
– Applied Radon transform to estimate a blur kernel from blurry edge profiles
– Small scale blur kernels

• Xu et al. ECCV 2010
– Proposed a prediction scheme based on structure scales as well as gradient

magnitudes
• Hirsch et al. ICCV 2011

– Applied a prediction scheme to estimate spatially-varying camera shakes

Cho & Lee, SIGGRAPH Asia 2009
• Key idea: blur can be estimated from a few edges
è No need to restore every detail for kernel estimation

Blurred image Latent image with only a few
edges and no texture

Cho & Lee, SIGGRAPH Asia 2009

Input Simple
deconvolution

Fast
Kernel

Estimation

OutputPrediction

Quickly restore important edges
using simple image filters

Cho & Lee, SIGGRAPH Asia 2009

Input Simple
deconvolution

Fast
Kernel

Estimation

OutputPrediction

Quickly restore important edges
using simple image filters

Quickly restore important edges
using simple image filters

Do not need complex priors for the latent image and the blur kernel
è Significantly reduce the computation time

Cho & Lee, SIGGRAPH Asia 2009

Fast but low quality deconvolution Prediction

Updated kernelPrevious kernel

Cho & Lee, SIGGRAPH Asia 2009

Prediction
Simple & fast image filtering operations

Thresholding
gradients

Bilateral filtering &
Shock filtering

Fast but low-quality
deconvolution

Visualized by Poisson
image reconstruction

Cho & Lee, SIGGRAPH Asia 2009

Blurry input Deblurring result Blur kernel

• State of the art results
• A few seconds
• 1Mpix image
• in C++

Xu & Jia, ECCV 2010
• Extended edge prediction to handle blur larger than image

structures

Blurred image Fergus et al.
SIGGRAPH 2006

Shan et al.
SIGGRAPH 2008

For this complex
scene, most methods
fail to estimate a
correct blur kernel.
Why?

Xu & Jia, ECCV 2010

Blur > structures
• Hard to tell which blur is

caused by which edge
• Most method fails

Blur < structures
• Each blurry pixel is

caused by one edge
• Easy to figure out the

original sharp structure

Xu & Jia, ECCV 2010

Structure scale
aware gradient

thresholding

Smoothing &
Shock filtering

Deconvolution

Visualized by Poisson
image reconstruction

Xu & Jia, ECCV 2010

Blurred image Fergus et al.
SIGGRAPH 2006

Shan et al.
SIGGRAPH 2008

Xu & Jia, ECCV 2010

Popular Approaches (pre deep learning era)

• Maximum Posterior (MAP) based

• Variational Bayesian based

• Edge Prediction based

Which one is better?

63

Benchmarks
• Many different methods…
• Which one is the best?

– Quality
– Speed

• Different works report different benchmark results
– Depending on test data
– Levin et al. CVPR 2009, 2010
– Köhler et al. ECCV 2012

Benchmarks
• Levin et al. CVPR 2009

– Provide a dataset
• 32 test images
• 4 clear images (255x255)
• 8 blur kernels (10x10 ~ 25x25)
• One of the most widely used

datasets

– Evaluate blind deconvolution
methods using the dataset

Benchmarks
• Levin et al. CVPR 2009

– Counted the number of
successful results

0

20

40

60

80

100

1 2
Su

cc
es

s
R

at
e

Error ratio = 2

Benchmarks
• Cho & Lee, SIGGRAPH Asia 2009

– Comparison based on
Levin et al.’s dataset

– Slightly different
parameter settings

0

20

40

60

80

100

1 2 3
Su

cc
es

s
R

at
e

Error ratio = 2

Benchmarks
• Köhler et al. ECCV 2012

– Record and analyze real camera
motions
• Recorded 6D camera shakes in

the 3D space using markers
• Played back camera shakes using

a robot arm
– Provide a benchmark dataset

based on real camera shakes
– Provide benchmark results for

recent state-of-the-art methods

Benchmarks
• Köhler et al. ECCV 2012

– Dataset
• 48 test images
• 4 sharp images
• 12 non-uniform camera

shakes

Benchmarks
• Köhler et al. ECCV 2012

P
SN

R
 (d

B
)

MAP Edge prediction

20

22

24

26

28

30

1 2 3 4 5 6

Variational
Bayesian

Benchmarks
• Benchmark results depend on

– Implementation details & tricks
– Benchmark datasets
– Parameters used in benchmarks

• But, in general, more recent one shows better quality

• Speed?
– Edge prediction > MAP >> Variational Bayesian

Blind Deconvolution
• Introduction
• Recent popular approaches
• Non-uniform blur

72

Convolution based Blur Model
• Uniform and spatially invariant blur

Real Camera Shakes: Spatially Variant!

Uniform Blur Model Assumes

x & y translational
camera shakes

Planar scene

Real Camera Shakes

6D real camera motion

Different depths

Real Blurred Image

Clean

Severe artifacts

Non-uniformly blurred image

Uniform deblurring result

Pixel-wise Blur Model
• Dai and Wu, CVPR 2008

– Estimate blur kernels for every pixel from a single image
– Severely ill-posed
– Parametric blur kernels

Pixel-wise Blur Model
• Tai et al. CVPR 2008

– Hybrid camera to capture hi-res image & low-res video
– Estimate per-pixel blur kernels using low-res video

time

Hi-res.
image

Low-res.
video

Patch-wise Blur Model
• Sorel and Sroubek, ICIP 2009

– Estimate per-patch blur kernels from a blurred image and an
underexposed noisy image

Patch-wise Blur Model
• Hirsch et al. CVPR 2010

– Efficient filter flow (EFF) framework
– More accurate approximation than the naïve patch-wise blur model

• Harmeling et al. NIPS 2010
– Estimate per-patch blur kernels based on EFF from a single image

Patch-wise Blur Model
• Approximation

– More patches à more accurate
• Computationally efficient

– Patch-wise uniform blur
– FFTs can be used

• Physically implausible blurs
– Adjacent blur kernels cannot be

very different from each other

Benchmark [Köhler et al. ECCV 2012]

20

22

24

26

28

30

1 2 3 4 5 6 7 8

P
SN

R
 (d

B
)

Uniform blur
methods

Spatially-varying
blur methods

Due to high
dimensionality,
spatially-varying blur
methods are less
stable.

Summary
• Different blur models

• More realistic than uniform blur model
• Still approximations

– Real camera motions: 6 DoF + more (zoom-in, depth, etc…)
• High dimensionality

– Less stable & slower than uniform blur model

Patch based
Efficient but no global constraint

Projective Motion Path
Globally consistent but inefficient

Hybrid
Efficient & globally consistent

Remaining Challenges
• All methods still fail quite

often
• Noise
• Outliers
• Non-uniform blur
• Limited amount of edges
• Speed…
• Etc…

Failure example of Photoshop Shake Reduction

Image Deblurring
• Introduction
• Blind deconvolution
• Non-blind deconvolution

86

Non-blind Deconvolution
• Introduction
• Natural image statistics
• High-order natural image statistics
• Ringing artifacts
• Outliers

87

Non-blind Deconvolution (Uniform Blur)

= *

Blurred image Latent sharp image

Blur kernel Convolution
operator

Non-blind Deconvolution
• Key component in many deblurring systems

– For example, in MAP based blind deconvolution:

Input blurred
image b

Latent image l
estimation

Blur kernel k
estimation

Output l

Non-blind deconvolution
There can be additional final
non-blind deconvolution for

the final output

Non-blind Deconvolution

§ Wiener filter
§ Richardson-Lucy deconvolution
§ Rudin et al. Physica 1992
§ Bar et al. IJCV 2006
§ Levin et al. SIGGRAPH 2007
§ Shan et al. SIGGRAPH 2008
§ Yuan et al. SIGGRAPH 2008
§ Harmeling et al. ICIP 2010
§ Etc…

Ill-Posed Problem
• Even if we know the true blur kernel, we cannot restore the

latent image perfectly, because:

• Loss of high-freq info & noise ≈ denoising & super-resolution

= * +

Blur destroys
High-freq info Noise

Ill-Posed Problem
• Deconvolution amplifies noise

as well as sharpens edges
• Ringing artifacts

– Inaccurate blur kernels,
outliers cause ringing artifacts

Classical Methods
• Popular methods

– Wiener filtering
– Richardson-Lucy deconvolution
– Constrained least squares

• Matlab Image Processing
Toolbox
– deconvwnr, deconvlucy,

deconvreg

• Simple assumption on noise
and latent images
– Simple & fast
– Prone to noise & artifacts

Non-blind Deconvolution
• Introduction
• Natural image statistics
• High-order natural image statistics
• Ringing artifacts
• Outliers

94

Natural Image Statistics
• Non-blind deconvolution: ill-posed problem
• We need to assume something on the latent image to

constrain the problem.

= * +

Natural Image Statistics
• Natural images have a heavy-tailed distribution on gradient

magnitudes
– Mostly zero & a few edges
– Levin et al. SIGGRAPH 2007, Shan et al. SIGGRAPH 2008,

Krishnan & Fergus, NIPS 2009

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

– Propose a parametric model for natural image priors based on
image gradients

Lo
g

 p
ro

b

xx

Gaussian: -x2

Laplacian: -|x|-|x|0.5

-|x|0.25

Derivative histogram from a
natural image

Parametric models

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

– Propose a parametric model for natural image priors based on image
gradients

Lo
g

pr
ob

xx

Gaussian: -x2

Laplacian: -|x|
-|x|0.5

-|x|0.25

Derivative histogram from a
natural image

Parametric models

Proposed prior

log ݔ = െ

ݔߘ ఈ

where:
• image :ݔ
• ߙ ,model parameter :ߙ < 1

120

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

_
2

+

_ +
2

?

?

High

Low
Equal convolution error

*

*

Data term Prior

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

݈ = argmin

݇ כ ݈ െ ܾ ଶ + ߣ σ ݈ߘ ఈ ߙ < 1

_ 2
+

_ +
2

?

?

High

Low
Equal convolution error

*

*

Data term Prior

121

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

Input Richardson-Lucy Gaussian prior

“spread” gradients

Sparse prior

“localizes”
gradients

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

Input Richardson-Lucy Gaussian prior

“spread” gradients

Sparse prior

“localizes” gradients

݈ߘ ଶ

݈ߘ .଼

122

Non-blind Deconvolution
• Introduction
• Natural image statistics
• High-order natural image statistics
• Ringing artifacts
• Outliers

100

High-order Natural Image Priors
• Patches, large neighborhoods, …
• Effective for various kinds of image restoration problems

– Denoising, inpainting, super-resolution, deblurring, …

High-order Natural Image Priors
• Schmidt et al. CVPR 2011

– Fields of Experts
• Zoran & Weiss, ICCV 2011

– Trained Gaussian mixture model for natural image patches
• Schuler et al. CVPR 2013

– Trained Multi-layer perceptron to remove artifacts and to restore
sharp patches

• Schmidt et al. CVPR 2013
– Trained regression tree fields for 5x5 neighborhoods

High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

– Gaussian Mixture Model (GMM) learned from natural images

Natural images Collected patches GMM

Collect
patches K-means

High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

– Given a patch, we can compute its likelihood based on the
GMM.

