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Where do we look on these images?
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The squares shows where 15 observers looked 
in eye tracking experiments

Slide credit: T. Judd



What is attention?

• Attention is an umbrella term which refers to the 
mechanisms by which relevant parts of sensory 
information are selected for further, more detailed 
processing, and the rest are discarded.
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Every one knows what attention is. It is the taking possession of the 
mind, in clear and vivid form, of one out of what seem several 
simultaneously possible objects or trains of thought. Focalization, 
concentration, of consciousness are of its essence. It implies 
withdrawal from some things in order to deal effectively with others. 

William James, 1890

“

“



Why do perceptual systems need attention?

• Limited resources
➡ Our visual system processes an enormous amount of 

data coming from the retina. ~108 bits/sec [Itti, 2000] 
• Warning 

➡ noticing predators, sudden motion, etc.
• Exploration 

➡ finding preys, locating objects, etc.
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Attentional mechanisms

• Attention is a complex set 
of interrelated processes:

➡ selection of information  
(bottom-up)

➡ integration of that information 
with existing knowledge (top-
down)

• Bottom-up
➡ very rapid, primitive,  

task-independent 

• Top-down
➡ slower, under cognitive 

control, task-dependent

5Image credit: [Itti, 2002]



Theories of visual attention
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Fig. 3. Treisman’s feature integration model of early
vision—individual maps can be accessed in parallel to
detect feature activity, but focused attention is required to
combine features at a common spatial location [22]

“preattentive features” [47]. Second, she formulated a
hypothesis about how the visual system performs preat-
tentive processing [22].
Treisman ran experiments using target and boundary

detection to classify preattentive features (Figs. 1 and 10),
measuring performance in two different ways: by re-
sponse time, and by accuracy. In the response time model
viewers are asked to complete the task as quickly as
possible while still maintaining a high level of accuracy.
The number of distractors in a scene is varied from few
to many. If task completion time is relatively constant
and below some chosen threshold, independent of the
number of distractors, the task is said to be preattentive
(i.e., viewers are not searching through the display to
locate the target).
In the accuracy version of the same task, the display

is shown for a small, Àxed exposure duration, then
removed. Again, the number of distractors in the scene
varies across trials. If viewers can complete the task accu-
rately, regardless of the number of distractors, the feature
used to deÀne the target is assumed to be preattentive.
Treisman and others have used their experiments to

compile a list of visual features that are detected preat-
tentively (Fig. 2). It is important to note that some of
these features are asymmetric. For example, a sloped line
in a sea of vertical lines can be detected preattentively,
but a vertical line in a sea of sloped lines cannot.
In order to explain preattentive processing, Treisman

proposed a model of low-level human vision made up
of a set of feature maps and a master map of locations
(Fig. 3). Each feature map registers activity for a spe-
ciÀc visual feature. When the visual system Àrst sees
an image, all the features are encoded in parallel into
their respective maps. A viewer can access a particular
map to check for activity, and perhaps to determine the
amount of activity. The individual feature maps give
no information about location, spatial arrangement, or
relationships to activity in other maps, however.
This framework provides a general hypothesis that

explains how preattentive processing occurs. If the target

(a) (b) (c)

Fig. 4. Textons: (a,b) two textons A and B that appear
different in isolation, but have the same size, number
of terminators, and join points; (c) a target group of B-
textons is difÀcult to detect in a background of A-textons
when random rotation is applied [49]

has a unique feature, one can simply access the given
feature map to see if any activity is occurring. Feature
maps are encoded in parallel, so feature detection is
almost instantaneous. A conjunction target can only be
detected by accessing two or more feature maps. In
order to locate these targets, one must search serially
through the master map of locations, looking for an
object that satisÀes the conditions of having the correct
combination of features. Within the model, this use of
focused attention requires a relatively large amount of
time and effort.
In later work, Treisman has expanded her strict di-

chotomy of features being detected either in parallel or in
serial [21], [45]. She now believes that parallel and serial
represent two ends of a spectrum that include “more”
and “less,” not just “present” and “absent.” The amount
of difference between the target and the distractors will
affect search time. For example, a long vertical line can
be detected immediately among a group of short vertical
lines, but a medium-length line may take longer to see.
Treisman has also extended feature integration to ex-

plain situations where conjunction search involving mo-
tion, depth, color, and orientation have been shown to be
preattentive [33], [39], [48]. Treisman hypothesizes that
a signiÀcant target–nontarget difference would allow
individual feature maps to ignore nontarget information.
Consider a conjunction search for a green horizontal bar
within a set of red horizontal bars and green vertical
bars. If the red color map could inhibit information about
red horizontal bars, the search reduces to Ànding a green
horizontal bar in a sea of green vertical bars, which
occurs preattentively.

3.2 Texton Theory
Julész was also instrumental in expanding our under-
standing of what we “see” in a single Àxation. His start-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Feature-Integration Theory   
[Treisman & Gelade, 1980]

Guided Search Theory
[Wolfe, 1989]  

• processing occurs in parallel 
and focused attention occurs in 
serial

• visual search relies on a 
combination of bottom-up and top-
down activity



Task-based visual attention
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“They did not expect him” by 
Repin

• Yarbus (1967) was the first to show that task influences 
eye fixation locations.

Slide credit: T. Judd



Task-based visual attention

8Slide credit: T. Judd



Visual saliency
• “Saliency at a given location is determined primarily by how 

different this location is from its surround in color, 
orientation, motion, depth, etc.” [Koch & Ullman, 1985] 

• “Visual salience (or visual saliency) is the distinct subjective 
perceptual quality which makes some items  
in the world stand out from their neighbors and 
immediately grab our attention.” [Itti, 2007]
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http://www.scholarpedia.org/article/Attention


Beyond biology: Applications in Computer Vision

• Most computer vision algorithms have relied on brute-force 
(e.g. sliding window) strategies. 

• Attentional mechanisms provide a relatively free and fast 
mechanism to select a few candidates while eliminating 
background clutter.

• To list a few of possible applications
➡ scene classification [Siagian & Itti, 2007]

➡ object recognition [Gao et al., 2009; Rutishauser et al., 2004]

➡ object tracking [Butko et al., 2008]

➡ robotics [Frintrop et al., 2006; Siagian & Itti, 2007]

➡ content-based image resizing [Achanta & Susstrunk, 2009; Avidan & Shamir, 2007]

10

http://www.scholarpedia.org/article/Vision
http://www.scholarpedia.org/article/Algorithm


Computational models of visual saliency
• Can machines predict where humans look at a given image?

• [Itti & Koch, 1998] 
➡ One of the first computational models of visual attention to predict 

where people look 
➡ A bottom-up model
➡ An implementation of Koch & Ullman, 1985  
➡ It employs a multi-scale center-surround mechanism which imitates 

the workings of the retinal receptive field.  

11



Bottom-up models of visual saliency

12Image credit: [Zhao & Koch, 2012]

The common basic structure is:
(i) Extract visual features, 
(ii) Compute a saliency map for each feature channel
(iii) Compute a final saliency map by combining individual saliency maps



Feature integration step
• The most troublesome step

➡ typically carried out by taking weighted average (linear 
summation).

➡ But how different feature dimensions contribute to the overall 
saliency is still an open question! [Callaghan, 1989, 1990; Eckstein et 
al., 2000; Rosenholtz, 1999, 2001; Rosenholtz et al., 2004]
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used to create a Gaussian pyramid I(s), where s Œ [0..8] is the
scale. The r, g, and b channels are normalized by I in order to de-
couple hue from intensity. However, because hue variations are
not perceivable at very low luminance (and hence are not salient),
normalization is only applied at the locations where I is larger than
1/10 of its maximum over the entire image (other locations yield
zero r, g, and b). Four broadly-tuned color channels are created:
R = r - (g + b)/2 for red, G = g - (r + b)/2 for green, B = b - (r + g)/2
for blue, and Y = (r + g)/2 - |r - g|/2 - b for yellow (negative
values are set to zero). Four Gaussian pyramids R(s), G(s), B(s),
and Y(s) are created from these color channels.

Center-surround differences (! defined previously) between a
“center” fine scale c and a “surround” coarser scale s yield the
feature maps. The first set of feature maps is concerned with inten-
sity contrast, which, in mammals, is detected by neurons sensitive
either to dark centers on bright surrounds or to bright centers on
dark surrounds [12]. Here, both types of sensitivities are simulta-
neously computed (using a rectification) in a set of six maps !(c, s),
with c Œ {2, 3, 4} and s = c + d, d Œ {3, 4}:

!(c, s) = |I(c) ! I(s)|.                                       (1)
A second set of maps is similarly constructed for the color

channels, which, in cortex, are represented using a so-called “color
double-opponent” system: In the center of their receptive fields,
neurons are excited by one color (e.g., red) and inhibited by an-
other (e.g., green), while the converse is true in the surround. Such
spatial and chromatic opponency exists for the red/green,
green/red, blue/yellow, and yellow/blue color pairs in human
primary visual cortex [13]. Accordingly, maps "#(c, s) are created
in the model to simultaneously account for red/green and
green/red double opponency (2) and $%(c, s) for blue/yellow and
yellow/blue double opponency (3):

"#(c, s) = |(R(c) - G(c)) ! (G(s) - R(s))|                   (2)

$%(c, s) = |(B(c) - Y(c)) ! (Y(s) - B(s))|.                   (3)
Local orientation information is obtained from I using oriented

Gabor pyramids O(s, q), where s Œ [0..8] represents the scale and
q Œ {0o, 45o, 90o, 135o} is the preferred orientation [11]. (Gabor fil-
ters, which are the product of a cosine grating and a 2D Gaussian
envelope, approximate the receptive field sensitivity profile (impulse
response) of orientation-selective neurons in primary visual cortex
[12].) Orientation feature maps, &(c, s, q), encode, as a group, local
orientation contrast between the center and surround scales:

&(c, s, q) = |O(c, q) ! O(s, q)|.                           (4)
In total, 42 feature maps are computed: six for intensity, 12 for
color, and 24 for orientation.

2.2 The Saliency Map
The purpose of the saliency map is to represent the conspicuity—
or “saliency”—at every location in the visual field by a scalar quan-
tity and to guide the selection of attended locations, based on the
spatial distribution of saliency. A combination of the feature maps
provides bottom-up input to the saliency map, modeled as a dy-
namical neural network.

One difficulty in combining different feature maps is that they
represent a priori not comparable modalities, with different dy-
namic ranges and extraction mechanisms. Also, because all 42
feature maps are combined, salient objects appearing strongly in
only a few maps may be masked by noise or by less-salient objects
present in a larger number of maps.

In the absence of top-down supervision, we propose a map
normalization operator, '(.), which globally promotes maps in
which a small number of strong peaks of activity (conspicuous loca-
tions) is present, while globally suppressing maps which contain
numerous comparable peak responses. '(.) consists of (Fig. 2):

1)! normalizing the values in the map to a fixed range [0..M], in
order to eliminate modality-dependent amplitude differences;

2)! finding the location of the map’s global maximum M and
computing the average m  of all its other local maxima; and

3)! globally multiplying the map by M m−! "2 .

Only local maxima of activity are considered, such that '(.)
compares responses associated with meaningful “activitation
spots” in the map and ignores homogeneous areas. Comparing the
maximum activity in the entire map to the average overall activa-
tion measures how different the most active location is from the
average. When this difference is large, the most active location
stands out, and the map is strongly promoted. When the difference
is small, the map contains nothing unique and is suppressed. The
biological motivation behind the design of '(.) is that it coarsely
replicates cortical lateral inhibition mechanisms, in which neigh-
boring similar features inhibit each other via specific, anatomically
defined connections [15].

Feature maps are combined into three “conspicuity maps,” !
for intensity (5), (  for color (6), and &  for orientation (7), at the
scale (s = 4) of the saliency map. They are obtained through
across-scale addition, “≈,” which consists of reduction of each
map to scale four and point-by-point addition:
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For orientation, four intermediary maps are first created by
combination of the six feature maps for a given q and are then
combined into a single orientation conspicuity map:
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The motivation for the creation of three separate channels, ! ,
( , and & , and their individual normalization is the hypothesis
that similar features compete strongly for saliency, while different
modalities contribute independently to the saliency map. The three
conspicuity maps are normalized and summed into the final input
) to the saliency map:

) ' ! ' ( ' &= + +
1
3 % & % & % &/ 0 .                          (8)

At any given time, the maximum of the saliency map (SM) de-
fines the most salient image location, to which the focus of atten-
tion (FOA) should be directed. We could now simply select the
most active location as defining the point where the model should
next attend. However, in a neuronally plausible implementation,
we model the SM as a 2D layer of leaky integrate-and-fire neurons
at scale four. These model neurons consist of a single capacitance
which integrates the charge delivered by synaptic input, of a leak-
age conductance, and of a voltage threshold. When the threshold is

Fig. 2. The normalization operator '(.).

Image credit: [Itti and Koch, 2012]
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normalization is only applied at the locations where I is larger than
1/10 of its maximum over the entire image (other locations yield
zero r, g, and b). Four broadly-tuned color channels are created:
R = r - (g + b)/2 for red, G = g - (r + b)/2 for green, B = b - (r + g)/2
for blue, and Y = (r + g)/2 - |r - g|/2 - b for yellow (negative
values are set to zero). Four Gaussian pyramids R(s), G(s), B(s),
and Y(s) are created from these color channels.

Center-surround differences (! defined previously) between a
“center” fine scale c and a “surround” coarser scale s yield the
feature maps. The first set of feature maps is concerned with inten-
sity contrast, which, in mammals, is detected by neurons sensitive
either to dark centers on bright surrounds or to bright centers on
dark surrounds [12]. Here, both types of sensitivities are simulta-
neously computed (using a rectification) in a set of six maps !(c, s),
with c Œ {2, 3, 4} and s = c + d, d Œ {3, 4}:

!(c, s) = |I(c) ! I(s)|.                                       (1)
A second set of maps is similarly constructed for the color

channels, which, in cortex, are represented using a so-called “color
double-opponent” system: In the center of their receptive fields,
neurons are excited by one color (e.g., red) and inhibited by an-
other (e.g., green), while the converse is true in the surround. Such
spatial and chromatic opponency exists for the red/green,
green/red, blue/yellow, and yellow/blue color pairs in human
primary visual cortex [13]. Accordingly, maps "#(c, s) are created
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ters, which are the product of a cosine grating and a 2D Gaussian
envelope, approximate the receptive field sensitivity profile (impulse
response) of orientation-selective neurons in primary visual cortex
[12].) Orientation feature maps, &(c, s, q), encode, as a group, local
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In total, 42 feature maps are computed: six for intensity, 12 for
color, and 24 for orientation.

2.2 The Saliency Map
The purpose of the saliency map is to represent the conspicuity—
or “saliency”—at every location in the visual field by a scalar quan-
tity and to guide the selection of attended locations, based on the
spatial distribution of saliency. A combination of the feature maps
provides bottom-up input to the saliency map, modeled as a dy-
namical neural network.

One difficulty in combining different feature maps is that they
represent a priori not comparable modalities, with different dy-
namic ranges and extraction mechanisms. Also, because all 42
feature maps are combined, salient objects appearing strongly in
only a few maps may be masked by noise or by less-salient objects
present in a larger number of maps.