– Deconvolution can be done by solving:

High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

– Given a patch, we can compute its likelihood based on the GMM.
– Deconvolution can be done by solving:

argmin

݇ כ ݈ െ ܾ ଶ െ ߣ

log ݈

Log-likelihood of a patch ݈ at ݅-th pixel
based on GMM

129

High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

Denoising Deblurring

Blurred image Krishnan & Fergus
PSNR: 26.38

Zoran & Weiss
PSNR: 27.70

Non-blind Deconvolution
• Introduction
• Natural image statistics
• High-order natural image statistics
• Ringing artifacts
• Outliers

106

Ringing Artifacts
• Wave-like artifacts around strong edges
• Caused by

– Inaccurate blur kernels
– Nonlinear response

curve
– Etc…

Ringing Artifacts
• Noise

– High-freq
– Independent and identical

distribution
– Priors on image gradients

work well

• Ringing
– Mid-freq
– Spatial correlation
– Priors on image gradients

are not very effective

Ringing Artifacts
• Yuan et al. SIGGRAPH 2007

– Residual deconvolution & de-ringing
• Yuan et al. SIGGRAPH 2008

– Multi-scale deconvolution framework based on residual
deconvolution

Blurred image Richardson-Lucy Yuan et al. SIGGRAPH 2008

Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

Blurred image Guide image Residual deconvolution
result with less ringing

artifacts
• Relatively accurate edges, but less details
• Obtained from a deconvolution result from a smaller

scale

Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

*-

Deconvolutio
n

+

Blurred image Guide image Residual blur

Guide image Detail layer Result

Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

• Residual deconvolution

Blurred image Deblurred image

Residual blur Detail layer =
deblurred residual

Guide image
+ detail layer

Severe ringing

Less ringing
Deconvo

lu
tio

n

Resid
ual

deconvo
lu

tio
n

Guide image

Progressive Inter-scale & Intra-scale
Deconvolution [Yuan et al. SIGGRAPH 2008]

• Progressive inter-scale & intra-scale deconvolution

Blurred image Richardson-Lucy TV regularization

Levin et al. SIGGRAPH 2007 Wavelet regularization Yuan et al. SIGGRAPH 2008

Non-blind Deconvolution
• Introduction
• Natural image statistics
• High-order natural image statistics
• Ringing artifacts
• Outliers

115

Outliers
• A main source of severe ringing artifacts

Blurred image with outliers Deblurring result
[Levin et al. SIGGRAPH 2007]

Outliers
• Saturated pixels caused by limited dynamic range of sensors

Incoming light to
sensors

C
am

er
a

re
sp

on
se

Dynamic
range

of a camera

Information
loss!

Blurred image [Levin et al. 2007]

Outliers
• Hot pixels, dead pixels, compression artifacts, etc…

Hot pixel
Blurred image with outliers [Levin et al. 2007]

Outlier Handling

Latent image
l

Blurred image
b

Gaussian noise
n

Motion blur
k ∗ l

Outlier Handling
• Most common blur model:

ܾ = ݇ כ ݈ + ݊
Equivalent to

Latent image
݈

Blurred image
ܾ

Gaussian noise
݊

Motion blur
݇ כ ݈

small amount of Gaussian noise

144

Outlier HandlingOutlier Handling
• An energy function derived from this model:

ܧ ݈ = ݇ כ ݈ െ ܾ ଶ + (݈)ߩ

• More robust norms to outliers

– …ଵ-norm, other robust statisticsܮ

ܧ ݈ = ݇ כ ݈ െ ܾ ଵ + (݈)ߩ
– Bar et al. IJCV 2006, Xu et al. ECCV 2010, …

 :ଶ-norm based data termܮ
known to be vulnerable to

outliers

Regularization term on
a latent image ݈

145

Outlier Handling
• 𝐿!-norm based data term

– Simple & efficient
– Effective on salt & pepper

noise
– Not effective on saturated

pixels

Outlier Handling
• ଵ-norm based data termܮ

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

ଶ-norm based data termܮ

ଵ-norm based data termܮ 146

Outlier Handling
• ଵ-norm based data termܮ

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

ଶ-norm based data termܮ

ଵ-norm based data termܮ 146

Outlier Handling
• ଵ-norm based data termܮ

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

ଶ-norm based data termܮ

ଵ-norm based data termܮ 146

Cho et al. ICCV 2011
• More accurate blur model reflecting outliers

Blurred
image
b

Noise
& outliers
c k ∗ l + n

Clipping

c(k ∗ l)

Motion blur

k ∗ l

Latent
image

l

Cho et al. ICCV 2011
• More accurate blur model reflecting outliers

Blurred
image
ܾ

Noise
& outliers

ܿ ݇ כ ݈ +

Clipping

ܿ(݇ כ ݈)
Motion blur

݇ כ ݈

Latent image

݈

(ݑ)ܿ = ቐ
ݑ if ݑ א DynamicRange

LowerBound if ݑ < LowerBound
UpperBound if ݑ > UpperBound

147

Cho et al. ICCV 2011
• Classification mask

Blurred image b Classification mask m

Cho et al. ICCV 2011
• Classification mask

Blurred image ܾ Classification mask ݉

݉ ݔ = ቊ
1 if (ݔ)ܾ is an inlier
0 if ܾ ݔ is an outlier

148

Cho et al. ICCV 2011
• MAP estimation

Given b & k, find the most probable l

Classification
mask m

Cho et al. ICCV 2011
• MAP estimation

Given ܾ & ݇, find the most probable ݈

= argmax

אெ

 ܾ ݉, ݇, ݈ ,݇|݉) (݈)(݈

݈ெ = argmax

(݇,ܾ|݈)

Classification
mask ݉

149

Cho et al. ICCV 2011
• EM based optimization

M-step updates l
(Deconvolution using inliers)

E-step computes E m
(Outlier detection)

Blurred image

L1-norm based deconv. [Harmeling et al. 2010] [Cho et al. ICCV 2011]

[Levin et al. 2007]Blurred image

Blurred image

L1-norm based deconv. [Harmeling et al. 2010] [Cho et al. ICCV 2011]

[Levin et al. 2007]Blurred image

Summary & Remaining Challenges
• Ill-posed problem - Noise & blur
• Noise

– High-freq & unstructured
– Natural image priors

• Ringing
– Mid-freq & structured
– More difficult to handle

• Outliers
– Cause severe ringing artifacts
– More accurate blur model

• Speed
– More complex model à Slower

• Many source codes are available on the authors’ website

Image Deblurring
• Introduction
• Blind deconvolution
• Non-blind deconvolution
• Deep learning based solutions

129

Deep learning based image deblurring
• Convolutional neural networks based solutions

– Sun et al., CVPR 2015
– Gong et al., CVPR 2017
– …

• Solutions depend on generative models
– Nah et al., CVPR 2017
– Kupyn et al., CVPR 2018
– …

130

Deep learning based image deblurring
• Convolutional neural networks based solutions

– Sun et al., CVPR 2015
– Gong et al., CVPR 2017
– …

• Solutions depend on generative models
– Nah et al., CVPR 2017
– Kupyn et al., CVPR 2018
– …

131

Sun et al., CVPR 2015
• non-uniform motion blur from a single blurry image.
• Key idea: Use CNNs to estimate blurring kernels

(a)$Input$image� (b)$Es1mated$mo1on$blur$fieldbyCNN� (c)$Result$a<er$deblurring�

Figure 1. An example illustrating our approach. Given an image with non-uniform motion blur (left). We first estimate the field of
non-uniform motion blur kernels by a convolutional neural network (middle), then deconvolve the blurred image (right).

a dense field of motion kernels. Our approach can well esti-
mate complex and strong motion blur, which can hardly be
well estimated by the previous approaches.

Recently, there has been some related work on learning-
based deblurring approaches. [21] proposes a discrimina-
tive deblurring approach using cascade of Gaussian CRF
models for uniform blur removal. [22] proposes a neural
network approach for learning a denoiser to suppress noises
during deconvolution. [28] designs an image deconvolu-
tion neural network for non-blind deconvolution. These
approaches above focus on designing better learning-based
model for uniform blur removal. Our approach works on
a more challenging task of non-uniform motion blur esti-
mation and removal. Our CNN-based approach provides an
effective method for solving this problem.

2. Learning a CNN for Motion Blur Estimation
We propose to estimate spatially-varying motion blur

kernels using a convolutional neural network. The basic
idea is that we first predict the probabilities of different mo-
tion kernels for each image patch. Then we estimate dense
motion blur kernels for the whole image using a Markov
random field model enforcing motion smoothness.

θ

m = (l,θ)
l

(a)$Mo'on$kernel$represented$
by$mo'on$vector�

(c)$Candidate$mo'on$kernel$setforlearning$CNN�

$
�
$
�

(b)$Discre'zing$mo'on$vector�

θ

r

Figure 2. Representation of motion blur kernel by motion vector
and generation of motion kernel candidates.

Before giving the details of our approach, let us first
introduce our general formulation for non-uniform motion
blur. We consider non-uniform image blur caused by object
or camera motion. Given a blurry image I , we represent
the local motion blur kernel at an image pixel p 2 ⌦ (⌦ is
the image region) by a motion vector mp = (lp, op), which
characterizes the length and orientation of the motion field
in p when the camera shutter is open. As shown in Fig. 2(a),
each motion vector determines a motion kernel with non-
zero values only along the motion trace. The blurry image
can then be represented by I = k(M) ⇤ I0, i.e., the con-
volution of a latent sharp image I0 with the non-uniform
motion blur kernels k(M) determined by the motion field
M = {mp}p2⌦.

In the following paragraph, we also represent the motion
vector mp as (up, vp) in Cartesian coordinate system based
on the transform:

up = lp cos(op), vp = lp sin(op). (1)

The estimation of spatially-varying motion blur kernels
is equivalent to estimating the motion field1 from a single
blurry image. In our approach, we do not make any global
parametric assumptions (e.g., homography) on the motion,
therefore the motion kernel estimation is challenging, and
we only use local image regions for predicting these kernels.

2.1. Patch-level Motion Kernel Estimation by CNN
We now present our approach to predicting motion blur

kernels (or equivalently, the motion vector) at the patch
level. We decompose the image into overlapping patches
of size 30 ⇥ 30. Given a blurry patch p centered at pixel
p, we aim to predict the probabilistic distribution of motion
kernels:

P (m = (l, o)| p) (2)

for all l 2 S
l and o 2 S

o, Sl and S
o are the sets of motion

lengths and orientations respectively. In the followings, we
1Note that motions m = (l, o) and m0 = (l, o + 180�) generate the

same motion blur kernel. We therefore only need to estimate the motions
with o 2 [0, 180�).

2

Sun et al., CVPR 2015
• A CNN model for motion

kernels prediction.
– composed of 6 layers of

convolutional layers and
fully connected layers.