In the absence of top-down supervision, we propose a map
normalization operator, '(.), which globally promotes maps in
which a small number of strong peaks of activity (conspicuous loca-
tions) is present, while globally suppressing maps which contain
numerous comparable peak responses. '(.) consists of (Fig. 2):

1)! normalizing the values in the map to a fixed range [0..M], in
order to eliminate modality-dependent amplitude differences;

2)! finding the location of the map’s global maximum M and
computing the average m  of all its other local maxima; and

3)! globally multiplying the map by M m−! "2 .

Only local maxima of activity are considered, such that '(.)
compares responses associated with meaningful “activitation
spots” in the map and ignores homogeneous areas. Comparing the
maximum activity in the entire map to the average overall activa-
tion measures how different the most active location is from the
average. When this difference is large, the most active location
stands out, and the map is strongly promoted. When the difference
is small, the map contains nothing unique and is suppressed. The
biological motivation behind the design of '(.) is that it coarsely
replicates cortical lateral inhibition mechanisms, in which neigh-
boring similar features inhibit each other via specific, anatomically
defined connections [15].

Feature maps are combined into three “conspicuity maps,” !
for intensity (5), (  for color (6), and &  for orientation (7), at the
scale (s = 4) of the saliency map. They are obtained through
across-scale addition, “≈,” which consists of reduction of each
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The motivation for the creation of three separate channels, ! ,
( , and & , and their individual normalization is the hypothesis
that similar features compete strongly for saliency, while different
modalities contribute independently to the saliency map. The three
conspicuity maps are normalized and summed into the final input
) to the saliency map:
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At any given time, the maximum of the saliency map (SM) de-
fines the most salient image location, to which the focus of atten-
tion (FOA) should be directed. We could now simply select the
most active location as defining the point where the model should
next attend. However, in a neuronally plausible implementation,
we model the SM as a 2D layer of leaky integrate-and-fire neurons
at scale four. These model neurons consist of a single capacitance
which integrates the charge delivered by synaptic input, of a leak-
age conductance, and of a voltage threshold. When the threshold is
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CovSal (Erdem and Erdem, 2013)
• a patch-based formulation

➡ patches with rare appearance characteristics are 
considered as salient. 

14

salient

non-salient



CovSal (Erdem and Erdem, 2013)
• The region covariance descriptor [Tuzel et al., 2006] 

➡ captures local image structures better than standard linear 
filters. 

➡ naturally provides nonlinear integration of different features 
by modeling their correlations.
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Extracted region covariance descriptors

In the Region covariances section, we provide the
technical details about the proposed model. First, we
review the region covariance descriptor and then give
the details of our saliency model. Finally, we provide
the implementation details.

Region covariances

Covariance of features was first proposed as a
compact region descriptor by Tuzel et al. (2006). Since
then, it has been effectively utilized in various high-level
computer vision problems such as texture discrimina-
tion (Tuzel et al., 2006), object detection (Tuzel et al.,
2006; Tuzel, Porikli, & Meer, 2008), and object tracking
(Porikli, Tuzel, & Meer, 2006). For the formal
definition, let I denote an image, and F be the feature
image extracted from I:

Fðx;yÞ ¼ UðI;x;yÞ ð1Þ
where U denotes the d-dimensional function of features
such as intensity, color, orientation, spatial attributes, etc.

Then, a region R inside F can be represented with a
d · d covariance matrix CR of the feature points:

CR ¼
1

n$ 1

Xn

i¼1
ðfi $ lÞðfi $ lÞT ð2Þ

with {fi}i ¼ 1. . .n denoting the d-dimensional feature
points inside R, and l being the mean of these points.

Tuzel et al. (2006) also proposed a fast way of
computing covariance matrices of rectangular regions
by using the first and the second-order integral image
representations (Viola & Jones, 2001) with O(d2)
computational complexity.

Note that covariance matrices do not lie on
Euclidean space. Hence, to compute the distance
between two covariances C1 and C2, Tuzel et al. (2006)
suggested using the metric proposed by Föerstner and
Moonen (1999):

qðC1;C2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
ln2kiðC1;C2Þ

s

ð3Þ

where {ki(C1,C2)}i ¼ 1. . .n and {xi} are the generalized
eigenvalues and the generalized eigenvectors of C1 and
C2, respectively, satisfying

kiC1xi $ C2xi ¼ 0; i ¼ 1 . . . d: ð4Þ
A covariance matrix provides a natural way of
combining different visual features with its diagonal
elements representing the feature variances and its
nondiagonal elements representing the correlations
among the features. Unlike the common practice in the
existing computational saliency models that assume the
responses of linear filters are independent of one

another and combined linearly, incorporating second-
order image statistics within a single descriptor encodes
the local structure exceedingly well and provides
robustness and high discriminative power. It is worth
noting that Karklin and Lewicki (2009) speculated that
nonlinearity in complex cells in the primary visual
cortex (V1) can be explained by the higher-level visual
neurons, which encode statistical variations describing
local image regions through covariance matrices.
Although we based our decision solely on computa-
tional grounds, the former argument provides an
insight into the biological plausibility of using region
covariances in saliency estimation.

Incorporating first-order statistics

In distinguishing between two different distributions
of features, first-order statistics could also play an
important role. To remedy this issue, Hong, Chang,
Shan, Chen, and Gao (2009) proposed employing the
notion of so-called Sigma Points (Julier & Uhlmann,
1996) in which covariance matrices are transformed
directly on Euclidean vector space using the Cholesky
decomposition. The idea is based on the property that
every symmetric, positive definite matrices (covariance
matrices) has a unique factorization whose elements
can be used to construct a small set of points in
Euclidean space. Once this is achieved, it becomes
straightforward to incorporate the mean vector of the
features, thus resulting in an enriched representation
which encodes both first and second-order statistics.

Let C be a d · d covariance matrix, the corre-
sponding set of Sigma Points S¼ {si} can be computed
as:

si ¼ a
ffiffiffi
d
p

Li if 1 % i % d
$a

ffiffiffi
d
p

Li if dþ 1 % i % 2d

"
ð5Þ

where Li is the ith column of the lower triangular
matrix L obtained with the Cholesky decomposition
C¼LLT. Using the set S given in Equation 5, a feature
vector can be obtained by simply concatenating its
elements. Moreover, first-order statistics can be easily
incorporated to this representation scheme by adding
the mean vector of the features l. We denote this
enriched feature vector as W (C):

WðCÞ ¼ ðl; s1; . . . sd; ; sdþ1; . . . ; s2dÞT ð6Þ
For all the experiments in this paper, we take a¼

ffiffiffi
2
p

.

Local saliency estimation

Given an input image I, our model reshapes the
image to a square form and then decomposes it into
non-overlapping regions of square blocks {Ri}, which
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In the Region covariances section, we provide the
technical details about the proposed model. First, we
review the region covariance descriptor and then give
the details of our saliency model. Finally, we provide
the implementation details.

Region covariances

Covariance of features was first proposed as a
compact region descriptor by Tuzel et al. (2006). Since
then, it has been effectively utilized in various high-level
computer vision problems such as texture discrimina-
tion (Tuzel et al., 2006), object detection (Tuzel et al.,
2006; Tuzel, Porikli, & Meer, 2008), and object tracking
(Porikli, Tuzel, & Meer, 2006). For the formal
definition, let I denote an image, and F be the feature
image extracted from I:

Fðx;yÞ ¼ UðI;x;yÞ ð1Þ
where U denotes the d-dimensional function of features
such as intensity, color, orientation, spatial attributes, etc.

Then, a region R inside F can be represented with a
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i¼1
ðfi $ lÞðfi $ lÞT ð2Þ

with {fi}i ¼ 1. . .n denoting the d-dimensional feature
points inside R, and l being the mean of these points.

Tuzel et al. (2006) also proposed a fast way of
computing covariance matrices of rectangular regions
by using the first and the second-order integral image
representations (Viola & Jones, 2001) with O(d2)
computational complexity.

Note that covariance matrices do not lie on
Euclidean space. Hence, to compute the distance
between two covariances C1 and C2, Tuzel et al. (2006)
suggested using the metric proposed by Föerstner and
Moonen (1999):

qðC1;C2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
ln2kiðC1;C2Þ

s

ð3Þ

where {ki(C1,C2)}i ¼ 1. . .n and {xi} are the generalized
eigenvalues and the generalized eigenvectors of C1 and
C2, respectively, satisfying

kiC1xi $ C2xi ¼ 0; i ¼ 1 . . . d: ð4Þ
A covariance matrix provides a natural way of
combining different visual features with its diagonal
elements representing the feature variances and its
nondiagonal elements representing the correlations
among the features. Unlike the common practice in the
existing computational saliency models that assume the
responses of linear filters are independent of one

another and combined linearly, incorporating second-
order image statistics within a single descriptor encodes
the local structure exceedingly well and provides
robustness and high discriminative power. It is worth
noting that Karklin and Lewicki (2009) speculated that
nonlinearity in complex cells in the primary visual
cortex (V1) can be explained by the higher-level visual
neurons, which encode statistical variations describing
local image regions through covariance matrices.
Although we based our decision solely on computa-
tional grounds, the former argument provides an
insight into the biological plausibility of using region
covariances in saliency estimation.

Incorporating first-order statistics

In distinguishing between two different distributions
of features, first-order statistics could also play an
important role. To remedy this issue, Hong, Chang,
Shan, Chen, and Gao (2009) proposed employing the
notion of so-called Sigma Points (Julier & Uhlmann,
1996) in which covariance matrices are transformed
directly on Euclidean vector space using the Cholesky
decomposition. The idea is based on the property that
every symmetric, positive definite matrices (covariance
matrices) has a unique factorization whose elements
can be used to construct a small set of points in
Euclidean space. Once this is achieved, it becomes
straightforward to incorporate the mean vector of the
features, thus resulting in an enriched representation
which encodes both first and second-order statistics.

Let C be a d · d covariance matrix, the corre-
sponding set of Sigma Points S¼ {si} can be computed
as:

si ¼ a
ffiffiffi
d
p

Li if 1 % i % d
$a

ffiffiffi
d
p

Li if dþ 1 % i % 2d

"
ð5Þ

where Li is the ith column of the lower triangular
matrix L obtained with the Cholesky decomposition
C¼LLT. Using the set S given in Equation 5, a feature
vector can be obtained by simply concatenating its
elements. Moreover, first-order statistics can be easily
incorporated to this representation scheme by adding
the mean vector of the features l. We denote this
enriched feature vector as W (C):

WðCÞ ¼ ðl; s1; . . . sd; ; sdþ1; . . . ; s2dÞT ð6Þ
For all the experiments in this paper, we take a¼

ffiffiffi
2
p

.

Local saliency estimation

Given an input image I, our model reshapes the
image to a square form and then decomposes it into
non-overlapping regions of square blocks {Ri}, which
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: d-dimensional feature points inside R

Incorporating center bias

The experiments on human eye fixations demon-
strate that there is a tendency in humans to look
towards the image center, which is called the center
bias. This bias is mainly explained by several factors
including (a) the photographer bias (tendency of
photographers to place objects of interest in the center
of photographs), (b) the viewing strategy (tendency of
participants to focus on the center to obtain more
information), or (c) the motor bias (center being the
optimal location to initiate a visual search) (Judd et al.,
2009; Tatler, 2007; Tseng, Carmi, Cameron, Munoz, &
Itti, 2009; Zhang et al., 2008). However, only a limited
number of studies additionally consider the center bias
in their models (Harel et al., 2007; Judd et al., 2009;
Zhao & Koch, 2011). It has been shown that adding the
center bias to the saliency models improves the quality
of their predictions. Thus, we included a center bias
into our second model by defining the saliency of
region Ri as follows:

S0ðRiÞ ¼ 1$ jjxi $ xcjj
Z

! "
% SðRiÞ ð11Þ

where xc is the coordinates of the image center and Z is
a normalization factor equal to maxi 0!Ijjxi 0 $ xcjj. This
additional weight reflects the proximity to the region Ri

to the image center and thus signifies the center bias.

Scale-space extension

The objects that can be treated as salient in an image
can and do appear over a wide range of scales. This
suggests that saliency detection should be carried out
simultaneously at all possible scales. For that purpose,
most multiscale saliency models extract multiple
saliency maps, each at a different scale, and then
employ a fusion strategy to combine these maps to
come up with one final saliency map. The single-scale
saliency models described in the previous section can be
easily extended to operate on multiple scales by
following a similar idea.

Let K¼ {k} denote the set of region sizes
representing the scales at which the saliency predictions

is carried out. The master saliency map is given by the
product of individual saliency maps extracted at
different scales, convolved with a Gaussian, as follows:

SðxÞ ¼ GrðxÞ*
Y

k!K

ŜkðxÞ ð12Þ

where Ŝk (x) denotes the saliency score of pixel x at
scale k, and r is the standard deviation of the Gaussian
filter.

The above definition considers a spatial coincidence
assumption that an image part should treated as salient
if it is salient at all scales. For a sample image, Figure 4
presents saliency maps extracted at three different
scales. As can be seen, as we moved to coarser scales,
the model tended to capture the location of the visually
most prominent region in the image. Figure 4e shows
the combined saliency map obtained with the suggested
multiscale approach using covariance features. In the
master map, the red bell pepper in the image stands out
among the surrounding green peppers.

Implementation details

In our implementation, we used very simple visual
features, namely color, orientation, and spatial infor-
mation. Based on these features, an image pixel is
represented with a seven-dimensional feature vector:

Fðx;yÞ

¼ Lðx;yÞ aðx;yÞ bðx;yÞ ]Iðx;yÞ
]x

#####

#####
]Iðx;yÞ

]y

#####

##### x y

" #T

ð13Þ
where L, a, and b denote the color of the pixel in
L*a*b* color space, j]I/]xj, j]I/]yj, are the edge
orientation information, and (x,y) denotes the pixel
location. Hence, the covariance descriptor of a region is
computed as a 7 · 7 matrix.

In our model, there are three parameters related to
the notion of scale: (a) the set of region sizes K, (b) the
neighborhood radius r, and (c) the smoothing param-

Figure 4. (a) Input image. (b–d) Predicted saliency maps obtained at different scales (from the finest to the coarsest). (e) Final saliency
map according to the spatial coincidence assumption described in the text.
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Covariances alone can not explain 
changes in the means! 

In the Region covariances section, we provide the
technical details about the proposed model. First, we
review the region covariance descriptor and then give
the details of our saliency model. Finally, we provide
the implementation details.

Region covariances

Covariance of features was first proposed as a
compact region descriptor by Tuzel et al. (2006). Since
then, it has been effectively utilized in various high-level
computer vision problems such as texture discrimina-
tion (Tuzel et al., 2006), object detection (Tuzel et al.,
2006; Tuzel, Porikli, & Meer, 2008), and object tracking
(Porikli, Tuzel, & Meer, 2006). For the formal
definition, let I denote an image, and F be the feature
image extracted from I:

Fðx;yÞ ¼ UðI;x;yÞ ð1Þ
where U denotes the d-dimensional function of features
such as intensity, color, orientation, spatial attributes, etc.