133

!!!!!!!30!x!30!x!3!!
Blurry!color!patch!�

Max1!
pooling�

Conv!
!!!!+!
ReLU�

Max1!
pooling�

Fully!
conn.!
!!!!+!
ReLU�

So?1!
max�

96:!7!x!7!filters!
!!!!!!!!!!C1!�

2!x!2,!stride!2!
!!!!!!!!!M2�

256:!5!x!5!filters!
!!!!!!!!!!!C3!�

2!x!2,!stride!2!
!!!!!!!!M4�

1024!neurons!
!!!!!!!!F5�

73!labels!
!!!!!S6�

…
…
�

Conv!
!!!!+!
ReLU�

Learned!filters!in!C1�

Figure 3. Structure of CNN for motion kernels prediction. It is composed of 6 layers of convolutional layers and fully connected layers. It
outputs the probability of each candidate motion kernel using soft-max layer. The right sub-figure shows the learned filters in C1.

call this distribution as motion distribution.
Taking the problem of motion kernel estimation as a

learning problem, we utilize convolutional neural network
to learn the effective features for predicting motion distri-
butions in Eqn. (2). We generate a set of candidate motion
kernels by discretizing the motion space, i.e., the ranges of
length and orientation of the motion vectors. In our imple-
mentation, we discretize the range of motion length into 13
samples from l = 1 to 25 with interval of two, and dis-
cretize the range of motion orientation [0, 180�) into 6 sam-
ples from 0� to 150� with interval of 30�. Note that when
the motion length l = 1, all motion vectors correspond to
the same blur kernel (i.e., identity kernel) on image grid re-
gardless of the motion orientation. We therefore generate
73 candidate motion vectors (shown in Fig. 2(c)) in differ-
ent combinations of motion lengths and orientations. We
denote the above set of motion kernel candidates as S and
the sets of motion lengths and motion orientations as Sl and
S
o respectively. Obviously, these candidate motion vectors

are far from dense in the continuous motion space. In Sec-
tion 2.2 we will show how to extend the motion kernels of
CNN to predict motion kernels outside the set S.

Given the candidate motion kernel set S, we next con-
struct and learn CNN for predicting the motion distribution
over S given a blurry patch. The convolutional neural net-
work is constructed as follows. As shown in Fig. 3, the net-
work has six layers: C1�M2�C3�M4�F5�S6. C1
is a convolutional layer using filters (7⇥ 7⇥ 3) followed by
ReLU (i.e., f(x) = max(x, 0) [15]) non-linear transform;
M2 is a max-pooling layer over 2 ⇥ 2 cells with stride 2;
C3 is a convolutional layer using 256 filters (5 ⇥ 5 ⇥ 96);
M4 is a max-pooling layer same as M2; F5 is a fully con-
nected layer with 1024 neurons; S6 is a soft-max layer with
73 labels, and each label corresponds to a candidate motion
blur kernel in S as shown in Fig. 2(c).

To train the CNN model, we generate a large set of train-
ing data T = { k,mk}Kk=1, which are composed of blurry
patch / motion kernel pairs. We synthetically generate
blurry images by convolving clean natural images with the
73 possible motion kernels, then randomly crop 30⇥30⇥3
color patches from the blurry images as the training patches
{ k}Kk=1, and take the labels of corresponding ground-truth
motion kernels as the training labels {mk}Kk=1. We gener-

ate training data using 1000 images randomly sampled from
PASCAL VOC 2010 database and finally construct a train-
ing set of around 1.4 million pairs of blurry patches and
their ground-truth motion kernels. Using Caffe [5]2, we
train the CNN model in one million iterations by stochas-
tic gradient descent algorithm with batches of 64 patches in
each iteration.

Because the final layer of the CNN is a soft-max layer,
we can predict the probabilities of motion kernels given an
observed blurry patch as

P (m = (l, o)|) = exp((wS6
c)T�F5())P

n exp((w
S6
n)T�F5())

, (3)

where w
S6
c is the vector of weights on neuron connections

from F5 layer to the neuron in S6 layer representing the
motion kernel (l, o), c is the index of (l, o) in S. �F5() is
the output features of F5 layer of a blurry patch , which
is a 1024-dimensional feature vector.

In our implementation, we also tried to learn more com-
plex CNN structures (e.g., with one more convolutional
layer or more filters in convolutional layers), but the learn-
ing speed is significantly slower while the final prediction
results are not significantly improved. Figure 3 (right)
shows examples of automatically learned filters by our CNN
model for motion kernel prediction. These filters reflect di-
verse local structures in sharp or blurry patch instances.

Ψ p (I) Ψ p (Rθ I)

Ψ p (I)

Ψ p (Rθ I)

m = (l,o−θ)

m = (l,o)I Rθ I

θ = −24o

Figure 4. Motion kernel estimation on a rotated patch. I is a blurry
image, R✓I is the rotated image with ✓ (✓ = �24o in this case).

2.2. Extending the Motion Kernel Set of CNN
Our learned CNN model can predict the probabilities

of 73 candidate motion kernels in S. Obviously, they are
not sufficiently dense in the motion space. We next extend
the motion kernel set predicted by the CNN to enable the
prediction for motion kernels outside S.

2http://caffe.berkeleyvision.org

3

(a)$Input$image� (b)$Es1mated$mo1on$blur$fieldbyCNN� (c)$Result$a<er$deblurring�

Figure 1. An example illustrating our approach. Given an image with non-uniform motion blur (left). We first estimate the field of
non-uniform motion blur kernels by a convolutional neural network (middle), then deconvolve the blurred image (right).

a dense field of motion kernels. Our approach can well esti-
mate complex and strong motion blur, which can hardly be
well estimated by the previous approaches.

Recently, there has been some related work on learning-
based deblurring approaches. [21] proposes a discrimina-
tive deblurring approach using cascade of Gaussian CRF
models for uniform blur removal. [22] proposes a neural
network approach for learning a denoiser to suppress noises
during deconvolution. [28] designs an image deconvolu-
tion neural network for non-blind deconvolution. These
approaches above focus on designing better learning-based
model for uniform blur removal. Our approach works on
a more challenging task of non-uniform motion blur esti-
mation and removal. Our CNN-based approach provides an
effective method for solving this problem.

2. Learning a CNN for Motion Blur Estimation
We propose to estimate spatially-varying motion blur

kernels using a convolutional neural network. The basic
idea is that we first predict the probabilities of different mo-
tion kernels for each image patch. Then we estimate dense
motion blur kernels for the whole image using a Markov
random field model enforcing motion smoothness.

θ

m = (l,θ)
l

(a)$Mo'on$kernel$represented$
by$mo'on$vector�

(c)$Candidate$mo'on$kernel$setforlearning$CNN�

$
�
$
�

(b)$Discre'zing$mo'on$vector�

θ

r

Figure 2. Representation of motion blur kernel by motion vector
and generation of motion kernel candidates.

Before giving the details of our approach, let us first
introduce our general formulation for non-uniform motion
blur. We consider non-uniform image blur caused by object
or camera motion. Given a blurry image I , we represent
the local motion blur kernel at an image pixel p 2 ⌦ (⌦ is
the image region) by a motion vector mp = (lp, op), which
characterizes the length and orientation of the motion field
in p when the camera shutter is open. As shown in Fig. 2(a),
each motion vector determines a motion kernel with non-
zero values only along the motion trace. The blurry image
can then be represented by I = k(M) ⇤ I0, i.e., the con-
volution of a latent sharp image I0 with the non-uniform
motion blur kernels k(M) determined by the motion field
M = {mp}p2⌦.

In the following paragraph, we also represent the motion
vector mp as (up, vp) in Cartesian coordinate system based
on the transform:

up = lp cos(op), vp = lp sin(op). (1)

The estimation of spatially-varying motion blur kernels
is equivalent to estimating the motion field1 from a single
blurry image. In our approach, we do not make any global
parametric assumptions (e.g., homography) on the motion,
therefore the motion kernel estimation is challenging, and
we only use local image regions for predicting these kernels.

2.1. Patch-level Motion Kernel Estimation by CNN
We now present our approach to predicting motion blur

kernels (or equivalently, the motion vector) at the patch
level. We decompose the image into overlapping patches
of size 30 ⇥ 30. Given a blurry patch p centered at pixel
p, we aim to predict the probabilistic distribution of motion
kernels:

P (m = (l, o)| p) (2)

for all l 2 S
l and o 2 S

o, Sl and S
o are the sets of motion

lengths and orientations respectively. In the followings, we
1Note that motions m = (l, o) and m0 = (l, o + 180�) generate the

same motion blur kernel. We therefore only need to estimate the motions
with o 2 [0, 180�).

2

Sun et al., CVPR 2015

134

Figure 9. Examples on motion kernel estimation. The first three columns are real blurry images, the last column shows a synthetic picture
with camera rotation (MSE motion = 9.9).

Figure 10. Examples of non-uniform motion deblurring. The first and second columns show the blurry images and our results. The third
and fourth columns show the results of methods in [18, 26, 27, 29] using their source codes. These examples are challenging because the
motion blur kernels are strongly non-uniform and the scenes are complex. Our estimated motion blur fields are shown in Figs. 9, 12 .

over, the motion kernel set extension and motion smooth-
ness constraint significantly improve the accuracy of motion
kernel estimation.

Figure 10 compares deblurring results of our approach,
non-uniform deblurring approaches [26, 29] and uniform

deblurring approaches [18, 27], for which the source codes
are available. Except for ours, none of these methods han-
dles the non-uniform blur in a satisfying manner for these
examples. Our approach estimates more accurate motion
blur kernels, which enables us to produce better final de-

7

Blurred images

Estimated kernels

Sun et al., CVPR 2015

135

Figure 9. Examples on motion kernel estimation. The first three columns are real blurry images, the last column shows a synthetic picture
with camera rotation (MSE motion = 9.9).

Figure 10. Examples of non-uniform motion deblurring. The first and second columns show the blurry images and our results. The third
and fourth columns show the results of methods in [18, 26, 27, 29] using their source codes. These examples are challenging because the
motion blur kernels are strongly non-uniform and the scenes are complex. Our estimated motion blur fields are shown in Figs. 9, 12 .

over, the motion kernel set extension and motion smooth-
ness constraint significantly improve the accuracy of motion
kernel estimation.

Figure 10 compares deblurring results of our approach,
non-uniform deblurring approaches [26, 29] and uniform

deblurring approaches [18, 27], for which the source codes
are available. Except for ours, none of these methods han-
dles the non-uniform blur in a satisfying manner for these
examples. Our approach estimates more accurate motion
blur kernels, which enables us to produce better final de-

7

Sun et al., CVPR 2015

136

Figure 9. Examples on motion kernel estimation. The first three columns are real blurry images, the last column shows a synthetic picture
with camera rotation (MSE motion = 9.9).