Then, a region R inside F can be represented with a
d · d covariance matrix CR of the feature points:

CR ¼
1

n$ 1

Xn

i¼1
ðfi $ lÞðfi $ lÞT ð2Þ

with {fi}i ¼ 1. . .n denoting the d-dimensional feature
points inside R, and l being the mean of these points.

Tuzel et al. (2006) also proposed a fast way of
computing covariance matrices of rectangular regions
by using the first and the second-order integral image
representations (Viola & Jones, 2001) with O(d2)
computational complexity.

Note that covariance matrices do not lie on
Euclidean space. Hence, to compute the distance
between two covariances C1 and C2, Tuzel et al. (2006)
suggested using the metric proposed by Föerstner and
Moonen (1999):

qðC1;C2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
ln2kiðC1;C2Þ

s

ð3Þ

where {ki(C1,C2)}i ¼ 1. . .n and {xi} are the generalized
eigenvalues and the generalized eigenvectors of C1 and
C2, respectively, satisfying

kiC1xi $ C2xi ¼ 0; i ¼ 1 . . . d: ð4Þ
A covariance matrix provides a natural way of
combining different visual features with its diagonal
elements representing the feature variances and its
nondiagonal elements representing the correlations
among the features. Unlike the common practice in the
existing computational saliency models that assume the
responses of linear filters are independent of one

another and combined linearly, incorporating second-
order image statistics within a single descriptor encodes
the local structure exceedingly well and provides
robustness and high discriminative power. It is worth
noting that Karklin and Lewicki (2009) speculated that
nonlinearity in complex cells in the primary visual
cortex (V1) can be explained by the higher-level visual
neurons, which encode statistical variations describing
local image regions through covariance matrices.
Although we based our decision solely on computa-
tional grounds, the former argument provides an
insight into the biological plausibility of using region
covariances in saliency estimation.

Incorporating first-order statistics

In distinguishing between two different distributions
of features, first-order statistics could also play an
important role. To remedy this issue, Hong, Chang,
Shan, Chen, and Gao (2009) proposed employing the
notion of so-called Sigma Points (Julier & Uhlmann,
1996) in which covariance matrices are transformed
directly on Euclidean vector space using the Cholesky
decomposition. The idea is based on the property that
every symmetric, positive definite matrices (covariance
matrices) has a unique factorization whose elements
can be used to construct a small set of points in
Euclidean space. Once this is achieved, it becomes
straightforward to incorporate the mean vector of the
features, thus resulting in an enriched representation
which encodes both first and second-order statistics.

Let C be a d · d covariance matrix, the corre-
sponding set of Sigma Points S¼ {si} can be computed
as:

si ¼ a
ffiffiffi
d
p

Li if 1 % i % d
$a

ffiffiffi
d
p

Li if dþ 1 % i % 2d

"
ð5Þ

where Li is the ith column of the lower triangular
matrix L obtained with the Cholesky decomposition
C¼LLT. Using the set S given in Equation 5, a feature
vector can be obtained by simply concatenating its
elements. Moreover, first-order statistics can be easily
incorporated to this representation scheme by adding
the mean vector of the features l. We denote this
enriched feature vector as W (C):

WðCÞ ¼ ðl; s1; . . . sd; ; sdþ1; . . . ; s2dÞT ð6Þ
For all the experiments in this paper, we take a¼

ffiffiffi
2
p

.

Local saliency estimation

Given an input image I, our model reshapes the
image to a square form and then decomposes it into
non-overlapping regions of square blocks {Ri}, which
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In the Region covariances section, we provide the
technical details about the proposed model. First, we
review the region covariance descriptor and then give
the details of our saliency model. Finally, we provide
the implementation details.

Region covariances

Covariance of features was first proposed as a
compact region descriptor by Tuzel et al. (2006). Since
then, it has been effectively utilized in various high-level
computer vision problems such as texture discrimina-
tion (Tuzel et al., 2006), object detection (Tuzel et al.,
2006; Tuzel, Porikli, & Meer, 2008), and object tracking
(Porikli, Tuzel, & Meer, 2006). For the formal
definition, let I denote an image, and F be the feature
image extracted from I:

Fðx;yÞ ¼ UðI;x;yÞ ð1Þ
where U denotes the d-dimensional function of features
such as intensity, color, orientation, spatial attributes, etc.

Then, a region R inside F can be represented with a
d · d covariance matrix CR of the feature points:

CR ¼
1

n$ 1

Xn

i¼1
ðfi $ lÞðfi $ lÞT ð2Þ

with {fi}i ¼ 1. . .n denoting the d-dimensional feature
points inside R, and l being the mean of these points.

Tuzel et al. (2006) also proposed a fast way of
computing covariance matrices of rectangular regions
by using the first and the second-order integral image
representations (Viola & Jones, 2001) with O(d2)
computational complexity.

Note that covariance matrices do not lie on
Euclidean space. Hence, to compute the distance
between two covariances C1 and C2, Tuzel et al. (2006)
suggested using the metric proposed by Föerstner and
Moonen (1999):

qðC1;C2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
ln2kiðC1;C2Þ
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where {ki(C1,C2)}i ¼ 1. . .n and {xi} are the generalized
eigenvalues and the generalized eigenvectors of C1 and
C2, respectively, satisfying

kiC1xi $ C2xi ¼ 0; i ¼ 1 . . . d: ð4Þ
A covariance matrix provides a natural way of
combining different visual features with its diagonal
elements representing the feature variances and its
nondiagonal elements representing the correlations
among the features. Unlike the common practice in the
existing computational saliency models that assume the
responses of linear filters are independent of one

another and combined linearly, incorporating second-
order image statistics within a single descriptor encodes
the local structure exceedingly well and provides
robustness and high discriminative power. It is worth
noting that Karklin and Lewicki (2009) speculated that
nonlinearity in complex cells in the primary visual
cortex (V1) can be explained by the higher-level visual
neurons, which encode statistical variations describing
local image regions through covariance matrices.
Although we based our decision solely on computa-
tional grounds, the former argument provides an
insight into the biological plausibility of using region
covariances in saliency estimation.

Incorporating first-order statistics

In distinguishing between two different distributions
of features, first-order statistics could also play an
important role. To remedy this issue, Hong, Chang,
Shan, Chen, and Gao (2009) proposed employing the
notion of so-called Sigma Points (Julier & Uhlmann,
1996) in which covariance matrices are transformed
directly on Euclidean vector space using the Cholesky
decomposition. The idea is based on the property that
every symmetric, positive definite matrices (covariance
matrices) has a unique factorization whose elements
can be used to construct a small set of points in
Euclidean space. Once this is achieved, it becomes
straightforward to incorporate the mean vector of the
features, thus resulting in an enriched representation
which encodes both first and second-order statistics.

Let C be a d · d covariance matrix, the corre-
sponding set of Sigma Points S¼ {si} can be computed
as:

si ¼ a
ffiffiffi
d
p

Li if 1 % i % d
$a

ffiffiffi
d
p

Li if dþ 1 % i % 2d

"
ð5Þ

where Li is the ith column of the lower triangular
matrix L obtained with the Cholesky decomposition
C¼LLT. Using the set S given in Equation 5, a feature
vector can be obtained by simply concatenating its
elements. Moreover, first-order statistics can be easily
incorporated to this representation scheme by adding
the mean vector of the features l. We denote this
enriched feature vector as W (C):

WðCÞ ¼ ðl; s1; . . . sd; ; sdþ1; . . . ; s2dÞT ð6Þ
For all the experiments in this paper, we take a¼

ffiffiffi
2
p

.

Local saliency estimation

Given an input image I, our model reshapes the
image to a square form and then decomposes it into
non-overlapping regions of square blocks {Ri}, which
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In the Region covariances section, we provide the
technical details about the proposed model. First, we
review the region covariance descriptor and then give
the details of our saliency model. Finally, we provide
the implementation details.

Region covariances

Covariance of features was first proposed as a
compact region descriptor by Tuzel et al. (2006). Since
then, it has been effectively utilized in various high-level
computer vision problems such as texture discrimina-
tion (Tuzel et al., 2006), object detection (Tuzel et al.,
2006; Tuzel, Porikli, & Meer, 2008), and object tracking
(Porikli, Tuzel, & Meer, 2006). For the formal
definition, let I denote an image, and F be the feature
image extracted from I:

Fðx;yÞ ¼ UðI;x;yÞ ð1Þ
where U denotes the d-dimensional function of features
such as intensity, color, orientation, spatial attributes, etc.

Then, a region R inside F can be represented with a
d · d covariance matrix CR of the feature points:

CR ¼
1

n$ 1

Xn

i¼1
ðfi $ lÞðfi $ lÞT ð2Þ

with {fi}i ¼ 1. . .n denoting the d-dimensional feature
points inside R, and l being the mean of these points.

Tuzel et al. (2006) also proposed a fast way of
computing covariance matrices of rectangular regions
by using the first and the second-order integral image
representations (Viola & Jones, 2001) with O(d2)
computational complexity.

Note that covariance matrices do not lie on
Euclidean space. Hence, to compute the distance
between two covariances C1 and C2, Tuzel et al. (2006)
suggested using the metric proposed by Föerstner and
Moonen (1999):

qðC1;C2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
ln2kiðC1;C2Þ
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ð3Þ

where {ki(C1,C2)}i ¼ 1. . .n and {xi} are the generalized
eigenvalues and the generalized eigenvectors of C1 and
C2, respectively, satisfying

kiC1xi $ C2xi ¼ 0; i ¼ 1 . . . d: ð4Þ
A covariance matrix provides a natural way of
combining different visual features with its diagonal
elements representing the feature variances and its
nondiagonal elements representing the correlations
among the features. Unlike the common practice in the
existing computational saliency models that assume the
responses of linear filters are independent of one

another and combined linearly, incorporating second-
order image statistics within a single descriptor encodes
the local structure exceedingly well and provides
robustness and high discriminative power. It is worth
noting that Karklin and Lewicki (2009) speculated that
nonlinearity in complex cells in the primary visual
cortex (V1) can be explained by the higher-level visual
neurons, which encode statistical variations describing
local image regions through covariance matrices.
Although we based our decision solely on computa-
tional grounds, the former argument provides an
insight into the biological plausibility of using region
covariances in saliency estimation.

Incorporating first-order statistics

In distinguishing between two different distributions
of features, first-order statistics could also play an
important role. To remedy this issue, Hong, Chang,
Shan, Chen, and Gao (2009) proposed employing the
notion of so-called Sigma Points (Julier & Uhlmann,
1996) in which covariance matrices are transformed
directly on Euclidean vector space using the Cholesky
decomposition. The idea is based on the property that
every symmetric, positive definite matrices (covariance
matrices) has a unique factorization whose elements
can be used to construct a small set of points in
Euclidean space. Once this is achieved, it becomes
straightforward to incorporate the mean vector of the
features, thus resulting in an enriched representation
which encodes both first and second-order statistics.

Let C be a d · d covariance matrix, the corre-
sponding set of Sigma Points S¼ {si} can be computed
as:

si ¼ a
ffiffiffi
d
p

Li if 1 % i % d
$a

ffiffiffi
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Li if dþ 1 % i % 2d
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where Li is the ith column of the lower triangular
matrix L obtained with the Cholesky decomposition
C¼LLT. Using the set S given in Equation 5, a feature
vector can be obtained by simply concatenating its
elements. Moreover, first-order statistics can be easily
incorporated to this representation scheme by adding
the mean vector of the features l. We denote this
enriched feature vector as W (C):

WðCÞ ¼ ðl; s1; . . . sd; ; sdþ1; . . . ; s2dÞT ð6Þ
For all the experiments in this paper, we take a¼

ffiffiffi
2
p

.

Local saliency estimation

Given an input image I, our model reshapes the
image to a square form and then decomposes it into
non-overlapping regions of square blocks {Ri}, which
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In the Region covariances section, we provide the
technical details about the proposed model. First, we
review the region covariance descriptor and then give
the details of our saliency model. Finally, we provide
the implementation details.

Region covariances

Covariance of features was first proposed as a
compact region descriptor by Tuzel et al. (2006). Since
then, it has been effectively utilized in various high-level
computer vision problems such as texture discrimina-
tion (Tuzel et al., 2006), object detection (Tuzel et al.,
2006; Tuzel, Porikli, & Meer, 2008), and object tracking
(Porikli, Tuzel, & Meer, 2006). For the formal
definition, let I denote an image, and F be the feature
image extracted from I:

Fðx;yÞ ¼ UðI;x;yÞ ð1Þ
where U denotes the d-dimensional function of features
such as intensity, color, orientation, spatial attributes, etc.

Then, a region R inside F can be represented with a
d · d covariance matrix CR of the feature points:

CR ¼
1

n$ 1

Xn

i¼1
ðfi $ lÞðfi $ lÞT ð2Þ

with {fi}i ¼ 1. . .n denoting the d-dimensional feature
points inside R, and l being the mean of these points.

Tuzel et al. (2006) also proposed a fast way of
computing covariance matrices of rectangular regions
by using the first and the second-order integral image
representations (Viola & Jones, 2001) with O(d2)
computational complexity.

Note that covariance matrices do not lie on
Euclidean space. Hence, to compute the distance
between two covariances C1 and C2, Tuzel et al. (2006)
suggested using the metric proposed by Föerstner and
Moonen (1999):

qðC1;C2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
ln2kiðC1;C2Þ
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where {ki(C1,C2)}i ¼ 1. . .n and {xi} are the generalized
eigenvalues and the generalized eigenvectors of C1 and
C2, respectively, satisfying

kiC1xi $ C2xi ¼ 0; i ¼ 1 . . . d: ð4Þ
A covariance matrix provides a natural way of
combining different visual features with its diagonal
elements representing the feature variances and its
nondiagonal elements representing the correlations
among the features. Unlike the common practice in the
existing computational saliency models that assume the
responses of linear filters are independent of one

another and combined linearly, incorporating second-
order image statistics within a single descriptor encodes
the local structure exceedingly well and provides
robustness and high discriminative power. It is worth
noting that Karklin and Lewicki (2009) speculated that
nonlinearity in complex cells in the primary visual
cortex (V1) can be explained by the higher-level visual
neurons, which encode statistical variations describing
local image regions through covariance matrices.
Although we based our decision solely on computa-
tional grounds, the former argument provides an
insight into the biological plausibility of using region
covariances in saliency estimation.

Incorporating first-order statistics

In distinguishing between two different distributions
of features, first-order statistics could also play an
important role. To remedy this issue, Hong, Chang,
Shan, Chen, and Gao (2009) proposed employing the
notion of so-called Sigma Points (Julier & Uhlmann,
1996) in which covariance matrices are transformed
directly on Euclidean vector space using the Cholesky
decomposition. The idea is based on the property that
every symmetric, positive definite matrices (covariance
matrices) has a unique factorization whose elements
can be used to construct a small set of points in
Euclidean space. Once this is achieved, it becomes
straightforward to incorporate the mean vector of the
features, thus resulting in an enriched representation
which encodes both first and second-order statistics.