Figure 10. Examples of non-uniform motion deblurring. The first and second columns show the blurry images and our results. The third
and fourth columns show the results of methods in [18, 26, 27, 29] using their source codes. These examples are challenging because the
motion blur kernels are strongly non-uniform and the scenes are complex. Our estimated motion blur fields are shown in Figs. 9, 12 .

over, the motion kernel set extension and motion smooth-
ness constraint significantly improve the accuracy of motion
kernel estimation.

Figure 10 compares deblurring results of our approach,
non-uniform deblurring approaches [26, 29] and uniform

deblurring approaches [18, 27], for which the source codes
are available. Except for ours, none of these methods han-
dles the non-uniform blur in a satisfying manner for these
examples. Our approach estimates more accurate motion
blur kernels, which enables us to produce better final de-

7

Gong et al., CVPR 2017
• non-uniform motion blur from a single blurry image.
• Key idea: directly estimate the motion flow from the blurred

image through a fully-convolutional deep neural network
(FCN)

...

Sharp images
Motion

flow
simulation ...

Blurry-image
-motion-flow pairs

Training data

FCN

Training data generation Network training(a) Learning

Blurry image

FCN
Motion flow

Non-blind
deconvlution

Recovered
sharp image

Motion flow estimation Sharp image recovering(b) Deblurring

Figure 2. Overview of our scheme for heterogeneous motion blur removal. (a) We train an FCN using examples based on simulated motion
flow maps. (b) Given a blurry image, we perform end-to-end motion flow estimation using the trained FCN, and then recover the sharp
image via non-blind deconvolution.

3. Estimating Motion Flow for Blur Removal
3.1. A Heterogeneous Motion Blur Model

Letting ⇤ denote a general convolution operator, a P ⇥Q
blurred image Y can be modeled as

Y = K ⇤X+N, (1)

where X denotes the latent sharp image, N refers to addi-
tive noise, and K denotes a heterogeneous motion blur ker-
nel map with different blur kernels for each pixel in X. Let
K(i,j) represent the kernel from K that operates on a region
of the image centered at pixel (i, j). Thus, at each pixel of
Y, we have

Y(i, j) =
X

i0,j0

K(i,j)(i
0, j0)X(i+ i0, j + j0). (2)

If we define an operator vec(·) which vectorises a matrix
and let y = vec(Y), x = vec(X) and n = vec(N) then (1)
can also be represented as

y = H(K)x+ n, (3)

where H(K) 2 RPQ⇥PQ1and each row corresponds to a
blur kernel located at each pixel (i.e. K(i,j)).

3.2. Blur Removal via Motion Flow Estimation
Given a blurry image Y, our goal is to estimate the blur

kernel K and recover a blur-free latent image X through
non-blind deconvolution that can be performed by solving a
convex problem (Figure 2 (b)). As mentioned above, kernel
estimation is the most difficult and crucial part.

Based on the model in (1) and (2), heterogeneous mo-
tion blur can be modeled by a set of blur kernels, one as-
sociated with each pixel and its motion. By using a linear
motion model to indicate each pixel’s motion during imag-
ing process [18], and letting p = (i, j) denote a pixel lo-
cation, the motion at pixel p, can be represented by a 2-
dimensional motion vector (up, vp), where up and vp rep-
resent the movement in the horizontal and vertical direc-
tions, respectively (See Figure 3 (a)). By a slight abuse of

1For simplicity, we assume X and Y have the same size.

(a) Motion blur and motion flow

u

v

0

D+
u

Dv

Du

(b) Domain of motion

Figure 3. Motion blur and motion vector. (a) An example with blur
cause by clock-wise rotation. Three examples of the blur pattern,
linear blur kernel and motion vector are shown. The blur kernels
on p1 and p3 caused by motions with opposite directions and have
the same appearance. (b) Illustrations of the feasible domain of
motion flow.

notation we express this as Mp = (up, vp), which charac-
terizes the movement at pixel p over the exposure time. If
we have the feasible domain up 2 Du and vp 2 Dv , then
Mp 2 Du ⇥ Dv , but will be introduced in detail later. As
shown in Figure 3, the blur kernel on each pixel appears as
a line trace with nonzero components only along the mo-
tion trace. As a result, the motion blur Kp in (2) can be
expressed as [2]:

Kp(i
0, j0) =

(
0, if k(i0, j0)k2 � kMpk2

2 ,
1

kMpk2
�(vpi0�upj0), otherwise, (4)

where �(·) denotes the Dirac delta function. We thus can
achieve heterogeneous motion blur estimation by estimat-
ing the motion vectors on all pixels, the result of which is
M, which is referred as motion flow. For convenience of
expression, we let M = (U,V), where U and V denote
the motion maps in the horizontal and vertical directions,
respectively. For any pixel p = (i, j), we define Mp =
(U(i, j),V(i, j)) with U(i, j) = up and V(i, j) = vp.

As shown in Figure 2 (b), given a blurred image and the
estimated motion flow, we can recover the sharp image by
solving an non-blind deconvolution problem

min
x

ky �H(K)xk22 + ⌦(x)

with regularizer ⌦(x) on the unknown sharp image. In prac-
tice, we use a Gaussian mixture model based regularizer as
⌦(x) [48, 33].

Gong et al., CVPR 2017
• A FCN model to produce

a pixel-wise dense motion
flow map

138

96
256

96
256

512
512 512

512 512

7x7
conv1

2x2
pool1

5x5
conv2

2x2
pool2

3x3
conv3

2x2
pool3

3x3
conv4

2x2
pool4

3x3
conv5

1x1 conv7

1x1 conv6

2x2
uconv1

2x2
uconv2

4x4
uconv3

+ +

D
D D

Figure 4. Our network structure. A blurred image goes through layers and produces a pixel-wise dense motion flow map. conv means a
convolutional layer and uconv means a fractionally-strided convolutional (deconvolutional) layer, where n⇥n for each uconv layer denotes
that the up-sampling size is n. Skip connections on top of pool2 and pool3 are used to combine features with different resolutions.

3.3. Learning for Motion Flow Estimation

The key contribution of our work is to show how to ob-
tain the motion flow field that results in the pixel-wise mo-
tion blur. To do so we train a FCN to directly estimate the
motion flow field from the blurry image.

Let {(Yt,Mt)}Tt=1 be a set of blurred-image and
motion-flow-map pairs, which we take as our training set.
Our task is to learn an end-to-end mapping function M =
f(Y) from any observed blurry image Y to the underlying
motion flow M. In practice, the challenge is that obtaining
the training ground-truth dense motion flow for sufficiently
many and varied real blurry images is infeasible. Human la-
beling is impossible, and training from automated methods
for image deblurring would defeat the purpose. To over-
come this problem, we generate the training set by simu-
lating motion flows maps. (See section 4.2). Specifically,
we collect a set of sharp images {Xn}, simulate T motion
flows {Mt} in total for all images in {Xn}, and then gener-
ate T blurred images {Yt} based on the models in (1) and
(4) (See Figure 2 (a)).
Feasible domain of motion flow To simplify the train-
ing process, we train the FCN over a discrete output do-
main. Interestingly, classification on discrete output space
has achieved some impressive results for some similar ap-
plications, e.g. optical flow estimation [36] and surface nor-
mal prediction [37]. In our work, we adopt an integer do-
main for both U and V, and treat the mapping M = f(Y)
as a multi-class classification problem. Specifically, we uni-
formly discretize the motion values as integers with a 1
(pixel) interval, which provides a high-precision approxi-
mation to the latent continuous space. As a result, by as-
suming the maximum movements in the horizontal and ver-
tical directions to be umax and vmax, respectively, we have
Du = {u|u 2 Z, |u| umax} and Dv = {v|v 2 Z, |v|
vmax}, where Z denotes the integer domain.

As shown in Figure 3 (a), any linear blur kernel is sym-
metric. Any two motion vectors with same length and op-
posite directions, e.g. (up, vp) and (�up,�vp), generate
the same blur pattern, which may confuse the learning pro-
cess. We thus further restrict the motion in the horizon-

tal direction to be nonnegative as shown in Figure 3 (b),
i.e. up 2 D+

u = {u|u 2 Z+
0 , |u| umax}, by letting

(up, vp) = �(up, vp) where

�(up, vp) =

⇢
(�up,�vp), if up < 0,
(up, vp), otherwise. (5)

4. Dense Motion Flow Estimation

4.1. Network Design

The goal of this FCN network is to achieve the end-to-
end mapping from a blurry image to its corresponding mo-
tion flow map. Given any RGB image with the arbitrary
size P ⇥Q, the FCN is used to estimate a motion flow map
M = (U,V) with the same size to the input image, where
U(i, j) 2 D+

u and V(i, j) 2 Dv , 8i, j. For convenience,
we let D = |D+

u | + |Dv| denote the total number of labels
for both U and V. Our network structure is similar to the
FCN in [24]. As shown in Figure 4, we use 7 convolutional
(conv) layers and 4 max-pooling (pool) layers as well as
3 uconv layers to up-sample the prediction maps. Follow-
ing [38], uconv denotes the fractionally-strided convolution,
a.k.a. deconvolution. We use a small stride of 1 pixel for all
convolutional layers. The uconv layers are initialized with
bilinear interpolation and used to up-sample the activations.
We also add skip connections which combine the informa-
tion from different layers as shown in Figure 4.

The feature map of the last uconv layer (conv7 + uconv2)
is a P ⇥ Q ⇥ D tensor with the top |D+

u | slices of fea-
ture maps (P ⇥ Q ⇥ |D+

u |) corresponding to the estima-
tion of U, and the remaining |Dv| slices of feature maps
(P ⇥Q⇥ |Dv|) corresponding to the estimation of V. Two
separate soft-max layers are applied to those two parts re-
spectively to obtain the posterior probability estimation of
both channels. Let Fu,i,j(Y) represent the probability that
the pixel at (i, j) having a movement u along the horizontal
direction, and Fv,i,j(Y) represent the probability that the
pixel at (i, j) having a movement v along the vertical di-
rection, we then use the sum of the cross entropy loss from

Gong et al., CVPR 2017

139

(a) Blurry image (b) Blurry image (c) Blurry image (d) Blurry image

(e) Motion flow of [33] (f) Motion flow of [33] (g) Motion flow of [33] (h) Motion flow of [33]

(i) Our Motion flow (j) Our Motion flow (k) Our Motion flow (l) Our Motion flow

Figure 7. Examples of motion flow estimation on real-world blurry images. From top to bottom: Blurry image Y, motion flow estimated
by the patchCNN [33], and by our motion flow M. Our results are more smooth and more accurate on moving objects.

5.3. Evaluation of Generalization Ability
To evaluate the generalization ability of our approach on

different images, we use the datasets based on the Microsoft
COCO [23] (i.e. MC-S and MC-M) to evaluate our model
trained on the dataset based on BSD500 [1]. Table 3 shows
the evaluation and comparison with the “patchCNN” [33].
The results demonstrate that our method stably produces
high accuracies on both datasets. This experiment suggests
that the generalization ability of our approach is strong.

Table 3. Evaluation of the generalization ability on datasets MC-S
and MC-M. The best results are bold-faced.

Dataset Metric GT K patchCNN noMRF [33] Ours
MSE – 52.1234 60.9397 7.8038

MC-S PSNR 22.620 20.172 20.217 21.954
SSIM 0.6953 0.5764 0.5772 0.6641
MSE – 22.4383 31.2754 7.3405

MC-M PSNR 23.827 22.186 22.028 23.227
SSIM 0.7620 0.6924 0.6839 0.7402

5.4. Running-time Evaluation
We conduct a running-time comparison with the relevant

motion flow estimation methods [33, 18] by estimating mo-
tion flow for 60 blurred images with sizes around 640⇥480
on a PC with an NVIDIA GeForce 980 Ti graphics card
and Intel Core i7 CPU. For the method in [18], we quote
its running-time from the paper. Note that both the method
of Sun et al. and ours use the GPU to accelerate the com-
putation. As shown in Table 4, the method in [18] takes
very long time due to its iterative optimization scheme. Our
method takes less than 10 seconds, which is more efficient

than others. The patchCNN method [33] takes more time
because many post-processing steps are required.

Table 4. Running-time comparison.
Method [18] patchCNN [33] noMRF [33] Ours
Time (s) 1500 45.2 18.5 8.4

5.5. Evaluation on Real-world Images
As the ground truth images of real-world blurry im-

ages are unavailable, we only present the visual evaluation
and comparison against several state-of-the-art methods for
spatially-varying blur removing.
Results of motion flow estimation We first compare the
proposed method with the method of Sun et al. [33] on mo-
tion flow estimation. Four examples are shown in Figure 7.
Since the method of Sun et al. performs on local patches,
their motion flow components are often misestimated, es-
pecially when the blur pattern in a small local area is sub-
tle or confusing, such as the areas with low illumination or
textures. Thanks to the universal end-to-end mapping, our
method generates natural results with smooth flow and less
clutters. Although we train our model with only smoothly
varying motion flow, compared with [33], our method can
obtain better results on images with moving object.
Comparison with the method in [18] Kim et al. [18] use
the similar heterogeneous motion blur model as ours and
also estimate motion flow for deblurring. As their code
is unavailable, we directly perform a comparison on their
real-world data. Figure 11 shows the results on an example.
Compared with the results of Kim and Lee [18], our motion
flow more accurately reflects the complex blur pattern, and

[33] Sun et al., CVPR 2015

Gong et al., CVPR 2017

140

(a) Blurry image (b) Whyte et al. [40] (c) Sun et al. [33] (d) Ours

Figure 8. Deblurring results on an image with camera motion blur.

(a) Blurry image (b) Whyte et al. [40] (c) Kim and Lee [18] (d) Sun et al. [33] (e) Ours

Figure 9. Deblurring results on an non-uniform blur image with strong blur on background.

(a) Blurry image (b) Pan et al. [26] (c) Sun et al. [33] (d) Ours

Figure 10. Deblurring results on an image with large scale motion blur caused by moving object.

(a) Blurry image (b) [18] (c) Ours

(d) [33] (e) [18] (f) Ours
Figure 11. Comparison with the method of Kim and Lee [18].

our recovered image contains more details and less artifacts.
Images with camera motion blur Figure 8 shows an ex-
ample containing blur mainly caused by the camera motion.
The result generated by the non-uniform camera shake de-
blurring method [40] suffers from heavy blur because its
model ignores the blur caused by large forward motion.
Compared with the result of Sun et al. [33], our result is
sharper and contains more details and less artifacts.
Images with object motion blur We evaluate our method
on the images containing object motion blur. In Figure 9,

the result of Whyte et al. [40] contains heavy ringing arti-
facts due to the object motion. Our method can handle the
strong blur in the background and generate a more natural
image. We further compare with the segmentation-based
deblurring method of Pan et al. [26] on an image with large
scale blur caused by moving object on static background.
As shown in Figure 10, the result of Sun et al. [33] is over-
smooth due to the underestimate of motion flow. In the
result of Pan et al. [26], some details are lost due to the
segmentation error. Our proposed method can recover the
details on blurred moving foreground and keep the sharp
background as original.

6. Conclusion

In this paper, we proposed a flexible and efficient deep
learning based method for estimating and removing the het-
erogeneous motion blur. By representing the heterogeneous
motion blur as pixel-wise linear motion blur, the proposed
method uses a FCN to estimate the a dense motion flow
map for blur removal. Moreover, we automatically generate
training data with simulated motion flow maps for training
the FCN. Experimental results on both synthetic and real-
world data show the excellence of the proposed method.

• Deblurring results on an image with camera motion blur.

Gong et al., CVPR 2017

141

(a) Blurry image (b) Whyte et al. [40] (c) Sun et al. [33] (d) Ours

Figure 8. Deblurring results on an image with camera motion blur.

(a) Blurry image (b) Whyte et al. [40] (c) Kim and Lee [18] (d) Sun et al. [33] (e) Ours

Figure 9. Deblurring results on an non-uniform blur image with strong blur on background.

(a) Blurry image (b) Pan et al. [26] (c) Sun et al. [33] (d) Ours

Figure 10. Deblurring results on an image with large scale motion blur caused by moving object.

(a) Blurry image (b) [18] (c) Ours

(d) [33] (e) [18] (f) Ours
Figure 11. Comparison with the method of Kim and Lee [18].

our recovered image contains more details and less artifacts.
Images with camera motion blur Figure 8 shows an ex-
ample containing blur mainly caused by the camera motion.
The result generated by the non-uniform camera shake de-
blurring method [40] suffers from heavy blur because its
model ignores the blur caused by large forward motion.
Compared with the result of Sun et al. [33], our result is
sharper and contains more details and less artifacts.
Images with object motion blur We evaluate our method
on the images containing object motion blur. In Figure 9,

the result of Whyte et al. [40] contains heavy ringing arti-
facts due to the object motion. Our method can handle the
strong blur in the background and generate a more natural
image. We further compare with the segmentation-based
deblurring method of Pan et al. [26] on an image with large
scale blur caused by moving object on static background.
As shown in Figure 10, the result of Sun et al. [33] is over-
smooth due to the underestimate of motion flow. In the
result of Pan et al. [26], some details are lost due to the
segmentation error. Our proposed method can recover the
details on blurred moving foreground and keep the sharp
background as original.

6. Conclusion

In this paper, we proposed a flexible and efficient deep
learning based method for estimating and removing the het-
erogeneous motion blur. By representing the heterogeneous
motion blur as pixel-wise linear motion blur, the proposed
method uses a FCN to estimate the a dense motion flow
map for blur removal. Moreover, we automatically generate
training data with simulated motion flow maps for training
the FCN. Experimental results on both synthetic and real-
world data show the excellence of the proposed method.

• Deblurring results on an non-uniform blur image with strong
blur on background.

Gong et al., CVPR 2017
• Deblurring results on an image with large scale motion blur

caused by moving object.

142

(a) Blurry image (b) Whyte et al. [40] (c) Sun et al. [33] (d) Ours

Figure 8. Deblurring results on an image with camera motion blur.

(a) Blurry image (b) Whyte et al. [40] (c) Kim and Lee [18] (d) Sun et al. [33] (e) Ours

Figure 9. Deblurring results on an non-uniform blur image with strong blur on background.

(a) Blurry image (b) Pan et al. [26] (c) Sun et al. [33] (d) Ours

Figure 10. Deblurring results on an image with large scale motion blur caused by moving object.

(a) Blurry image (b) [18] (c) Ours

(d) [33] (e) [18] (f) Ours
Figure 11. Comparison with the method of Kim and Lee [18].

our recovered image contains more details and less artifacts.
Images with camera motion blur Figure 8 shows an ex-
ample containing blur mainly caused by the camera motion.
The result generated by the non-uniform camera shake de-
blurring method [40] suffers from heavy blur because its
model ignores the blur caused by large forward motion.
Compared with the result of Sun et al. [33], our result is
sharper and contains more details and less artifacts.
Images with object motion blur We evaluate our method
on the images containing object motion blur. In Figure 9,

the result of Whyte et al. [40] contains heavy ringing arti-
facts due to the object motion. Our method can handle the
strong blur in the background and generate a more natural
image. We further compare with the segmentation-based
deblurring method of Pan et al. [26] on an image with large
scale blur caused by moving object on static background.
As shown in Figure 10, the result of Sun et al. [33] is over-
smooth due to the underestimate of motion flow. In the
result of Pan et al. [26], some details are lost due to the
segmentation error. Our proposed method can recover the
details on blurred moving foreground and keep the sharp
background as original.

6. Conclusion

In this paper, we proposed a flexible and efficient deep
learning based method for estimating and removing the het-
erogeneous motion blur. By representing the heterogeneous
motion blur as pixel-wise linear motion blur, the proposed
method uses a FCN to estimate the a dense motion flow
map for blur removal. Moreover, we automatically generate
training data with simulated motion flow maps for training
the FCN. Experimental results on both synthetic and real-
world data show the excellence of the proposed method.

Deep learning based image deblurring
• Convolutional neural networks based solutions

– Sun et al., CVPR 2015
– Gong et al., CVPR 2017
– …

• Solutions depend on generative models
– Nah et al., CVPR 2017
– Kupyn et al., CVPR 2018
– …

143

Nah et al., CVPR 2017

144

• non-uniform motion blur from a single blurry image.
• Key idea: Use multiscale CNNs to restore sharp images

in an end-to-end manner

• can be interpreted as a kind of image to image translation
• An additional adversarial loss

noise is also randomly sampled from Gaussian distribution,
N(0, (2/255)2). Then, value outside [0, 1] is clipped. Fi-
nally, 0.5 is subtracted to set input and output value range
zero-centered, having range [-0.5, 0.5].

In optimizing the network parameters, we trained the
model in a combination of two losses, multi-scale content
loss and adversarial loss.

Multi-scale content loss

Basically, the coarse-to-fine approach desires that every in-
termediate output becomes the sharp image of the corre-
sponding scale. Thus, we train our network so that inter-
mediate outputs should form a Gaussian pyramid of sharp
images. MSE criterion is applied to every level of pyramids.
Hence, the loss function is defined as follows:

Lcont =
1

2K

K
∑

k=1

1

ckwkhk
‖Lk − Sk‖

2, (4)

where Lk, Sk denote the model output and ground truth im-
age at scale level k, respectively. The loss at each scale is
normalized by the number of channels ck, width wk, and
the height hk (i.e. the total number of elements).

Adversarial loss

Recently, adversarial networks are reported to generate
sharp realistic images [9, 4, 24]. Following the architec-
ture introduced in [24], we build discriminator as in Ta-
ble 1. Discriminator takes the output of the finest scale or
the ground truth sharp image as input and classifies if it is
deblurred image or sharp image.

The adversarial loss is defined as follows.

Ladv = E
S∼psharp(S)

[logD(S)]+

E
B∼pblurry(B)

[log(1−D(G(B)))], (5)

where G and D denote the generator, that is our multi-
scale deblurring network in Fig. 4 and the discriminator
(classifier), respectively. When training, G tries to minimize
the adversarial loss while D tries to maximize it.