Let C be a d · d covariance matrix, the corre-
sponding set of Sigma Points S¼ {si} can be computed
as:

si ¼ a
ffiffiffi
d
p

Li if 1 % i % d
$a

ffiffiffi
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Li if dþ 1 % i % 2d
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where Li is the ith column of the lower triangular
matrix L obtained with the Cholesky decomposition
C¼LLT. Using the set S given in Equation 5, a feature
vector can be obtained by simply concatenating its
elements. Moreover, first-order statistics can be easily
incorporated to this representation scheme by adding
the mean vector of the features l. We denote this
enriched feature vector as W (C):

WðCÞ ¼ ðl; s1; . . . sd; ; sdþ1; . . . ; s2dÞT ð6Þ
For all the experiments in this paper, we take a¼

ffiffiffi
2
p

.

Local saliency estimation

Given an input image I, our model reshapes the
image to a square form and then decomposes it into
non-overlapping regions of square blocks {Ri}, which
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are of size k · k pixels. The saliency of a block is
estimated by comparing it with its nearby context. If it
locally displays distinct characteristics, it is regarded as
salient. The region properties depend on the pixels
within the region, and thus it can be argued that the
region size k determines the scale at which the saliency
prediction is performed. As compared to similar models
that use local patch-based strategies (Borji & Itti, 2012;
Duan, Wu, Miao, Qing, & Fu, 2011; Goferman et al.,
2010; Seo & Milanfar, 2009), the main novelty of our
model comes from using covariance descriptors of the
regions to represent their visual characteristics.

In this study, we conducted experiments on two
different versions of our model which respectively
employed (a) covariance features only and (b) com-
bined covariance and mean features.

Model 1: Saliency using covariance features

Let Ri denote the region under consideration whose
immediate context is defined by the regions {Rj} within
a radius of r. The saliency of Ri is defined as the
weighted average of the dissimilarities between Ri to the
m most similar regions around it. More formally, the
saliency of region Ri is given by:

SðRiÞ ¼
1

m

Xm

j¼1
dðRi;RjÞ ð7Þ

where the m most similar regions to Ri is found
according to the dissimilarity measure d(Ri, Rj) defined
as:

dðRi;RjÞ ¼
qðCi;CjÞ

1þ jjxi % xjjj
ð8Þ

with Ci and Cj denoting the covariance matrices, and xi
and xj being the image coordinates of the center of the
regions Ri and Rj, respectively. In determining the
distinctiveness of a region, weighting covariance
distances by inverse spatial distance decreases the
influence of visually similar nearby regions and
somehow introduces a grouping-like effect (see Figure
2).

Note that the region size k specifies the resolution of
the saliency map. Hence, in order to get a map at the
resolution of the original image I, we resized the
estimated saliency maps back to the original size. We
refer to the interpolated map as Ŝk denoting the
saliency at scale k.

Model 2: Saliency using covariance and mean features

In our first model, we employed covariance features
to compute the saliency map of an image. Although
covariance matrices can effectively encode local
structure information by using the second-order
statistical relations among features, first-order statis-
tics (mean) can be also valuable in capturing saliency
of an image region with respect to its surroundings.
The importance of looking at the difference in the
means is apparent in Figure 3. It depicts a checker-
board board image that contains a rectangular region
at the center whose contrast is lower than the
surrounding region and so draws our attention. This
rectangular region receives a low saliency value from
our first model because the covariances are the same
for the center and the surrounding regions. In
contrast, since the means are different, an analysis
based on first-order statistics would make this region
pop out from its surroundings.

To eliminate the shortcoming of the proposed
Model 1 already mentioned, we incorporated the mean
information into our covariance-based model and came
up with a second model in which the saliency of region
Ri is given by

SðRiÞ ¼
1

m

Xm

j¼1
d0ðRi;RjÞ ð9Þ

where the m most similar regions to Ri is found
according to the dissimilarity measure d0(Ri, Rj), which
is defined as:

d0ðRi;RjÞ ¼
jjWðCiÞ %WðCjÞjj
1þ jjxi % xjjj

ð10Þ

with W(Ci) and W(Cj) denoting the feature vectors with
the incorporated first-order statistics (Equation 6).
Again, the estimated saliency maps at scale k could be
interpolated to obtain a map Ŝk, which is of the same
size as the input image.

Figure 3. A synthetic image that highlights a case in which
considering only covariance features could not provide an
accurate saliency prediction whereas looking difference in the
means could.
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For covariance descriptor:

For sigma points descriptor:



CovSal (Erdem and Erdem, 2013)
• If the patch is highly dissimilar to the patches 

surrounding it           rare/salient
• Otherwise         common/non-salient
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CovSal (Erdem and Erdem, 2013)
• The saliency of Ri is defined as the weighted 

average of the dissimilarities between Ri to the  
m most similar regions around it.
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are of size k · k pixels. The saliency of a block is
estimated by comparing it with its nearby context. If it
locally displays distinct characteristics, it is regarded as
salient. The region properties depend on the pixels
within the region, and thus it can be argued that the
region size k determines the scale at which the saliency
prediction is performed. As compared to similar models
that use local patch-based strategies (Borji & Itti, 2012;
Duan, Wu, Miao, Qing, & Fu, 2011; Goferman et al.,
2010; Seo & Milanfar, 2009), the main novelty of our
model comes from using covariance descriptors of the
regions to represent their visual characteristics.

In this study, we conducted experiments on two
different versions of our model which respectively
employed (a) covariance features only and (b) com-
bined covariance and mean features.

Model 1: Saliency using covariance features

Let Ri denote the region under consideration whose
immediate context is defined by the regions {Rj} within
a radius of r. The saliency of Ri is defined as the
weighted average of the dissimilarities between Ri to the
m most similar regions around it. More formally, the
saliency of region Ri is given by:

SðRiÞ ¼
1
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j¼1
dðRi;RjÞ ð7Þ

where the m most similar regions to Ri is found
according to the dissimilarity measure d(Ri, Rj) defined
as:

dðRi;RjÞ ¼
qðCi;CjÞ

1þ jjxi % xjjj
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with Ci and Cj denoting the covariance matrices, and xi
and xj being the image coordinates of the center of the
regions Ri and Rj, respectively. In determining the
distinctiveness of a region, weighting covariance
distances by inverse spatial distance decreases the
influence of visually similar nearby regions and
somehow introduces a grouping-like effect (see Figure
2).

Note that the region size k specifies the resolution of
the saliency map. Hence, in order to get a map at the
resolution of the original image I, we resized the
estimated saliency maps back to the original size. We
refer to the interpolated map as Ŝk denoting the
saliency at scale k.

Model 2: Saliency using covariance and mean features

In our first model, we employed covariance features
to compute the saliency map of an image. Although
covariance matrices can effectively encode local
structure information by using the second-order
statistical relations among features, first-order statis-
tics (mean) can be also valuable in capturing saliency
of an image region with respect to its surroundings.
The importance of looking at the difference in the
means is apparent in Figure 3. It depicts a checker-
board board image that contains a rectangular region
at the center whose contrast is lower than the
surrounding region and so draws our attention. This
rectangular region receives a low saliency value from
our first model because the covariances are the same
for the center and the surrounding regions. In
contrast, since the means are different, an analysis
based on first-order statistics would make this region
pop out from its surroundings.

To eliminate the shortcoming of the proposed
Model 1 already mentioned, we incorporated the mean
information into our covariance-based model and came
up with a second model in which the saliency of region
Ri is given by

SðRiÞ ¼
1
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d0ðRi;RjÞ ð9Þ
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according to the dissimilarity measure d0(Ri, Rj), which
is defined as:

d0ðRi;RjÞ ¼
jjWðCiÞ %WðCjÞjj
1þ jjxi % xjjj

ð10Þ

with W(Ci) and W(Cj) denoting the feature vectors with
the incorporated first-order statistics (Equation 6).
Again, the estimated saliency maps at scale k could be
interpolated to obtain a map Ŝk, which is of the same
size as the input image.

Figure 3. A synthetic image that highlights a case in which
considering only covariance features could not provide an
accurate saliency prediction whereas looking difference in the
means could.
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with Ci and Cj denoting the covariance matrices, and xi
and xj being the image coordinates of the center of the
regions Ri and Rj, respectively. In determining the
distinctiveness of a region, weighting covariance
distances by inverse spatial distance decreases the
influence of visually similar nearby regions and
somehow introduces a grouping-like effect (see Figure
2).

Note that the region size k specifies the resolution of
the saliency map. Hence, in order to get a map at the
resolution of the original image I, we resized the
estimated saliency maps back to the original size. We
refer to the interpolated map as Ŝk denoting the
saliency at scale k.

Model 2: Saliency using covariance and mean features

In our first model, we employed covariance features
to compute the saliency map of an image. Although
covariance matrices can effectively encode local
structure information by using the second-order
statistical relations among features, first-order statis-
tics (mean) can be also valuable in capturing saliency
of an image region with respect to its surroundings.
The importance of looking at the difference in the
means is apparent in Figure 3. It depicts a checker-
board board image that contains a rectangular region
at the center whose contrast is lower than the
surrounding region and so draws our attention. This
rectangular region receives a low saliency value from
our first model because the covariances are the same
for the center and the surrounding regions. In
contrast, since the means are different, an analysis
based on first-order statistics would make this region
pop out from its surroundings.

To eliminate the shortcoming of the proposed
Model 1 already mentioned, we incorporated the mean
information into our covariance-based model and came
up with a second model in which the saliency of region
Ri is given by

SðRiÞ ¼
1

m

Xm

j¼1
d0ðRi;RjÞ ð9Þ

where the m most similar regions to Ri is found
according to the dissimilarity measure d0(Ri, Rj), which
is defined as:

d0ðRi;RjÞ ¼
jjWðCiÞ %WðCjÞjj
1þ jjxi % xjjj

ð10Þ

with W(Ci) and W(Cj) denoting the feature vectors with
the incorporated first-order statistics (Equation 6).
Again, the estimated saliency maps at scale k could be
interpolated to obtain a map Ŝk, which is of the same
size as the input image.

Figure 3. A synthetic image that highlights a case in which
considering only covariance features could not provide an
accurate saliency prediction whereas looking difference in the
means could.
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locally displays distinct characteristics, it is regarded as
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within the region, and thus it can be argued that the
region size k determines the scale at which the saliency
prediction is performed. As compared to similar models
that use local patch-based strategies (Borji & Itti, 2012;
Duan, Wu, Miao, Qing, & Fu, 2011; Goferman et al.,
2010; Seo & Milanfar, 2009), the main novelty of our
model comes from using covariance descriptors of the
regions to represent their visual characteristics.

In this study, we conducted experiments on two
different versions of our model which respectively
employed (a) covariance features only and (b) com-
bined covariance and mean features.

Model 1: Saliency using covariance features
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with Ci and Cj denoting the covariance matrices, and xi
and xj being the image coordinates of the center of the
regions Ri and Rj, respectively. In determining the
distinctiveness of a region, weighting covariance
distances by inverse spatial distance decreases the
influence of visually similar nearby regions and
somehow introduces a grouping-like effect (see Figure
2).

Note that the region size k specifies the resolution of
the saliency map. Hence, in order to get a map at the
resolution of the original image I, we resized the
estimated saliency maps back to the original size. We
refer to the interpolated map as Ŝk denoting the
saliency at scale k.

Model 2: Saliency using covariance and mean features

In our first model, we employed covariance features
to compute the saliency map of an image. Although
covariance matrices can effectively encode local
structure information by using the second-order
statistical relations among features, first-order statis-
tics (mean) can be also valuable in capturing saliency
of an image region with respect to its surroundings.
The importance of looking at the difference in the
means is apparent in Figure 3. It depicts a checker-
board board image that contains a rectangular region
at the center whose contrast is lower than the
surrounding region and so draws our attention. This
rectangular region receives a low saliency value from
our first model because the covariances are the same
for the center and the surrounding regions. In
contrast, since the means are different, an analysis
based on first-order statistics would make this region
pop out from its surroundings.

To eliminate the shortcoming of the proposed
Model 1 already mentioned, we incorporated the mean
information into our covariance-based model and came
up with a second model in which the saliency of region
Ri is given by

SðRiÞ ¼
1
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Xm

j¼1
d0ðRi;RjÞ ð9Þ

where the m most similar regions to Ri is found
according to the dissimilarity measure d0(Ri, Rj), which
is defined as:

d0ðRi;RjÞ ¼
jjWðCiÞ %WðCjÞjj
1þ jjxi % xjjj

ð10Þ

with W(Ci) and W(Cj) denoting the feature vectors with
the incorporated first-order statistics (Equation 6).
Again, the estimated saliency maps at scale k could be
interpolated to obtain a map Ŝk, which is of the same
size as the input image.

Figure 3. A synthetic image that highlights a case in which
considering only covariance features could not provide an
accurate saliency prediction whereas looking difference in the
means could.
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weighting covariance distances by inverse 
spatial distance decreases the influence of 
visually similar nearby regions

Model 1

Model 2



CovSal (Erdem and Erdem, 2013)
• In an image, salient parts can and do appear over a wide range 

of scales.
• Saliency detection should be carried out simultaneously at  

multiple scales. 
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Incorporating center bias

The experiments on human eye fixations demon-
strate that there is a tendency in humans to look
towards the image center, which is called the center
bias. This bias is mainly explained by several factors
including (a) the photographer bias (tendency of
photographers to place objects of interest in the center
of photographs), (b) the viewing strategy (tendency of
participants to focus on the center to obtain more
information), or (c) the motor bias (center being the
optimal location to initiate a visual search) (Judd et al.,
2009; Tatler, 2007; Tseng, Carmi, Cameron, Munoz, &
Itti, 2009; Zhang et al., 2008). However, only a limited
number of studies additionally consider the center bias
in their models (Harel et al., 2007; Judd et al., 2009;
Zhao & Koch, 2011). It has been shown that adding the
center bias to the saliency models improves the quality
of their predictions. Thus, we included a center bias
into our second model by defining the saliency of
region Ri as follows:

S0ðRiÞ ¼ 1$ jjxi $ xcjj
Z

! "
% SðRiÞ ð11Þ

where xc is the coordinates of the image center and Z is
a normalization factor equal to maxi 0!Ijjxi 0 $ xcjj. This
additional weight reflects the proximity to the region Ri

to the image center and thus signifies the center bias.

Scale-space extension

The objects that can be treated as salient in an image
can and do appear over a wide range of scales. This
suggests that saliency detection should be carried out
simultaneously at all possible scales. For that purpose,
most multiscale saliency models extract multiple
saliency maps, each at a different scale, and then
employ a fusion strategy to combine these maps to
come up with one final saliency map. The single-scale
saliency models described in the previous section can be
easily extended to operate on multiple scales by
following a similar idea.

Let K¼ {k} denote the set of region sizes
representing the scales at which the saliency predictions

is carried out. The master saliency map is given by the
product of individual saliency maps extracted at
different scales, convolved with a Gaussian, as follows:

SðxÞ ¼ GrðxÞ*
Y

k!K

ŜkðxÞ ð12Þ

where Ŝk (x) denotes the saliency score of pixel x at
scale k, and r is the standard deviation of the Gaussian
filter.