Finally, by combining the multi-scale content loss and
adversarial loss, the generator network and discriminator
network is jointly trained. Thus, our final loss term is

Ltotal = Lcont + λ× Ladv, (6)

where the weight constant λ = 1× 10−4.

We used ADAM [18] optimizer with a mini-batch size
2 for training. The learning rate is adaptively tuned begin-
ning from 5 × 10−5. After 3 × 105 iterations, the learning

Layer Weight dimension Stride

1 conv 32× 3× 5× 5 2

2 conv 64× 32× 5× 5 1

3 conv 64× 64× 5× 5 2

4 conv 128× 64× 5× 5 1

5 conv 128× 128× 5× 5 4

6 conv 256× 128× 5× 5 1

7 conv 256× 256× 5× 5 4

8 conv 512× 256× 5× 5 1

9 conv 512× 512× 4× 4 4

10 fc 512× 1× 1× 1 -

11 sigmoid - -

Table 1. Model parameters of the discriminator. Every convolution

layers are activated with LeakyReLU layer.

rate is decreased to 1/10 of the previous learning rate. Total
training takes 9× 105 iterations to converge.

4. Experimental Results

We implemented our model with torch7 library. All the
following experiments were performed in a desktop with i7-
6700K CPU and NVIDIA GTX Titan X (Maxwell) GPU.

4.1. GOPRO Dataset

We evaluate the performance of our model in the pro-
posed GOPRO dataset. Our test dataset consists of 1111
pairs, which is approximately 1/3 of the total dataset. We
compare the results with those of the state-of-the-art meth-
ods [15, 26] in both qualitative and quantitative ways. Our
results show significant improvement in terms of image
quality. Some deblurring results are shown in Fig. 5. We no-
tice from the results of Sun et al. [26], deblurring is not suc-
cessful on the regions where blurs are nonlinearly shaped or
located at the boundary of motion. Kim and Lee [15]’s re-
sults also fail in cases where strong edges are not found. In
contrast, our results are free from those kernel-estimation
related problems. Table 2, shows the quantitative evalua-
tion results of the competing methods and ours with differ-
ent scale level k in terms of PSNR, SSIM over the test data.
Also, the runtime is compared. We observe that our system
with K = 2 produces the best results in terms of both PSNR
and SSIM, while K = 3 is the fastest.

4.2. Köhler Dataset

Köhler dataset [19] consists of 4 latent images and 12
differently blurred images for each of them. The blurs are
caused by replaying recorded 6D camera motion, assum-
ing linear CRF. We report the quantitative results on this

noise is also randomly sampled from Gaussian distribution,
N(0, (2/255)2). Then, value outside [0, 1] is clipped. Fi-
nally, 0.5 is subtracted to set input and output value range
zero-centered, having range [-0.5, 0.5].

In optimizing the network parameters, we trained the
model in a combination of two losses, multi-scale content
loss and adversarial loss.

Multi-scale content loss

Basically, the coarse-to-fine approach desires that every in-
termediate output becomes the sharp image of the corre-
sponding scale. Thus, we train our network so that inter-
mediate outputs should form a Gaussian pyramid of sharp
images. MSE criterion is applied to every level of pyramids.
Hence, the loss function is defined as follows:

Lcont =
1

2K

K
∑

k=1

1

ckwkhk
‖Lk − Sk‖

2, (4)

where Lk, Sk denote the model output and ground truth im-
age at scale level k, respectively. The loss at each scale is
normalized by the number of channels ck, width wk, and
the height hk (i.e. the total number of elements).

Adversarial loss

Recently, adversarial networks are reported to generate
sharp realistic images [9, 4, 24]. Following the architec-
ture introduced in [24], we build discriminator as in Ta-
ble 1. Discriminator takes the output of the finest scale or
the ground truth sharp image as input and classifies if it is
deblurred image or sharp image.

The adversarial loss is defined as follows.

Ladv = E
S∼psharp(S)

[logD(S)]+

E
B∼pblurry(B)

[log(1−D(G(B)))], (5)

where G and D denote the generator, that is our multi-
scale deblurring network in Fig. 4 and the discriminator
(classifier), respectively. When training, G tries to minimize
the adversarial loss while D tries to maximize it.

Finally, by combining the multi-scale content loss and
adversarial loss, the generator network and discriminator
network is jointly trained. Thus, our final loss term is

Ltotal = Lcont + λ× Ladv, (6)

where the weight constant λ = 1× 10−4.

We used ADAM [18] optimizer with a mini-batch size
2 for training. The learning rate is adaptively tuned begin-
ning from 5 × 10−5. After 3 × 105 iterations, the learning

Layer Weight dimension Stride

1 conv 32× 3× 5× 5 2

2 conv 64× 32× 5× 5 1

3 conv 64× 64× 5× 5 2

4 conv 128× 64× 5× 5 1

5 conv 128× 128× 5× 5 4

6 conv 256× 128× 5× 5 1

7 conv 256× 256× 5× 5 4

8 conv 512× 256× 5× 5 1

9 conv 512× 512× 4× 4 4

10 fc 512× 1× 1× 1 -

11 sigmoid - -

Table 1. Model parameters of the discriminator. Every convolution

layers are activated with LeakyReLU layer.

rate is decreased to 1/10 of the previous learning rate. Total
training takes 9× 105 iterations to converge.

4. Experimental Results

We implemented our model with torch7 library. All the
following experiments were performed in a desktop with i7-
6700K CPU and NVIDIA GTX Titan X (Maxwell) GPU.

4.1. GOPRO Dataset

We evaluate the performance of our model in the pro-
posed GOPRO dataset. Our test dataset consists of 1111
pairs, which is approximately 1/3 of the total dataset. We
compare the results with those of the state-of-the-art meth-
ods [15, 26] in both qualitative and quantitative ways. Our
results show significant improvement in terms of image
quality. Some deblurring results are shown in Fig. 5. We no-
tice from the results of Sun et al. [26], deblurring is not suc-
cessful on the regions where blurs are nonlinearly shaped or
located at the boundary of motion. Kim and Lee [15]’s re-
sults also fail in cases where strong edges are not found. In
contrast, our results are free from those kernel-estimation
related problems. Table 2, shows the quantitative evalua-
tion results of the competing methods and ours with differ-
ent scale level k in terms of PSNR, SSIM over the test data.
Also, the runtime is compared. We observe that our system
with K = 2 produces the best results in terms of both PSNR
and SSIM, while K = 3 is the fastest.

4.2. Köhler Dataset

Köhler dataset [19] consists of 4 latent images and 12
differently blurred images for each of them. The blurs are
caused by replaying recorded 6D camera motion, assum-
ing linear CRF. We report the quantitative results on this

Nah et al., CVPR 2017
• coarser scale features aid finer scale image deblurring

145

(a) (b) (c)

Figure 2. (a) Ground truth sharp image. (b) Blurry image generated by convolving a uniform blur kernel. (c) Blurry image by averaging

sharp frames. In this case, blur is mostly caused by person motion, leaving the background as it is. The blur kernel is non-uniform, complex

shaped. However, when the blurry image is synthesized by convolution with a uniform kernel, the background also gets blurred as if blur

was caused by camera shake. To model dynamic scene blur, our kernel-free method is required.

3. Proposed Method

In our model, finer scale image deblurring is aided by
coarser scale features. To exploit coarse and middle level
information while preserving fine level information at the
same time, input and output to our network take the form of
Gaussian pyramids. Note that most of other coarse-to-fine
networks take a single image as input and output.

3.1. Model Architecture

In addition to the multi-scale architecture, we employ a
slightly modified version of residual network structure [12]
as a building block of our model. Using residual network
structure enables deeper architecture compared to a plain
CNN. Also, as blurry and sharp image pairs are similar in
values, it is efficient to let parameters learn the difference
only. We found that removing the rectified linear unit af-
ter the shortcut connection of the original residual building
block boosts the convergence speed at training time. We de-
note the modified building block as ResBlock. The original
and our modified building block are compared in Fig. 3.

By stacking enough number of convolution layers with
ResBlocks, the receptive field at each scale is expanded.
Details are described in the following paragraphs. For sake
of consistency, we define scale levels in the order of de-
creasing resolution (i.e. level 1 for finest scale). Unless
denoted otherwise, we use total K = 3 scales. At training
time, we set the resolution of the input and output Gaussian
pyramid patches to be {256 × 256, 128 × 128, 64 × 64}.
The scale ratio between consecutive scales is 0.5. For all
convolution layers, we set the filter size to be 5× 5. As our
model is fully convolutional, at test time, the patch size may
vary as the GPU memory allows. The overall architecture
is shown in Fig. 4.

INPUT

CONV

ReLU

CONV

OUTPUT

INPUT

CONV

ReLU

CONV

OUTPUT

BN

BN

(b)(a)

ReLU

Figure 3. (a) Original residual network building block. (b) Mod-

ified building block of our network. We did not use batch nor-

malization layers since we trained model with mini-batch of size

2, which is smaller than usual for batch normalization. We found

removing rectified linear unit just before the block output is bene-

ficial in terms of performance empirically.

Up
Conv

Up
Conv

ResBlock . . . ResBlock

ResBlock . . . ResBlock

ResBlock . . . ResBlock

CONV

CONV

CONV

CONV

CONV

CONV

Backprop

Backprop

Backprop

۰

۰

۰

ۺ

ۺ

ۺ

܁

܁

܁

Figure 4. Multi-scale network architecture. Bk , Lk, Sk denote blurry and latent, and ground truth sharp images, respectively. Subscript

k denotes k-th scale level in the Gaussian pyramid, which is downsampled to 1/2k scale. Our model takes a blurry image pyramid as the

input and outputs an estimated latent image pyramid. Every intermediate scale output is trained to be sharp. At test time, original scale

image is chosen as the final result.

Coarsest level network

At the front of the network locates the coarsest level net-
work. The first convolution layer transforms 1/4 resolu-
tion, 64 × 64 size image into 64 feature maps. Then, 19
ResBlocks are stacked followed by last convolution layer
that transforms the feature map into input dimension. Every
convolution layer preserves resolution with zero padding. In
total, there are 40 convolution layers. The number of con-
volution layers at each scale level is determined so that total
model should have 120 convolution layers. Thus, the coars-
est level network has receptive field large enough to cover
the whole patch. At the end of the stage, the coarsest level
latent sharp image is generated. Moreover, information
from the coarsest level output is delivered to the next stage
where finer scale network is. To convert a coarsest output
to fit the input size of the next finer scale, the output patch
passes an upconvolution [22] layer, while other multi-scale
methods use reshaping [8] or upsampling [4, 6, 23]. Since
the sharp and blurry patches share low-frequency informa-
tion, learning suitable feature with upconvolution helps to
remove redundancy. In our experiment, using upconvolu-
tion showed better performance than upsampling. Then, the
upconvolution feature is concatenated with the finer scale
blurry patch as an input.

Finer level network

Finer level networks basically have the same structure as in
the coarsest level network. However, the first convolution
layer takes the sharp feature from the previous stage as well
as its own blurry input image, in a concatenated form. Every
convolution filter size is 5 × 5 with the same number of
feature maps as in the coarsest level. Except for the last
finest scale, there is an upconvolution layer before the next
stage. At the finest scale, the original resolution sharp image
is restored.

3.2. Training

Our model is trained on the proposed GOPRO dataset.
Among 3214 pairs, 2103 pairs were used for training and
remainings were used for the test. To prevent our network
from overfitting, several data augmentation techniques are
involved. In terms of geometric transformations, patches
are randomly flipped horizontally and vertically, rotated by
90 degrees. For color, RGB channels are randomly per-
muted. To take image degradations into account, satura-
tion in HSV colorspace is multiplied by a random num-
ber within [0.5, 1.5]. Also, Gaussian random noise is
added to blurry images. To make our network be robust
against different strengths of noise, standard deviation of

ResBlock

Nah et al., CVPR 2017

146

(a) (b) (c)

Figure 1. (a) Input blurry image. (b) Result of Sun et al. [26]. (c) Our deblurring result. Our results show clear object boundaries without

artifacts.

Therefore, all the existing methods still have many prob-
lems before they could be generalized and used in practice.
These are mainly due to the use of simple and unrealis-
tic blur kernel models. Thus, to solve those problems, in
this work, we propose a novel end-to-end deep learning ap-
proach for dynamic scene deblurring.

First, we propose a multi-scale CNN that directly re-
stores latent images without assuming any restricted blur
kernel model. Especially, the multi-scale architecture is
designed to mimic conventional coarse-to-fine optimization
methods. Unlike other approaches, our method does not es-
timate explicit blur kernels. Accordingly, our method is free
from artifacts that arise from kernel estimation errors. Sec-
ond, we train the proposed model with a multi-scale loss
that is appropriate for coarse-to-fine architecture that en-
hances convergence greatly. In addition, we further improve
the results by employing adversarial loss [9]. Third, we pro-
pose a new realistic blurry image dataset with ground truth
sharp images. To obtain kernel model-free dataset for train-
ing, we employ the dataset acquisition method introduced
in [17]. As the blurring process can be modeled by the in-
tegration of sharp images during shutter time [17, 21, 16],
we captured a sequence of sharp frames of a dynamic scene
with a high-speed camera and averaged them to generate a
blurry image by considering gamma correction.

By training with the proposed dataset and adding proper
augmentation, our model can handle general local blur ker-
nel implicitly. As the loss term optimizes the result to
resemble the ground truth, it even restores occluded re-
gions where blur kernel is extremely complex as shown in
Fig. 1. We trained our model with millions of pairs of image
patches and achieved significant improvements in dynamic
scene deblurring. Extensive experimental results demon-
strate that the performance of the proposed method is far

superior to those of the state-of-the-art dynamic scene de-
blurring methods in both qualitative and quantitative evalu-
ations.

1.1. Related Works

There are several approaches that employed CNNs for
deblurring [29, 26, 25, 1].

Xu et al. [29] proposed an image deconvolution CNN to
deblur a blurry image in a non-blind setting. They built a
network based on the separable kernel property that the (in-
verse) blur kernel can be decomposed into a small number
of significant filters. Additionally, they incorporated the de-
noising network [7] to reduce visual artifacts such as noise
and color saturation by concatenating the module at the end
of their proposed network.

On the other hand, Schuler et al. [25] proposed a blind
deblurring method with CNN. Their proposed network
mimics conventional optimization-based deblurring meth-
ods and iterates the feature extraction, kernel estimation,
and the latent image estimation steps in a coarse-to-fine
manner. To obtain pairs of sharp and blurry images for net-
work training, they generated uniform blur kernels using a
Gaussian process and synthesized lots of blurry images by
convolving them to the sharp images collected from the Im-
ageNet dataset [3]. However, they reported performance
limits for large blurs due to their suboptimal architecture.

Similarly to the work of Couzinie-Devy et al. [2], Sun
et al. [26] proposed a sequential deblurring approach. First,
they generated pairs of blurry and sharp patches with 73
candidate blur kernels. Next, they trained classification
CNN to measure the likelihood of a specific blur kernel of
a local patch. And then smoothly varying blur kernel is ob-
tained by optimizing an energy model that is composed of
the CNN likelihoods and smoothness priors. Final latent

Blurred images Sun et al., CVPR 2015 Nah et al., CVPR 2017

Kupyn et al., CVPR 2018

147

• non-uniform motion blur from a single blurry image.
• Key idea: Use a conditional GAN and content loss

Figure 2: GoPro images [25] processed by DeblurGAN. Blurred – left, DeblurGAN – center, ground truth sharp – right.

We make three contributions. First, we propose a loss
and architecture which obtain state-of-the art results in mo-
tion deblurring, while being 5x faster than the fastest com-
petitor. Second, we present a method based on random
trajectories for generating a dataset for motion deblurring
training in an automated fashion from the set of sharp im-
age. We show that combining it with an existing dataset
for motion deblurring learning improves results compared
to training on real-world images only. Finally, we present a
novel dataset and method for evaluation of deblurring algo-
rithms based on how they improve object detection results.

2. Related work

2.1. Image Deblurring

The common formulation of non-uniform blur model is
the following:

IB = k(M) ⇤ IS +N, (1)

where IB is a blurred image, k(M) are unknown blur ker-
nels determined by motion field M . IS is the sharp latent
image, ⇤ denotes the convolution, N is an additive noise.
The family of deblurring problems is divided into two types:
blind and non-blind deblurring. Early work [37] mostly fo-
cused on non-blind deblurring, making an assumption that

the blur kernels k(M) are known. Most rely on the classi-
cal Lucy-Richardson algorithm, Wiener or Tikhonov filter
to perform the deconvolution operation and obtain IS esti-
mate. Commonly the blur function is unknown, and blind
deblurring algorithms estimate both latent sharp image IS

and blur kernels k(M). Finding a blur function for each
pixel is an ill-posed problem, and most of the existing algo-
rithms rely on heuristics, image statistics and assumptions
on the sources of the blur. Those family of methods ad-
dresses the blur caused by camera shake by considering blur
to be uniform across the image. Firstly, the camera motion
is estimated in terms of the induced blur kernel, and then
the effect is reversed by performing a deconvolution oper-
ation. Starting with the success of Fergus et al. [8], many
methods [44][42][28][3] has been developed over the last
ten years. Some of the methods are based on an iterative ap-
proach [8] [44], which improve the estimate of the motion
kernel and sharp image on each iteration by using paramet-
ric prior models. However, the running time, as well as the
stopping criterion, is a significant problem for those kinds
of algorithms. Others use assumptions of a local linearity
of a blur function and simple heuristics to quickly estimate
the unknown kernel. These methods are fast but work well
on a small subset of images.

Recently, Whyte et al. [40] developed a novel algorithm

Blurred images Groundtruth Predicted

cGAN learns a mapping from observed image x and ran-
dom noise vector z, to y : G : x, z ! y. Isola et al.
also put a condition on the discriminator and use U-net
architecture [31] for generator and Markovian discrimina-
tor which allows achieving perceptually superior results on
many tasks, including synthesizing photos from label maps,
reconstructing objects from edge maps, and colorizing im-
ages.

3. The proposed method

The goal is to recover sharp image IS given only a
blurred image IB as an input, so no information about the
blur kernel is provided. Debluring is done by the trained
CNN G✓G , to which we refer as the Generator. For each
IB it estimates corresponding IS image. In addition, during
the training phase, we introduce critic the network D✓D and
train both networks in an adversarial manner.

3.1. Loss function

We formulate the loss function as a combination of con-
tent and adversarial loss:

L = LGAN| {z }
adv loss

+ � · LX| {z }
content loss| {z }

total loss

(5)

where the � equals to 100 in all experiments. Unlike Isola et

al. [16] we do not condition the discriminator as we do not
need to penalize mismatch between the input and output.
Adversarial loss Most of the papers related to conditional
GANs, use vanilla GAN objective as the loss [20][25] func-
tion. Recently [47] provides an alternative way of using
least aquare GAN [23] which is more stable and generates
higher quality results. We use WGAN-GP [11] as the critic
function, which is shown to be robust to the choice of gen-
erator architecture [2]. Our premilinary experiments with
different architectures confirmed that findings and we are
able to use architecture much lighter than ResNet152 [25],
see next subsection. The loss is calculated as the following:

LGAN =
NX

n=1

�D✓D (G✓G(I
B)) (6)

DeblurGAN trained without GAN component converges,
but produces smooth and blurry images.

Content loss. Two classical choices for ”content” loss
function are L1 or MAE loss, L2 or MSE loss on raw pix-
els. Using those functions as sole optimization target leads
to the blurry artifacts on generated images due to the pixel-
wise average of possible solutions in the pixel space [20].
Instead, we adopted recently proposed Perceptual loss [17].
Perceptual loss is a simple L2-loss, but based on the differ-
ence of the generated and target image CNN feature maps.
It is defined as following:

Figure 4: DeblurGAN training. The generator network
takes the blurred image as input and produces the estimate
of the sharp image. The critic network takes the restored
and sharp images and outputs a distance between them. The
total loss consists of the WGAN loss from critic and the per-
ceptual loss [17]. The perceptual loss is the difference be-
tween the VGG-19 [34] conv3.3 feature maps of the sharp
and restored images. At test time, only the generator is kept.

LX = 1
Wi,jHi,j

Wi,jX

x=1

Hi,jX

y=1

(�i,j(I
S)x,y��i,j(G✓G(I

B))x,y)
2

where �i,j is the feature map obtained by the j-th convo-
lution (after activation) before the i-th maxpooling layer
within the VGG19 network, pretrained on ImageNet [7],
Wi,j and Hi,j are the dimensions of the feature maps. In
our work we use activations from V GG3,3 convolutional
layer. The activations of the deeper layers represents the
features of a higher abstraction [46][20]. The perceptual
loss focuses on restoring general content [16] [20] while ad-

cGAN learns a mapping from observed image x and ran-
dom noise vector z, to y : G : x, z ! y. Isola et al.
also put a condition on the discriminator and use U-net
architecture [31] for generator and Markovian discrimina-
tor which allows achieving perceptually superior results on
many tasks, including synthesizing photos from label maps,
reconstructing objects from edge maps, and colorizing im-
ages.

3. The proposed method

The goal is to recover sharp image IS given only a
blurred image IB as an input, so no information about the
blur kernel is provided. Debluring is done by the trained
CNN G✓G , to which we refer as the Generator. For each
IB it estimates corresponding IS image. In addition, during
the training phase, we introduce critic the network D✓D and
train both networks in an adversarial manner.