The above definition considers a spatial coincidence
assumption that an image part should treated as salient
if it is salient at all scales. For a sample image, Figure 4
presents saliency maps extracted at three different
scales. As can be seen, as we moved to coarser scales,
the model tended to capture the location of the visually
most prominent region in the image. Figure 4e shows
the combined saliency map obtained with the suggested
multiscale approach using covariance features. In the
master map, the red bell pepper in the image stands out
among the surrounding green peppers.

Implementation details

In our implementation, we used very simple visual
features, namely color, orientation, and spatial infor-
mation. Based on these features, an image pixel is
represented with a seven-dimensional feature vector:

Fðx;yÞ

¼ Lðx;yÞ aðx;yÞ bðx;yÞ ]Iðx;yÞ
]x

#####

#####
]Iðx;yÞ

]y

#####

##### x y

" #T

ð13Þ
where L, a, and b denote the color of the pixel in
L*a*b* color space, j]I/]xj, j]I/]yj, are the edge
orientation information, and (x,y) denotes the pixel
location. Hence, the covariance descriptor of a region is
computed as a 7 · 7 matrix.

In our model, there are three parameters related to
the notion of scale: (a) the set of region sizes K, (b) the
neighborhood radius r, and (c) the smoothing param-

Figure 4. (a) Input image. (b–d) Predicted saliency maps obtained at different scales (from the finest to the coarsest). (e) Final saliency
map according to the spatial coincidence assumption described in the text.
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Spatial coincidence assumption:  
An image part is treated as salient if 
it is salient at all scales.

• Employ a fusion strategy to 
combine single-scale maps to 
come up with one final saliency 
map:  



CovSal (Erdem and Erdem, 2013)
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scale 3

final saliency map
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strate that there is a tendency in humans to look
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bias. This bias is mainly explained by several factors
including (a) the photographer bias (tendency of
photographers to place objects of interest in the center
of photographs), (b) the viewing strategy (tendency of
participants to focus on the center to obtain more
information), or (c) the motor bias (center being the
optimal location to initiate a visual search) (Judd et al.,
2009; Tatler, 2007; Tseng, Carmi, Cameron, Munoz, &
Itti, 2009; Zhang et al., 2008). However, only a limited
number of studies additionally consider the center bias
in their models (Harel et al., 2007; Judd et al., 2009;
Zhao & Koch, 2011). It has been shown that adding the
center bias to the saliency models improves the quality
of their predictions. Thus, we included a center bias
into our second model by defining the saliency of
region Ri as follows:

S0ðRiÞ ¼ 1$ jjxi $ xcjj
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% SðRiÞ ð11Þ

where xc is the coordinates of the image center and Z is
a normalization factor equal to maxi 0!Ijjxi 0 $ xcjj. This
additional weight reflects the proximity to the region Ri

to the image center and thus signifies the center bias.
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The objects that can be treated as salient in an image
can and do appear over a wide range of scales. This
suggests that saliency detection should be carried out
simultaneously at all possible scales. For that purpose,
most multiscale saliency models extract multiple
saliency maps, each at a different scale, and then
employ a fusion strategy to combine these maps to
come up with one final saliency map. The single-scale
saliency models described in the previous section can be
easily extended to operate on multiple scales by
following a similar idea.

Let K¼ {k} denote the set of region sizes
representing the scales at which the saliency predictions

is carried out. The master saliency map is given by the
product of individual saliency maps extracted at
different scales, convolved with a Gaussian, as follows:

SðxÞ ¼ GrðxÞ*
Y
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ŜkðxÞ ð12Þ

where Ŝk (x) denotes the saliency score of pixel x at
scale k, and r is the standard deviation of the Gaussian
filter.

The above definition considers a spatial coincidence
assumption that an image part should treated as salient
if it is salient at all scales. For a sample image, Figure 4
presents saliency maps extracted at three different
scales. As can be seen, as we moved to coarser scales,
the model tended to capture the location of the visually
most prominent region in the image. Figure 4e shows
the combined saliency map obtained with the suggested
multiscale approach using covariance features. In the
master map, the red bell pepper in the image stands out
among the surrounding green peppers.

Implementation details

In our implementation, we used very simple visual
features, namely color, orientation, and spatial infor-
mation. Based on these features, an image pixel is
represented with a seven-dimensional feature vector:

Fðx;yÞ

¼ Lðx;yÞ aðx;yÞ bðx;yÞ ]Iðx;yÞ
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where L, a, and b denote the color of the pixel in
L*a*b* color space, j]I/]xj, j]I/]yj, are the edge
orientation information, and (x,y) denotes the pixel
location. Hence, the covariance descriptor of a region is
computed as a 7 · 7 matrix.

In our model, there are three parameters related to
the notion of scale: (a) the set of region sizes K, (b) the
neighborhood radius r, and (c) the smoothing param-

Figure 4. (a) Input image. (b–d) Predicted saliency maps obtained at different scales (from the finest to the coarsest). (e) Final saliency
map according to the spatial coincidence assumption described in the text.
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• Saliency analysis at 5 different 
scales.

scale 5



Benchmark Data Sets
• Benchmark image data sets with eye 

fixation data (free-viewing)
➡ Toronto data set [Bruce & Tsotsos, 2006]
➡ MIT 1003 data set [Judd et al., 2009]
➡ MIT 300 data set [Judd et al., 2012] 
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Image credits: T. Judd

eye tracking experiments

Fixations for one observer

Fixations from 15 observers

Fixation map



Center bias
• Experiments show that there is a tendency in humans to look 

towards the image center. 
 

• Why it exists?
➡ photographer bias
➡ viewing strategy
➡ motor bias
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Toronto dataset MIT 1003 data set MIT 300 data set

fixation maps averaged over all images



Summary of data sets
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model and the set of human fixations is given by the area under the ROC curve
(AUC), obtained by varying the threshold level.

For qualitative analysis, some images from the Bruce and the MIT1003 data
sets and their saliency maps predicted by our model are presented in Figure 3(a)-
(b), respectively, together with the results of the competitive models and the
human fixation density maps. Compared to other saliency models, the salient
regions estimated by our saliency model are more consistent with the fixation
density maps. Moreover, as shown in Table 1 and Table 2, the proposed approach
also outperforms the other saliency models in terms of average AUC score in
predicting human eye fixations.

Despite the widespread use of AUC score as a performance measure for visual
saliency, the authors of [18] pointed out that the ROC based evaluation su↵ers
from the drawback that it only depends on the ordering of the fixations. That
is, as long as the hit rates are high, the AUC is always high regardless of the
false alarm rate. In addition, it does not consider the spatial deviation of the
computed saliency map from the actual fixation density map. For this reason, in
the MIT300 benchmark data set [36], a similarity measure and Earth Mover’s
Distance [37] are also reported in addition to AUC scores.

Some images from the MIT300 data set and their saliency maps computed
using di↵erent saliency models, including ours, are presented in Figure 4(a).
The human fixation maps are not reported here since they are not made pub-
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Fig. 3: Some examples from (a) the Bruce data set, and (b) the MIT1003 data
set. Note here that we only report the results of the models having the five top
most AUC scores, namely Itti, GBVS, DVA, CSD, and our approach (CovSal),
along with the fixation density maps from the eye tracking data.
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model and the set of human fixations is given by the area under the ROC curve
(AUC), obtained by varying the threshold level.

For qualitative analysis, some images from the Bruce and the MIT1003 data
sets and their saliency maps predicted by our model are presented in Figure 3(a)-
(b), respectively, together with the results of the competitive models and the
human fixation density maps. Compared to other saliency models, the salient
regions estimated by our saliency model are more consistent with the fixation
density maps. Moreover, as shown in Table 1 and Table 2, the proposed approach
also outperforms the other saliency models in terms of average AUC score in
predicting human eye fixations.

Despite the widespread use of AUC score as a performance measure for visual
saliency, the authors of [18] pointed out that the ROC based evaluation su↵ers
from the drawback that it only depends on the ordering of the fixations. That
is, as long as the hit rates are high, the AUC is always high regardless of the
false alarm rate. In addition, it does not consider the spatial deviation of the
computed saliency map from the actual fixation density map. For this reason, in
the MIT300 benchmark data set [36], a similarity measure and Earth Mover’s
Distance [37] are also reported in addition to AUC scores.

Some images from the MIT300 data set and their saliency maps computed
using di↵erent saliency models, including ours, are presented in Figure 4(a).
The human fixation maps are not reported here since they are not made pub-
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Fig. 3: Some examples from (a) the Bruce data set, and (b) the MIT1003 data
set. Note here that we only report the results of the models having the five top
most AUC scores, namely Itti, GBVS, DVA, CSD, and our approach (CovSal),
along with the fixation density maps from the eye tracking data.
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such a task but still we tested it on the data set introduced in [22] which is
specifically constructed for this type of saliency detection. The data set contains
62 natural images with 4 subjects who are asked to label the most salient objects
in these images. In the evaluation, the predicted saliency maps are thresholded
and the thresholded binary maps are compared against the binary ground truth
images provided in the data set.

Figure 4(b) shows some images from the Hou data set together with the
prediction results of six best performing models and the provided ground truth.
As demonstrated in Table 4, the performance of our approach in detecting the
salient object is not as good as in predicting eye fixations. It ranked third (to-
gether with three other models Itti, DVA and SR) even if it is not specifically
designed for this task. In a follow-up work, we are planning to extend our region-
covariance based saliency model with a mechanism to detect salient objects in
images.
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Fig. 4: Some examples from (a) the MIT300 data set, and (b) the Hou data set.
Note here that we only report the results of the models having the six top most
AUC scores, namely Itti, GBVS, AIM/DVA, CSD, and our approach (CovSal).
In the MIT300 data set, the fixation maps are hidden by design. For the Hou
data set, the white region in the ground truth corresponds the region selected
by all the four subjects whereas the gray region represents the region selected
by some subjects but rejected by the others.
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model and the set of human fixations is given by the area under the ROC curve
(AUC), obtained by varying the threshold level.

For qualitative analysis, some images from the Bruce and the MIT1003 data
sets and their saliency maps predicted by our model are presented in Figure 3(a)-
(b), respectively, together with the results of the competitive models and the
human fixation density maps. Compared to other saliency models, the salient
regions estimated by our saliency model are more consistent with the fixation
density maps. Moreover, as shown in Table 1 and Table 2, the proposed approach
also outperforms the other saliency models in terms of average AUC score in
predicting human eye fixations.

Despite the widespread use of AUC score as a performance measure for visual
saliency, the authors of [18] pointed out that the ROC based evaluation su↵ers
from the drawback that it only depends on the ordering of the fixations. That
is, as long as the hit rates are high, the AUC is always high regardless of the
false alarm rate. In addition, it does not consider the spatial deviation of the
computed saliency map from the actual fixation density map. For this reason, in
the MIT300 benchmark data set [36], a similarity measure and Earth Mover’s
Distance [37] are also reported in addition to AUC scores.

Some images from the MIT300 data set and their saliency maps computed
using di↵erent saliency models, including ours, are presented in Figure 4(a).
The human fixation maps are not reported here since they are not made pub-
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Fig. 3: Some examples from (a) the Bruce data set, and (b) the MIT1003 data
set. Note here that we only report the results of the models having the five top
most AUC scores, namely Itti, GBVS, DVA, CSD, and our approach (CovSal),
along with the fixation density maps from the eye tracking data.
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model and the set of human fixations is given by the area under the ROC curve
(AUC), obtained by varying the threshold level.

For qualitative analysis, some images from the Bruce and the MIT1003 data
sets and their saliency maps predicted by our model are presented in Figure 3(a)-
(b), respectively, together with the results of the competitive models and the
human fixation density maps. Compared to other saliency models, the salient
regions estimated by our saliency model are more consistent with the fixation
density maps. Moreover, as shown in Table 1 and Table 2, the proposed approach
also outperforms the other saliency models in terms of average AUC score in
predicting human eye fixations.

Despite the widespread use of AUC score as a performance measure for visual
saliency, the authors of [18] pointed out that the ROC based evaluation su↵ers
from the drawback that it only depends on the ordering of the fixations. That
is, as long as the hit rates are high, the AUC is always high regardless of the
false alarm rate. In addition, it does not consider the spatial deviation of the
computed saliency map from the actual fixation density map. For this reason, in
the MIT300 benchmark data set [36], a similarity measure and Earth Mover’s
Distance [37] are also reported in addition to AUC scores.

Some images from the MIT300 data set and their saliency maps computed
using di↵erent saliency models, including ours, are presented in Figure 4(a).
The human fixation maps are not reported here since they are not made pub-
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Fig. 3: Some examples from (a) the Bruce data set, and (b) the MIT1003 data
set. Note here that we only report the results of the models having the five top
most AUC scores, namely Itti, GBVS, DVA, CSD, and our approach (CovSal),
along with the fixation density maps from the eye tracking data.
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such a task but still we tested it on the data set introduced in [22] which is
specifically constructed for this type of saliency detection. The data set contains
62 natural images with 4 subjects who are asked to label the most salient objects
in these images. In the evaluation, the predicted saliency maps are thresholded
and the thresholded binary maps are compared against the binary ground truth
images provided in the data set.

Figure 4(b) shows some images from the Hou data set together with the
prediction results of six best performing models and the provided ground truth.
As demonstrated in Table 4, the performance of our approach in detecting the
salient object is not as good as in predicting eye fixations. It ranked third (to-
gether with three other models Itti, DVA and SR) even if it is not specifically
designed for this task. In a follow-up work, we are planning to extend our region-
covariance based saliency model with a mechanism to detect salient objects in
images.
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Fig. 4: Some examples from (a) the MIT300 data set, and (b) the Hou data set.
Note here that we only report the results of the models having the six top most
AUC scores, namely Itti, GBVS, AIM/DVA, CSD, and our approach (CovSal).
In the MIT300 data set, the fixation maps are hidden by design. For the Hou
data set, the white region in the ground truth corresponds the region selected
by all the four subjects whereas the gray region represents the region selected
by some subjects but rejected by the others.

Toronto data set

MIT 1003 data set

MIT 300 data set
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The DSC is a measure of set agreement defined by
DSC¼ 2TP/[(TPþ FP)þ (TP þ FN)] where TP is the
true positive, FP is the false positive, and FN is the false
negative counts. A DSC value of 1 indicates a perfect
agreement whereas a DSC value of 0 means no overlap,
so a good salient object model should give a DSC value
close to 1.

Performance

Detecting salient objects on the ImgSal data set poses
some great challenges such as variation in scale,
cluttered backgrounds, repeating distractors, etc. The

images contain one or more objects that are distin-
guishable from the background by their visual charac-
teristics but with different difficulty levels. In Figure 7,
we present some qualitative examples. The illustrated
object maps were obtained by setting the threshold as
the average intensity of the saliency map plus one
standard deviation. Our saliency model detected the
salient objects accurately under these difficult scenarios.