3.1. Loss function

We formulate the loss function as a combination of con-
tent and adversarial loss:

L = LGAN| {z }
adv loss

+ � · LX| {z }
content loss| {z }

total loss

(5)

where the � equals to 100 in all experiments. Unlike Isola et

al. [16] we do not condition the discriminator as we do not
need to penalize mismatch between the input and output.
Adversarial loss Most of the papers related to conditional
GANs, use vanilla GAN objective as the loss [20][25] func-
tion. Recently [47] provides an alternative way of using
least aquare GAN [23] which is more stable and generates
higher quality results. We use WGAN-GP [11] as the critic
function, which is shown to be robust to the choice of gen-
erator architecture [2]. Our premilinary experiments with
different architectures confirmed that findings and we are
able to use architecture much lighter than ResNet152 [25],
see next subsection. The loss is calculated as the following:

LGAN =
NX

n=1

�D✓D (G✓G(I
B)) (6)

DeblurGAN trained without GAN component converges,
but produces smooth and blurry images.

Content loss. Two classical choices for ”content” loss
function are L1 or MAE loss, L2 or MSE loss on raw pix-
els. Using those functions as sole optimization target leads
to the blurry artifacts on generated images due to the pixel-
wise average of possible solutions in the pixel space [20].
Instead, we adopted recently proposed Perceptual loss [17].
Perceptual loss is a simple L2-loss, but based on the differ-
ence of the generated and target image CNN feature maps.
It is defined as following:

Figure 4: DeblurGAN training. The generator network
takes the blurred image as input and produces the estimate
of the sharp image. The critic network takes the restored
and sharp images and outputs a distance between them. The
total loss consists of the WGAN loss from critic and the per-
ceptual loss [17]. The perceptual loss is the difference be-
tween the VGG-19 [34] conv3.3 feature maps of the sharp
and restored images. At test time, only the generator is kept.

LX = 1
Wi,jHi,j

Wi,jX

x=1

Hi,jX

y=1

(�i,j(I
S)x,y��i,j(G✓G(I

B))x,y)
2

where �i,j is the feature map obtained by the j-th convo-
lution (after activation) before the i-th maxpooling layer
within the VGG19 network, pretrained on ImageNet [7],
Wi,j and Hi,j are the dimensions of the feature maps. In
our work we use activations from V GG3,3 convolutional
layer. The activations of the deeper layers represents the
features of a higher abstraction [46][20]. The perceptual
loss focuses on restoring general content [16] [20] while ad-

cGAN learns a mapping from observed image x and ran-
dom noise vector z, to y : G : x, z ! y. Isola et al.
also put a condition on the discriminator and use U-net
architecture [31] for generator and Markovian discrimina-
tor which allows achieving perceptually superior results on
many tasks, including synthesizing photos from label maps,
reconstructing objects from edge maps, and colorizing im-
ages.

3. The proposed method

The goal is to recover sharp image IS given only a
blurred image IB as an input, so no information about the
blur kernel is provided. Debluring is done by the trained
CNN G✓G , to which we refer as the Generator. For each
IB it estimates corresponding IS image. In addition, during
the training phase, we introduce critic the network D✓D and
train both networks in an adversarial manner.

3.1. Loss function

We formulate the loss function as a combination of con-
tent and adversarial loss:

L = LGAN| {z }
adv loss

+ � · LX| {z }
content loss| {z }

total loss

(5)

where the � equals to 100 in all experiments. Unlike Isola et

al. [16] we do not condition the discriminator as we do not
need to penalize mismatch between the input and output.
Adversarial loss Most of the papers related to conditional
GANs, use vanilla GAN objective as the loss [20][25] func-
tion. Recently [47] provides an alternative way of using
least aquare GAN [23] which is more stable and generates
higher quality results. We use WGAN-GP [11] as the critic
function, which is shown to be robust to the choice of gen-
erator architecture [2]. Our premilinary experiments with
different architectures confirmed that findings and we are
able to use architecture much lighter than ResNet152 [25],
see next subsection. The loss is calculated as the following:

LGAN =
NX

n=1

�D✓D (G✓G(I
B)) (6)

DeblurGAN trained without GAN component converges,
but produces smooth and blurry images.

Content loss. Two classical choices for ”content” loss
function are L1 or MAE loss, L2 or MSE loss on raw pix-
els. Using those functions as sole optimization target leads
to the blurry artifacts on generated images due to the pixel-
wise average of possible solutions in the pixel space [20].
Instead, we adopted recently proposed Perceptual loss [17].
Perceptual loss is a simple L2-loss, but based on the differ-
ence of the generated and target image CNN feature maps.
It is defined as following:

Figure 4: DeblurGAN training. The generator network
takes the blurred image as input and produces the estimate
of the sharp image. The critic network takes the restored
and sharp images and outputs a distance between them. The
total loss consists of the WGAN loss from critic and the per-
ceptual loss [17]. The perceptual loss is the difference be-
tween the VGG-19 [34] conv3.3 feature maps of the sharp
and restored images. At test time, only the generator is kept.

LX = 1
Wi,jHi,j

Wi,jX

x=1

Hi,jX

y=1

(�i,j(I
S)x,y��i,j(G✓G(I

B))x,y)
2

where �i,j is the feature map obtained by the j-th convo-
lution (after activation) before the i-th maxpooling layer
within the VGG19 network, pretrained on ImageNet [7],
Wi,j and Hi,j are the dimensions of the feature maps. In
our work we use activations from V GG3,3 convolutional
layer. The activations of the deeper layers represents the
features of a higher abstraction [46][20]. The perceptual
loss focuses on restoring general content [16] [20] while ad-

Kupyn et al., CVPR 2018
• An image to image translation model that learns the residual

to sharpen the blurred image

148

Figure 3: DeblurGAN generator architecture. DeblurGAN contains two strided convolution blocks with stride 1
2 , nine resid-

ual blocks [13] and two transposed convolution blocks. Each ResBlock consists of a convolution layer, instance normalization
layer, and ReLU activation.

for non-uniform blind deblurring based on a parametrized
geometric model of the blurring process in terms of the
rotational velocity of the camera during exposure. Simi-
larly Gupta et al. [12] made an assumption that the blur is
caused only by 3D camera movement. With the success
of deep learning, over the last few years, there appeared
some approaches based on convolutional neural networks
(CNNs). Sun et al. [36] use CNN to estimate blur ker-
nel, Chakrabarti [6] predicts complex Fourier coefficients
of motion kernel to perform non-blind deblurring in Fourier
space whereas Gong [9] use fully convolutional network to
move for motion flow estimation. All of these approaches
use CNN to estimate the unknown blur function. Recently,
a kernel-free end-to-end approaches by Noorozi [27] and
Nah [25] that uses multi-scale CNN to directly deblur the
image. Ramakrishnan et al. [29] use the combination of
pix2pix framework [16] and densely connected convolu-
tional networks [15] to perform blind kernel-free image
deblurring. Such methods are able to deal with different
sources of the blur.

2.2. Generative adversarial networks

The idea of generative adversarial networks, introduced
by Goodfellow et al. [10], is to define a game between two
competing networks: the discriminator and the generator.
The generator receives noise as an input and generates a
sample. A discriminator receives a real and generated sam-
ple and is trying to distinguish between them. The goal of
the generator is to fool the discriminator by generating per-
ceptually convincing samples that can not be distinguished
from the real one. The game between the generator G and
discriminator D is the minimax objective:

min
G

max
D

E
xvPr

[log(D(x))] + E
x̃vPg

[log(1�D(x̃))] (2)

where Pr is the data distribution and Pg is the model dis-
tribution, defined by x̃ = G(z), z v P (z), the input z

is a sample from a simple noise distribution. GANs are
known for its ability to generate samples of good percep-
tual quality, however, training of vanilla version suffer from

many problems such as mode collapse, vanishing gradi-
ents etc, as described in [33]. Minimizing the value func-
tion in GAN is equal to minimizing the Jensen-Shannon di-
vergence between the data and model distributions on x.
Arjovsky et al. [2] discuss the difficulties in GAN train-
ing caused by JS divergence approximation and propose
to use the Earth-Mover (also called Wasserstein-1) distance
W (q, p). The value function for WGAN is constructed us-
ing Kantorovich-Rubinstein duality [39]:

min
G

max
D2D

E
xvPr

[D(x)]� E
x̃vPg

[D(x̃)] (3)

where D is the set of 1�Lipschitz functions and Pg is once
again the model distribution The idea here is that critic value
approximates K ·W (Pr, P✓), where K is a Lipschitz con-
stant and W (Pr, P✓) is a Wasserstein distance. In this set-
ting, a discriminator network is called critic and it approx-
imates the distance between the samples. To enforce Lips-
chitz constraint in WGAN Arjovsky et al. add weight clip-
ping to [�c, c]. Gulrajani et al. [11] propose to add a gradi-
ent penalty term instead:

� E
x̃vPx̃

[(krx̃D(x̃)k2 � 1)2] (4)

to the value function as an alternative way to enforce the
Lipschitz constraint. This approach is robust to the choice
of generator architecture and requires almost no hyperpa-
rameter tuning. This is crucial for image deblurring as it al-
lows to use novel lightweight neural network architectures
in contrast to standard Deep ResNet architectures, previ-
ously used for image deblurring [25].

2.3. Conditional adversarial networks

Generative Adversarial Networks have been applied to
different image-to-image translation problems, such as su-
per resolution [20], style transfer [22], product photo gen-
eration [5] and others. Isola et al. [16] provides a detailed
overview of those approaches and present conditional GAN
architecture also known as pix2pix. Unlike vanilla GAN,

Kupyn et al., CVPR 2018

149

Figure 7: Results on the GoPro test dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

Figure 8: Results on the Kohler dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

different datasets. The first model to which we re-
fer as DeblurGANWILD was trained on a random crops
of size 256x256 from 1000 GoPro training dataset im-

ages [25] downscaled by a factor of two. The second one
DeblurGANSynth was trained on 256x256 patches from MS
COCO dataset blurred by method, presented in previous

Blurred images Nah et al., CVPR 2017 Kupyn et al., CVPR 2018

Kupyn et al., CVPR 2018

150

Figure 7: Results on the GoPro test dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

Figure 8: Results on the Kohler dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

different datasets. The first model to which we re-
fer as DeblurGANWILD was trained on a random crops
of size 256x256 from 1000 GoPro training dataset im-

ages [25] downscaled by a factor of two. The second one
DeblurGANSynth was trained on 256x256 patches from MS
COCO dataset blurred by method, presented in previous

Blurred images Nah et al., CVPR 2017 Kupyn et al., CVPR 2018

Kupyn et al., CVPR 2018

151

Figure 7: Results on the GoPro test dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

Figure 8: Results on the Kohler dataset. From left to right: blurred photo, Nah et al. [25], DeblurGAN.

different datasets. The first model to which we re-
fer as DeblurGANWILD was trained on a random crops
of size 256x256 from 1000 GoPro training dataset im-

ages [25] downscaled by a factor of two. The second one
DeblurGANSynth was trained on 256x256 patches from MS
COCO dataset blurred by method, presented in previous

Blurred images Nah et al., CVPR 2017 Kupyn et al., CVPR 2018

Image Deblurring
• Introduction
• Blind deconvolution
• Non-blind deconvolution
• Deep learning based solutions

152