We provide quantitative analysis of our model and
the state-of-the-art saliency models on the ImgSal data
set in Table 4. The proposed models outperformed the
other saliency models in three out of six categories, and
it was the second best or third best model in other

AUC NSS EMD Similarity

Without CB With CB Without CB With CB Without CB With CB Without CB With CB

Itti et al. (1998) 0.771 0.825 1.137 1.264 2.906 2.002 0.397 0.521
Harel et al. (2007) 0.829 0.835 1.533 1.533 2.014 1.886 0.519 0.556
Torralba et al. (2006) 0.710 0.832 0.805 1.185 3.467 1.868 0.330 0.528
Hou & Zhang (2007) 0.736 0.835 0.964 1.271 3.791 1.959 0.360 0.550
Zhang et al. (2008) 0.718 0.832 0.884 1.194 3.954 1.968 0.347 0.541
Bruce & Tsotsos (2009) 0.728 0.835 0.896 1.165 3.127 1.809 0.351 0.535
Seo & Milanfar (2009) 0.766 0.845 1.100 1.320 3.222 1.759 0.415 0.579
Goferman et al. (2010) 0.784 0.841 1.272 1.370 3.520 1.819 0.431 0.574
Our approach with

Covariances only 0.767 0.834 1.184 1.342 3.142 1.931 0.408 0.546
Covariances þ means 0.765 0.834 1.198 1.396 3.398 1.896 0.402 0.548
Covariances þ center 0.840 0.840 1.753 1.753 1.901 1.901 0.561 0.561
Covariances þ means þ center 0.851 0.851 1.891 1.898 1.728 1.728 0.581 0.581

Center – 0.803 – 0.969 – 2.401 – 0.478
Chance 0.505 0.803 #0.001 0.969 5.159 2.339 0.187 0.479

Table 1. Performance comparisons of the saliencymodels on the Toronto data set. Chance and Center are the baselines, which respectively
stand for the random and the centered Gaussian models. CB denotes center bias. The best performing model is shown in bold type.

AUC NSS Similarity

Without CB With CB Without CB With CB Without CB With CB

Itti et al. (1998) 0.741 0.827 0.921 1.170 0.273 0.402
Harel et al. (2007) 0.791 0.829 1.150 1.182 0.319 0.415
Torralba et al. (2006) 0.700 0.832 0.771 1.156 0.244 0.412
Hou & Zhang (2007) 0.713 0.833 0.855 1.200 0.264 0.421
Zhang et al. (2008) 0.703 0.834 0.829 1.177 0.261 0.418
Bruce & Tsotsos (2009) 0.709 0.835 0.813 1.148 0.254 0.415
Seo & Milanfar (2009) 0.712 0.836 0.826 1.171 0.263 0.424
Goferman et al. (2010) 0.758 0.840 1.053 1.241 0.297 0.431
Our approach with

Covariances only 0.715 0.826 0.862 1.169 0.261 0.410
Covariances þ means 0.740 0.832 0.940 1.240 0.287 0.417
Covariances þ center 0.833 0.833 1.468 1.486 0.417 0.418
Covariances þ means þ center 0.843 0.843 1.488 1.543 0.428 0.432

Center – 0.810 – 1.004 – 0.379
Chance 0.500 0.810 #0.000 1.004 0.131 0.383

Table 2. Performance comparisons of the saliency models on the MIT1003 data set. The best performing model is shown in bold type.

Journal of Vision (2013) 13(4):11, 1–20 Erdem & Erdem 12
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The DSC is a measure of set agreement defined by
DSC¼ 2TP/[(TPþ FP)þ (TP þ FN)] where TP is the
true positive, FP is the false positive, and FN is the false
negative counts. A DSC value of 1 indicates a perfect
agreement whereas a DSC value of 0 means no overlap,
so a good salient object model should give a DSC value
close to 1.

Performance

Detecting salient objects on the ImgSal data set poses
some great challenges such as variation in scale,
cluttered backgrounds, repeating distractors, etc. The

images contain one or more objects that are distin-
guishable from the background by their visual charac-
teristics but with different difficulty levels. In Figure 7,
we present some qualitative examples. The illustrated
object maps were obtained by setting the threshold as
the average intensity of the saliency map plus one
standard deviation. Our saliency model detected the
salient objects accurately under these difficult scenarios.

We provide quantitative analysis of our model and
the state-of-the-art saliency models on the ImgSal data
set in Table 4. The proposed models outperformed the
other saliency models in three out of six categories, and
it was the second best or third best model in other

AUC NSS EMD Similarity

Without CB With CB Without CB With CB Without CB With CB Without CB With CB

Itti et al. (1998) 0.771 0.825 1.137 1.264 2.906 2.002 0.397 0.521
Harel et al. (2007) 0.829 0.835 1.533 1.533 2.014 1.886 0.519 0.556
Torralba et al. (2006) 0.710 0.832 0.805 1.185 3.467 1.868 0.330 0.528
Hou & Zhang (2007) 0.736 0.835 0.964 1.271 3.791 1.959 0.360 0.550
Zhang et al. (2008) 0.718 0.832 0.884 1.194 3.954 1.968 0.347 0.541
Bruce & Tsotsos (2009) 0.728 0.835 0.896 1.165 3.127 1.809 0.351 0.535
Seo & Milanfar (2009) 0.766 0.845 1.100 1.320 3.222 1.759 0.415 0.579
Goferman et al. (2010) 0.784 0.841 1.272 1.370 3.520 1.819 0.431 0.574
Our approach with

Covariances only 0.767 0.834 1.184 1.342 3.142 1.931 0.408 0.546
Covariances þ means 0.765 0.834 1.198 1.396 3.398 1.896 0.402 0.548
Covariances þ center 0.840 0.840 1.753 1.753 1.901 1.901 0.561 0.561
Covariances þ means þ center 0.851 0.851 1.891 1.898 1.728 1.728 0.581 0.581

Center – 0.803 – 0.969 – 2.401 – 0.478
Chance 0.505 0.803 #0.001 0.969 5.159 2.339 0.187 0.479

Table 1. Performance comparisons of the saliencymodels on the Toronto data set. Chance and Center are the baselines, which respectively
stand for the random and the centered Gaussian models. CB denotes center bias. The best performing model is shown in bold type.

AUC NSS Similarity

Without CB With CB Without CB With CB Without CB With CB

Itti et al. (1998) 0.741 0.827 0.921 1.170 0.273 0.402
Harel et al. (2007) 0.791 0.829 1.150 1.182 0.319 0.415
Torralba et al. (2006) 0.700 0.832 0.771 1.156 0.244 0.412
Hou & Zhang (2007) 0.713 0.833 0.855 1.200 0.264 0.421
Zhang et al. (2008) 0.703 0.834 0.829 1.177 0.261 0.418
Bruce & Tsotsos (2009) 0.709 0.835 0.813 1.148 0.254 0.415
Seo & Milanfar (2009) 0.712 0.836 0.826 1.171 0.263 0.424
Goferman et al. (2010) 0.758 0.840 1.053 1.241 0.297 0.431
Our approach with

Covariances only 0.715 0.826 0.862 1.169 0.261 0.410
Covariances þ means 0.740 0.832 0.940 1.240 0.287 0.417
Covariances þ center 0.833 0.833 1.468 1.486 0.417 0.418
Covariances þ means þ center 0.843 0.843 1.488 1.543 0.428 0.432

Center – 0.810 – 1.004 – 0.379
Chance 0.500 0.810 #0.000 1.004 0.131 0.383

Table 2. Performance comparisons of the saliency models on the MIT1003 data set. The best performing model is shown in bold type.

Journal of Vision (2013) 13(4):11, 1–20 Erdem & Erdem 12
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categories. Our models achieved the best performance
especially when the images contained small salient
regions, cluttered backgrounds, and repeating distrac-
tors (Categories 3–5) in which nonlinear integration of
visual features were required in order to respond to
discontinuity in textures. We suspect that the reason
why our models performed poorly on the images
involving both large and small salient objects (Category
6) was due to the spatial coincidence assumption that
was considered in our multiscale saliency definition.

Image retargeting by seam-carving

Image retargeting or content aware image resizing
has emerged as an interesting computer vision problem,
which deals with automatically resizing an image to

arbitrary aspect ratios while trying to preserve impor-
tant content and internal structure and to prevent
visual artifacts (Rubinstein et al., 2010). To achieve
these objectives, most retargeting methods assume that
an importance map is available that highlights the most
prominent objects or the structures in the image so that
unimportant regions can be discarded during the
resizing process. In this regard, image retargeting has
proved to be a good application area for saliency
estimation (Achanta & Susstrunk, 2009; Cheng et al.,
2011; Goferman et al., 2010; Wang et al., 2008).
However, the literature lacks a quantitative analysis of
the performance of saliency models on retargeting
tasks. To our knowledge, our analysis is the first
comprehensive study that compares different saliency
models according to objective measures. For that
purpose, we used the ReTargetMe benchmark data set

AUC EMD Similarity

Without CB With CB Without CB With CB Without CB With CB

Itti et al. (1998) 0.750 0.806 4.560 3.394 0.405 0.493
Harel et al. (2007) 0.801 0.813 3.574 3.315 0.472 0.501
Torralba et al. (2006) 0.684 0.806 4.715 3.036 0.343 0.488
Hou & Zhang (2007) 0.682 0.804 5.368 3.200 0.319 0.487
Zhang et al. (2008) 0.672 0.799 5.088 3.296 0.340 0.473
Bruce & Tsotsos (2009) 0.751 0.820 4.236 3.085 0.390 0.507
Goferman et al. (2010) 0.742 0.815 4.900 3.219 0.390 0.509
Our approach with

Covariances þ center 0.800 0.800 3.422 3.422 0.487 0.487
Covariances þ means þ center 0.806 0.811 3.109 3.109 0.502 0.503

Center – 0.783 – 3.719 – 0.451
Chance 0.503 0.783 6.352 3.506 0.327 0.482
Judd et al. (2009) 0.811 0.813 3.130 3.130 0.506 0.511

Table 3. Performance comparisons of the saliency models on the MIT300 data set. The best performing model is shown in bold type.

Figure 7. Sample salient object detection results in the ImgSal data set. Here, only covariance features are used in saliency estimation,
and the object maps are then obtained from the saliency maps by thresholding them according to the average saliency score plus one
standard deviation. As can be seen, the salient objects are captured quite well by the proposed approach.

Journal of Vision (2013) 13(4):11, 1–20 Erdem & Erdem 13
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Scene recognition,  
Fornoni and Caputo, BMVC 2012 

Image classification,  
de Campos et al., CVIU 2012

Object detection,  
Yun et al., CVPR 2013

Yun et al. Gaze, description, and vision

1.2. INFORMATION FROM GAZE
It has long been known that eye movements are not directly
determined by an image, but are also influenced by task Yarbus
(1967). The clearest examples of this come from the extensive
literature on eye movements during visual search (Neider and
Zelinsky, 2006a; Zelinsky, 2008; Judd et al., 2009; Zelinsky and
Schmidt, 2009); specifying different targets yields different pat-
terns of eye movements despite the image remaining the same
(the same pixels). However, clear relationships also exist between
the properties of an image and the eye movements that people
make during free viewing. For example, when presented with
a complex scene, people overwhelmingly choose to direct their
initial fixations toward the center of the image, probably in an
attempt to maximize the extraction of information from the scene
(Renninger et al., 2007). Figure/ground relationships play a role as
well; people prefer to look at objects even when the background
is made more relevant to the task (Neider and Zelinsky, 2006b).
All things being equal, eye movements also tend to be directed
to corners and regions of high feature density (Mackworth and

FIGURE 1 | Detection results for 120 common object categories.

Morandi, 1967; Tatler et al., 2006), sudden onsets (Theeuwes,
1994; Theeuwes et al., 1999), object motion (Itti, 2005; Itti and
Baldi, 2009), and regions of brightness, texture, and color con-
trast (Itti and Koch, 2000, 2001; Parkhurst et al., 2002). These
latter influences can all be considered saliency factors affecting
object importance. Behavioral research has therefore provided a
wealth of information about the objects in a scene that people
find important, and how this is affected by the properties of these
objects, but very little is known about how one’s ability to detect
these objects factors into their scene understanding.

Rather than focusing on object salience, in our experiments
we ask: how categories of objects or events, and their detectabil-
ity, might influence gaze [see also, Einhäuser et al. (2008)],
and how we can use gaze to predict semantic categories. Eye
movements can inform image understanding in two different
but complementary ways. First, they can be used to indicate
the relative importance of content in an image by providing a
direct measure of how a person’s attention was spatially and
temporally distributed. Second, the patterns of saccades and fix-
ations made during image viewing might be used as a direct
indication of content information. For example, to the extent
that gaze is drawn to oddities and inconsistencies in a scene
(Tatler, 2007), fixations might be used to predict unusual events
(Baldi and Itti, 2010).

1.3. HUMAN-COMPUTER COLLABORATION
In this paper we explore the potential for combining behavioral
and computational inputs into integrated collaborative systems
for image understanding. There are many recognition tasks that
could benefit from gaze information, with the prototype sys-
tem for human-computer collaborative image classification by
De Campos et al. (2012) being just one example. In this paper we
focus on object detection and annotation. Figure 2 suggests the
potential benefits of such a human-computer collaborative object
detection system. Rather than applying object detectors at every
location in an image arbitrarily, they could be more intelligently
applied only at important locations, as indicated by gaze fixations.
This would not only minimize the potential for false positives, but
also constrain the true positives to only the content considered

FIGURE 2 | Left: Baseline detection results using 20 deformable part
models from Felzenszwalb et al. (2010) with default thresholds including
correct detections (green) and incorrect detections (blue).

Middle: Gaze-enabled detection results with fixations (yellow). Right:
Objects described by people and detected objects from each method
(green - correct, blue - incorrect).
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Fig. 8 shows the CBL-prior maps obtained using the training and
validation set of the PASCAL VOC 2008 dataset. Note that most
of them are similar to simple central Gaussian pdfs (i.e. the Cntr
maps) with relatively small variations compatible with posi-
tions where those objects are more likely to be found. In [10]
the authors built a class independent average object map from
a dataset of 93 images. Their map is crisper than the ones in

Fig. 8 because their dataset is much smaller, but it also resem-
bles a Gaussian pdf, with a small bias to the bottom of the
image.

3.2.3. Hybrid saliency maps
The movement of eyes in humans take into account both bot-

tom-up and top-down sources of information [10]. Such a combi-

Fig. 6. A scheme illustrating the method that learns saliency from labelled nearest neighbours approach (KNN).

Fig. 7. Saliency maps of images in (a) obtained by (b) soft bounding boxes (SBB) and (c) the KNN retrieval-based method. To train the foreground and background model, the
bounding boxes of all classes (of the PASCAL VOC 2008 dataset) were considered as relevant regions.
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• Relationship between image memorability and attention  

 

B. Celikkale, A. Erdem and E. Erdem, Predicting Memorability of Images 
Using Attention-driven Spatial Pooling and Image Semantics, Image and 
Vision Computing, 42, pp. 35-46, October 2015 (Editor's choice article)
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Predicted as highly memorable (89%) Predicted as typically memorable (67%) Predicted as least memorable (48%)
Figure 5. Memorability predictions by the proposed attention-driven feature pooling strategy. Out of all test images, the 8 images in (a)
are found to be the most memorable, the ones in (b) are predicted as typically memorable and the other 8 images in (c) are guessed as the
least memorable. The numbers denote the average prediction scores of the given image sets. The images predicted as highly memorable
contains highly distinctive visually salient elements as compared to other groups of images.

Table 1. Comparison of predictions via different combinations of attention-based feature pooling schemes (pooling over S: salient, ¬S: non-
salient, O: object, ¬O: non-object regions, with ‘+’ denoting concatenation) versus empirically measured memory scores. In example, the
first row indicates average empirical memorability over the images with the top 20 highest predicted memorabilities, and ⇢ is the Spearman
rank correlation between model predictions and empirical results.

S ¬S O ¬O S + ¬S O + ¬O ¬S + ¬O S +O

Top 20 83% 83% 83% 83% 84% 84% 83% 84%
Top 100 80% 80% 80% 80% 81% 80% 79% 81%
Bottom 100 56% 56% 56% 56% 56% 56% 57% 56%
Bottom 20 53% 53% 53% 53% 55% 55% 57% 55%
⇢ 0.46 0.46 0.46 0.46 0.46 0.45 0.41 0.47

ing the best memorability prediction performance across the
set. That is, the top down information provided by object-
level saliency combined with the bottom up information
predicted by visual saliency gives better results than those of
using top down or bottom up information alone. This result
strongly supports our claim that the image regions which
retain in human memory is highly correlated with the areas
that attract our attention.

Figure 5 shows sample images from the memorability
predictions based on salient and object regions. In addi-
tion to these qualitative results, we also compare our results
with Isola et al. [15] and Khosla et al. [20]. In Figure 6,
we present the precision-recall performances of our model
together with Isola et al.’s global features model, predic-
tions based on annotated objects and scenes, and human
predictions [15]. For the topmost 300 images our model
gives slightly better predictions than Isola et al.’s global fea-
tures model. Table 2 summarizes the performances of our
model and other computational models in terms of Spear-
man’s rank correlation measure (⇢) and the precision-recall
measure. As it can be seen, we achieved a better perfor-
mance as compared to Isola et al. [15] even if we used the
same global features. Here, it is important to note that the
size of our image level descriptor is nearly half of the one
used by Isola et al. [15]. This demonstrates another benefit
of visual attention-based feature pooling for image memo-
rability. It should be noted that Khosla et al. [20]’s global
and full models provided predictions better than ours but
they employed semantically more complex features.

Figure 7 shows sample images on which the memora-

bility predictions based on our approach are incorrect as
compared to the empirical results. To argue about why our
model fails to capture the intrinsic memorabilities, in Fig-
ure 8, we provide the bottom-up and object-level saliency
maps of two of the images from Figure 7 together with their
memorability maps obtained from object annotations. In
the memorability maps, the red regions illustrate the ob-
jects that contribute positively to the predicted memorability
and the blue regions show the objects that contribute neg-
atively to the predicted memorability. For the “iceberg”

Figure 6. Comparison of regression results averaged across the 25
splits. Test images are ranked according to their predicted mem-
orability and plotted against the cumulative average of measured
memorability scores.
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Memorability prediction,  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Figure 1: Overview of our probabilistic framework. This figure illustrates a possible external or
‘observed’ representation of an image. The conversion to an internal representation in memory can
be thought of as a noisy process where some elements of the image are changed probabilistically as
described by ↵ and � (Sec. 3.1). The image on the right illustrates a possible internal representation:
the green and blue regions remain unchanged, while the red region is forgotten and the pink region
is hallucinated. Note that the internal representation cannot be observed and is only shown here for
illustrating the framework.

2 Related work

Large scale visual memory experiments [26, 25, 1, 13, 14, 28] have shown that humans can re-
member specific images they have seen among thousands of images, hours to days later, even after
being exposed to each picture only once. In addition, humans seem to have a massive capacity in
long term memory to store specific details about these images, like remembering whether the glass
of orange juice they saw thousands of images earlier was full or half full [1] or which specific door
picture they saw after being exposed to hundreds of pictures of doors [28].

However, not all images are equally memorable as shown by the Memory Game experiment de-
scribed in [7, 12], and importantly, not all kinds of local information are equally retained from an
image: on average, observers will more likely remember visual details attached to objects that have
a specific semantic label or a distinctive interpretation (for example observers will remember differ-
ent types of cars by tagging each car with a different brand name, but would more likely confuse
different types of apples, which only differ by their color [14]). This suggests that different features,
objects and regions in an image may have themselves different memorability status: indeed, works
by Isola et al [7, 6] have shown that different individual features, objects, local regions and attributes
are correlated with image that are highly memorable or forgettable. For instance, indoor spaces,
pictures containing people, particularly if their face is visible, close up views on objects, animals,
are more memorable than buildings, pictures of natural landscapes, and natural surfaces in general
(like mountains, grass, field). However, to date, there is no work which has attempted to predict
which local information from an image is memorable or forgettable, in an automatic manner.

3 Modeling memorability using image regions

We propose to predict memorability using a noisy memory process of encoding images in our mem-
ory, illustrated in Fig. 1. In our setting, an image consists of different types of image regions and
features. After a delay between the first and second presentation of an image, people are likely to
remember some image regions and objects more than others. For example, as shown in [7], people
and close up views on objects tend to be more memorable than natural objects and regions of land-
scapes, suggesting for instance that an image region containing a person is less likely to be forgotten
than an image region containing a tree. It is well established that stored visual information decays
over time [30, 31, 14], which can be represented in a model by a novel image vector with missing
global and local information. We postulate that the farther the stored representation of the image is
from its veridical representation, the less likely it is to be remembered.

Here, we propose to model this noisy memorability process in a probabilistic framework. We assume
that the representation of an image is composed of image regions where different regions of an
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ABSTRACT

The image memorability consists in the faculty of an im-
age to be recalled after a period of time. Recently, the mem-
orability of an image database was measured and some fac-
tors responsible for this memorability were highlighted. In
this paper, we investigate the role of visual attention in image
memorability around two axis. The first one is experimental
and uses results of eye-tracking performed on a set of images
of different memorability scores. The second investigation
axis is predictive and we show that attention-related features
can advantageously replace low-level features in image mem-
orability prediction. From our work it appears that the role
of visual attention is important and should be more taken into
account along with other low-level features.

Index Terms— Image memorability, Visual attention,
Eye tracking, Inter-observer congruency, Saliency

1. INTRODUCTION

The study of images memorability in computer science is a
recent topic [1, 2]. From those first attempts it appears that
it is possible to predict the degree of picture’s memorability
quite well. Learning algorithms have been used to infer from
a set of low-level visual features the extent to which a picture
is memorable. Although Isola et al. [1] expressed the intu-
ition that memorability and visual attention might be linked,
they did not study further this relationship. Khosla et al. [2]
proposed a local descriptor based on Itti’s model [3]. The per-
formance of this descriptor alone is low.
In this paper we intend to show that attention-based cues and
features might have high importance in memorability both
from a experimental and predictive point of views. In the next
sections we will focus on an eye-tracking experiment using
images from Isola’s database and the cues which can be ex-
tracted from gaze behaviour and which might be related to the
memorability score of the images. In section 3, we evaluate
the relevance of two attention-related features and show that
by using the same classifier we obtain comparable and even

⇤Work performed while a research visit in IRISA Rennes.
†Both authors made equal contribution to this paper.

Fig. 1. (a) original pictures (memorability of 0.81 (high));
(b) fixation map (a green circle represents the first fixation of
observers); (c) Saliency map and (d) heat map.

better memorability results than [1]. Finally, we discuss and
conclude about the role of attention in memorability.

2. MEMORABILITY AND EYE-MOVEMENT

To shed light on the relationship between images memora-
bility and visual attention, we conducted an eye-tracking ex-
periment on images from the memorability database [1]. The
eye-tracking data (images, fixations) used in this paper can be
downloaded online at [4] or [5].

2.1. Method

Participants and stimuli: Seventeen student volunteers (10
males, 7 females) with normal or corrected-to-normal vision
took part to the eye tracking experiment. All were naı̈ve to the
purpose of the experiment and gave their full, informed con-
sent to participate. We used 135 pictures extracted from [1]
composed of 2222 pictures. Pictures are grouped in three
classes of memorability (statistically significantly different),
each composed of 45 pictures. The first class consists of the
most memorable pictures (C1, score 0.82± 0.05), the second
of typical memorability (C2, score 0.68± 0.04) and the third
of the least memorable pictures (C3, score 0.51± 0.08).
Protocol: Pictures were displayed on a 19 inch monitor. The
square images were centred on a white background, which
filled the screen resolution of 800⇥ 600 pixels. At a viewing
distance of 65 cm the stimuli subtended 17 degrees of visual
angle. The eyes were tracked using the Face Lab 5 [6] with a
sampling rate of 60Hz. Raw eye data were segmented into fix-
ations and saccades by the Face Lab’s system. The eye tracker

Generic objectness,
Alexe et al., CVPR 2010

Learning saliency,  
Judd et al., ICCV 2009, Borji, CVPR 2012

Boosting Bottom-up and Top-down Visual Features for Saliency Estimation
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Abstract

Despite significant recent progress, the best available vi-

sual saliency models still lag behind human performance

in predicting eye fixations in free-viewing of natural scenes.

Majority of models are based on low-level visual features

and the importance of top-down factors has not yet been

fully explored or modeled. Here, we combine low-level fea-

tures such as orientation, color, intensity, saliency maps of

previous best bottom-up models with top-down cognitive vi-

sual features (e.g., faces, humans, cars, etc.) and learn a

direct mapping from those features to eye fixations using

Regression, SVM, and AdaBoost classifiers. By extensive

experimenting over three benchmark eye-tracking datasets

using three popular evaluation scores, we show that our

boosting model outperforms 27 state-of-the-art models and

is so far the closest model to the accuracy of human model

for fixation prediction. Furthermore, our model success-

fully detects the most salient object in a scene without so-

phisticated image processings such as region segmentation.

1. Introduction

Visual attention is a cognitive process that helps humans
and primates rapidly select the highly relevant information
from a scene. This information is then processed finer by
high-level visual processes such as scene understanding and
object recognition. The notion of relevance is determined
by two factors. The first one, often referred as bottom-up
visual saliency, is a task-independent component based on
only low-level and image-based outliers and conspicuities.
The second component is based on volitionally-controlled
mechanisms that determine the importance of scene regions
in daily-life tasks such as driving.

The process of visual attention has been the subject of
numerous studies in psychology, neurosciences, and com-
puter vision. Correspondingly, several computational mod-
els of attention have been proposed in machine learning,
computer vision, and robotics. Several applications have
also been proposed and have further raised interest in this
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Figure 1. Human fixation map for sample images from the MIT [1]
dataset. Top-down concepts including people, social interactions, animals,
cars, signs, faces, and text attract human attention.

field including: image thumb-nailing [7], automatic collage
creation [5], foveated image/video compression [6][9], non-
photorealistic rendering [8], and advertisement design [10].

Models of bottom-up saliency have often been evaluated
against predicting human fixations in free-viewing task. To-
day, many saliency models based on variety of techniques
with compelling performance exist and still each year new
models are introduced. Yet, there is a large gap between
models and the human Inter-Observer (IO) model for pre-
dicting eye fixations. The IO “model“ outputs, for a given
stimulus, a map built by integrating eye fixations from other
subjects than the one under test while they watched that
stimulus. This model is expected to provide an upper bound
on prediction accuracy of models to the extent that, differ-
ent humans may be the best predictors of each other. The
mentioned gap between models and human is largely due to
the role of top-down factors (See Fig. 1).

It is believed that at early stages of free viewing (first few
hundred milliseconds), mainly image-based conspicuities
guide attention and later on, high-level factors (e.g., ac-
tions and events) direct eye movements [53][39]. These
high-level factors may not necessarily translate to bottom-
up saliency (e.g., based on color, intensity, or orientation)
and should be taken into account separately. For instance, a
human’s head may not stand out from the rest of the scene
but may attract attention. Thus, combining high-level con-
cepts and low-level features seems inevitable to scale up
current models and reach the human performance.

978-1-4673-1228-8/12/$31.00 ©2012 IEEE 438
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Fig. 2. The proposed MKL-based framework for visual saliency estimation (See
text for a detailed description).

coming from multiple sources. In our experiments, we consider three di↵erent
MKL models, namely RBMKL [33], NLMKL [34] and LMKL [35]. RBMKL de-
notes the fixed-rule based MKL (RBMKL) which obtains a combined kernel
by taking the multiplication of valid kernels, providing a nonlinear integration
of di↵erent feature representations. NLMKL is the non-linear MKL model that
learns a kernel function in the kernel space considering a polynomial combina-
tion of kernels. LMKL is the localized MKL model which learns weights in the
kernel combination in a data-dependent way considering a linear integration. For
detailed descriptions of these models, please refer to [21].

4 Proposed Approach

In this paper, we propose a novel learning-based saliency model which is based
on MKL framework.The classifier function is built upon using a combination
of several di↵erent kernels, each highlighting a certain aspect of the pixel in
a di↵erent feature space. As illustrated in Fig. 2, the proposed method has
training and testing phases. The training phase involves learning a classifier
from a group of images with human eye fixation data. We first extract several
low, mid and high-level features for each training image, and represent each
pixel in a higher-dimensional space based on these features. Positive instances
correspond to the eye fixation points, and negative instances are the pixels that
do not attract viewers’ attention. Once a saliency model (classifier) is trained,
the testing phase includes estimating the saliency map of a given test image,

Beyond saliency - as a feature
• Learning visual saliency 

 

Y. Kavak, E. Erdem and A. Erdem, Visual saliency estimation by integrating 
features using multiple kernel learning, 6th International Symposium on 
Attention in Cognitive Systems (ISACS 2013), Beijing, China, August 2013.

• Automatically choose features relevant to visual saliency by learning 
specific feature weights and normalization schemes in the integration step.
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Problems with saliency models?
• Important information may not be visually salient  

(e.g., stop sign in a cluttered scene)
• Salient information may not be important
• Can not account for many fixations when there is a task
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Scene viewing is different than acting in a scene

Original image               Bottom-up saliency        Task-driven fixations  
Hayhoe and Ballard, 2009

Problems with saliency models?

• Important information may not be visually 
   salient (e.g., stop sign in a cluttered scene)
• Salient information may not be important
• Can not account for many fixations when there is a task

Foot placement 

Obstacle avoidance 

Heading 

Original image Bottom-up saliency Task-driven fixations

Scene viewing is different than acting in a scene

Hayhoe and Ballard, 2009
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Top-down saliency estimation
• A. Kocak, K. Cizmeciler, A. Erdem and E. Erdem, 

Top down saliency estimation via superpixel based 
discriminative dictionaries, BMVC 2014  

• A superpixel-based top-down saliency model via 
joint discriminative dictionary and CRF learning  

• Task: Task-driven such as detecting an object 
instance from a certain category  

39



Top-down saliency estimation

Training:  
(1) Segment the images into superpixels and represent them with the 
sigma points descriptor.  
(2) Extract the objectness maps.  
(3) Jointly learn the dictionary and the CRF parameters for each object 
category.

40

Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 

 
where                  is the objectness score of superpixel      and   !denotes the parameter 
of this potential function. 

Edge potential 
 

This potential models the interaction between two labels             of two neighboring 
superpixels as: 

where δ denoting unit impulse function. 

Learning 
 

We simultaneously learn the CRF parameters θ and the dictionary D by optimizing: 

 
 

Experimental Results 
 

We test the proposed model under three different settings: 
 

•  Setting 1: Set the parameter of the objectness potential            and learn the CRF 
parameters and the superpixel based dictionary D accordingly. 

•  Setting 2: Learn all the CRF parameters and the dictionary simultaneously. 
•  Setting 3: Extend the first setting by determining the parameter of the objectness 

potential     later via cross-validation, while keeping the learned dictionary D 
and the other CRF parameters fixed. 

•  Graz-02   
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Contributions 
!  A superpixel-based top-down saliency model via joint discriminative 

dictionary and CRF learning 
!  The use of an objectness potential to include generic object information 

in saliency estimation 

Bottom-up vs. top-down visual saliency 
•  Bottom-up models only depend on low-level cues such as intensity and color, do 

not use any class knowledge and try to predict image regions that stand out from 
their surroundings.  

•  Top-down approaches are task-driven such as detecting an object instance from 
a certain category or answering a pre-defined question so they consider high-
level information and aim at generating saliency maps for the task at hand. 

 

Our approach 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =

(
h
p

dLi if 1  i  d
�h

p
dLi if d +1  i  2d

(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:

logP(Y|X,D,q) = Â
i2V

yi(yi,xi;D,q)+ Â
i2V

gi(yi,xi;q)+ Â
(i, j)2E

fi, j(yi,y j,xi,x j;q) (5)

� logZ(q ,D)

where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 

2nd order statistics of visual features (Tuzel et al., 
2006), namely color, edge orientation and spatial 
information. 

•  The covariance matrix of feature vectors within R: 
 
 
where zi denotes the d-dimensional feature vectors 

•  Sigma points (Hong et al., 2009) computed from C 
by using Cholesky decomposition C = LLT: 

 
•  Final representation of a superpixel is given by: 
 

•  Training: (1) Segment the images into superpixels and represent them with the 
sigma points descriptor. (2) Extract the objectness maps. (3) Jointly learn the 
dictionary and the CRF parameters for each object category.  

•  Testing: (1) Segment the images into superpixels and represent them with the 
sigma points descriptor. (2) Compute the sparse codes of superpixels with 
dictionaries learned from data. (3) Estimate the objectness map. (4) Use the 
CRF model to infer the saliency scores. 

 

CRF and dictionary learning 
•  Construct a CRF model with nodes      representing the superpixels and edges 

describing the connections among them. 
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Predicting where humans look in images has gained significant popularity in recent

years. In this work, we present a novel method for learning top-down visual saliency,

which is well-suited to locate objects of interest in complex scenes. During training,

we jointly learn a superpixel based class-specific dictionary and a Conditional Random

Field (CRF). While using such a discriminative dictionary helps to distinguish target

objects from the background, performing the computations at the superpixel level allows

us to improve accuracy of object localizations. Experimental results on the Graz-02 and

PASCAL VOC 2007 datasets show that the proposed approach is able to achieve state-

of-the-art results and provides much better saliency maps.
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Top-down saliency estimation

Testing:  
(1) Segment the images into superpixels and represent them with 
the sigma points descriptor.  
(2) Compute the sparse codes of superpixels with dictionaries 
learned from data.  
(3) Estimate the objectness map.
(4) Use the CRF model to infer the saliency scores.
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Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 

 
where                  is the objectness score of superpixel      and   !denotes the parameter 
of this potential function. 

Edge potential 
 

This potential models the interaction between two labels             of two neighboring 
superpixels as: 
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Learning 
 

We simultaneously learn the CRF parameters θ and the dictionary D by optimizing: 
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We test the proposed model under three different settings: 
 

•  Setting 1: Set the parameter of the objectness potential            and learn the CRF 
parameters and the superpixel based dictionary D accordingly. 

•  Setting 2: Learn all the CRF parameters and the dictionary simultaneously. 
•  Setting 3: Extend the first setting by determining the parameter of the objectness 

potential     later via cross-validation, while keeping the learned dictionary D 
and the other CRF parameters fixed. 

•  Graz-02   
 

 
 
 

 
 

 
!

HACETTEPE 
UNIVERSITY 

Top down saliency estimation via superpixel-based discriminative dictionaries 
Aysun Kocak, Kemal Cizmeciler, Aykut Erdem and Erkut Erdem 

Computer Vision Lab, Hacettepe University, Turkey 
  department of 

computer engineering 

Contributions 
!  A superpixel-based top-down saliency model via joint discriminative 

dictionary and CRF learning 
!  The use of an objectness potential to include generic object information 

in saliency estimation 

Bottom-up vs. top-down visual saliency 
•  Bottom-up models only depend on low-level cues such as intensity and color, do 

not use any class knowledge and try to predict image regions that stand out from 
their surroundings.  

•  Top-down approaches are task-driven such as detecting an object instance from 
a certain category or answering a pre-defined question so they consider high-
level information and aim at generating saliency maps for the task at hand. 

 

Our approach 

KOCAK ET AL.: TOP DOWN SALIENCY ESTIMATION 5

a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:
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(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation
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saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
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among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
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where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
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w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 

2nd order statistics of visual features (Tuzel et al., 
2006), namely color, edge orientation and spatial 
information. 

•  The covariance matrix of feature vectors within R: 
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CRF and dictionary learning

• Construct a CRF model with nodes representing the 
superpixels and edges describing the connections 
among them.
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Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 

 
where                  is the objectness score of superpixel      and   !denotes the parameter 
of this potential function. 

Edge potential 
 

This potential models the interaction between two labels             of two neighboring 
superpixels as: 
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Learning 
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texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.
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Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:
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with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =
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2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:
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where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that
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T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 
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information. 
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This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 

 
where                  is the objectness score of superpixel      and   !denotes the parameter 
of this potential function. 

Edge potential 
 

This potential models the interaction between two labels             of two neighboring 
superpixels as: 

where δ denoting unit impulse function. 

Learning 
 

We simultaneously learn the CRF parameters θ and the dictionary D by optimizing: 

 
 

Experimental Results 
 

We test the proposed model under three different settings: 
 

•  Setting 1: Set the parameter of the objectness potential            and learn the CRF 
parameters and the superpixel based dictionary D accordingly. 

•  Setting 2: Learn all the CRF parameters and the dictionary simultaneously. 
•  Setting 3: Extend the first setting by determining the parameter of the objectness 

potential     later via cross-validation, while keeping the learned dictionary D 
and the other CRF parameters fixed. 

•  Graz-02   
 

 
 
 

 
 

 
!

HACETTEPE 
UNIVERSITY 

Top down saliency estimation via superpixel-based discriminative dictionaries 
Aysun Kocak, Kemal Cizmeciler, Aykut Erdem and Erkut Erdem 

Computer Vision Lab, Hacettepe University, Turkey 
  department of 

computer engineering 

Contributions 
!  A superpixel-based top-down saliency model via joint discriminative 

dictionary and CRF learning 
!  The use of an objectness potential to include generic object information 

in saliency estimation 

Bottom-up vs. top-down visual saliency 
•  Bottom-up models only depend on low-level cues such as intensity and color, do 

not use any class knowledge and try to predict image regions that stand out from 
their surroundings.  

•  Top-down approaches are task-driven such as detecting an object instance from 
a certain category or answering a pre-defined question so they consider high-
level information and aim at generating saliency maps for the task at hand. 

 

Our approach 

KOCAK ET AL.: TOP DOWN SALIENCY ESTIMATION 5

a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =

(
h
p

dLi if 1  i  d
�h

p
dLi if d +1  i  2d

(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:

logP(Y|X,D,q) = Â
i2V

yi(yi,xi;D,q)+ Â
i2V

gi(yi,xi;q)+ Â
(i, j)2E

fi, j(yi,y j,xi,x j;q) (5)

� logZ(q ,D)

where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 

2nd order statistics of visual features (Tuzel et al., 
2006), namely color, edge orientation and spatial 
information. 

•  The covariance matrix of feature vectors within R: 
 
 
where zi denotes the d-dimensional feature vectors 

•  Sigma points (Hong et al., 2009) computed from C 
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Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 

 
where                  is the objectness score of superpixel      and   !denotes the parameter 
of this potential function. 
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Learning 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =

(
h
p

dLi if 1  i  d
�h

p
dLi if d +1  i  2d

(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:

logP(Y|X,D,q) = Â
i2V

yi(yi,xi;D,q)+ Â
i2V

gi(yi,xi;q)+ Â
(i, j)2E

fi, j(yi,y j,xi,x j;q) (5)

� logZ(q ,D)

where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 

2nd order statistics of visual features (Tuzel et al., 
2006), namely color, edge orientation and spatial 
information. 

•  The covariance matrix of feature vectors within R: 
 
 
where zi denotes the d-dimensional feature vectors 

•  Sigma points (Hong et al., 2009) computed from C 
by using Cholesky decomposition C = LLT: 

 
•  Final representation of a superpixel is given by: 
 

•  Training: (1) Segment the images into superpixels and represent them with the 
sigma points descriptor. (2) Extract the objectness maps. (3) Jointly learn the 
dictionary and the CRF parameters for each object category.  

•  Testing: (1) Segment the images into superpixels and represent them with the 
sigma points descriptor. (2) Compute the sparse codes of superpixels with 
dictionaries learned from data. (3) Estimate the objectness map. (4) Use the 
CRF model to infer the saliency scores. 

 

CRF and dictionary learning 
•  Construct a CRF model with nodes      representing the superpixels and edges 

describing the connections among them. 
•  The saliency map is determined by finding the maximum posterior                 of 

labels                        given the set of superpixels                         

•  PASCAL VOC 2007 

Input image Margolin 
 et al. (2013) 

Alexe et al. 
(2010) 

Yang and 
Yang (2012) 

Our approach 
(setting 3) 

Conclusion 
!  Performing the computations at superpixel level allows us to improve the 

accuracy of object localizations. 
!  Generic objectness prior reduces the discriminative power of the 

dictionary but considering this prior after the joint learning process 
boosts the performance (setting 3).  

System overview. 

Superpixels having similar 
visual characteristics are 
represented with similar 
covariance descriptors. 

Table 1: EER results on the Graz-02 
dataset. 

Table 2: EER results on the PASCAL VOC 2007 dataset. 

  

Dictionary potential 
Sparse variables are used to learn a linear classifier and we use the response of 
this classifier directly as our unary potential: 
 
 
where  αi denoting the sparse code of superpixel xi!

dictionary potential objectness potential 

edge potential 

CR =
1

n� 1

nX

i=1

(zi � µ)(zi � µ)T

si =

⇢
⌘
p
dLi if 1  i  d

�⌘
p
dLi if d+ 1  i  2d

x(µ,C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T

V E

P (Y|X)
Y = {yi}ni=1 X = {xi}ni=1

logP (Y|X,D, ✓) =
P

i2V  i(yi,xi;D, ✓) +
P

i2V �i(yi,xi; ✓)

+
P

(i,j)2E �i,j(yi, yj ,xi,xj ; ✓)� logZ(✓,D)

 i(yi,xi;D, ✓) = �yiw
T↵i

↵i(xi,D) = argmin
↵

1
2
kxi �D↵k2 + �k↵k1

�i(yi,xi; ✓) = ��yi (2P (obj|xi)� 1)

P (obj|xi) xi �

�i,j(yi, yj ,xi,xj ; ✓) = ⇢ (1� �(yi � yj))

(D⇤, ✓⇤) = argmax
D,✓

MY

m=1

P (Y(m)|X(m),D, ✓) .

� = 0

�

2 KOCAK ET AL.: TOP DOWN SALIENCY ESTIMATION

Bike Car People

Margolin et al. (2013) 25.6 16.9 17.4

Perazzi et al. (2012) 11.4 13.8 14.3

Yang and Zhang (2013) 14.8 13.7 14.9

Objectness (Alexe et al., 2010) 53.5 48.3 43.5

Aldavert et al. (2010) 71.9 64.9 58.6

Khan and Tappen (2013) 72.1 - -

Marszalek and Schmid (2012) 61.8 53.8 44.1

Yang and Yang (2012) 62.4 60.0 62.0

Our approach (setting 1) 71.9 61.9 65.5

Our approach (setting 2) 71.7 62.0 64.9

Our approach (setting 3) 73.9 68.4 68.2
Table 1: EER results on the Graz-02 dataset.

aeroplane bicycle bird boat bottle bus car cat chair cow

Yang and Yang (2012) 15.2 39.0 9.4 5.7 3.4 22.0 30.5 15.8 5.7 8

Our result 49.4 46.6 33.7 60.9 26.1 51.8 35.1 64.9 21.1 34.8
dining table dog horse motorbike person potted plant sheep sofa train tv-monitor

Yang and Yang (2012) 11.1 12.8 10.9 23.7 42.0 2.0 20.2 10.4 24.7 10.5

Our result 43.7 35.1 41.4 71.4 32.6 42 42.5 13.8 63.8 27.8
Table 2: EER results on the PASCAL VOC 2007 dataset.

KOCAK ET AL.: TOP DOWN SALIENCY ESTIMATION 1

aeroplane bicycle bird boat bottle bus car cat chair cow

Yang and Yang (2012) 15.2 39.0 9.4 5.7 3.4 22.0 30.5 15.8 5.7 8

Our approach (setting 3) 49.4 46.6 33.7 60.9 26.1 51.8 35.1 64.9 21.1 34.8
dining table dog horse motorbike person potted plant sheep sofa train tv-monitor

Yang and Yang (2012) 11.1 12.8 10.9 23.7 42.0 2.0 20.2 10.4 24.7 10.5

Our approach (setting 3) 43.7 35.1 41.4 71.4 32.6 42 42.5 13.8 63.8 27.8

Top down saliency estimation via
superpixel-based discriminative dictionaries
Aysun Kocak

aysunkocak@cs.hacettepe.edu.tr

Kemal Cizmeciler

kemalcizmeci@gmail.com

Aykut Erdem

aykut@cs.hacettepe.edu.tr

Erkut Erdem

erkut@cs.hacettepe.edu.tr

Computer Vision Lab

Department of Computer Engineering

Hacettepe University

Ankara, Turkey

Abstract

Predicting where humans look in images has gained significant popularity in recent

years. In this work, we present a novel method for learning top-down visual saliency,

which is well-suited to locate objects of interest in complex scenes. During training,

we jointly learn a superpixel based class-specific dictionary and a Conditional Random

Field (CRF). While using such a discriminative dictionary helps to distinguish target

objects from the background, performing the computations at the superpixel level allows

us to improve accuracy of object localizations. Experimental results on the Graz-02 and

PASCAL VOC 2007 datasets show that the proposed approach is able to achieve state-

of-the-art results and provides much better saliency maps.

1 Introduction

Acknowledgments
This research was supported in part by The Scientific and Technological Research Council

of Turkey (TUBITAK), Career Development Award 112E146.

Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 
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of this potential function. 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =

(
h
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dLi if 1  i  d
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dLi if d +1  i  2d

(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
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years. In this work, we present a novel method for learning top-down visual saliency,

which is well-suited to locate objects of interest in complex scenes. During training,

we jointly learn a superpixel based class-specific dictionary and a Conditional Random

Field (CRF). While using such a discriminative dictionary helps to distinguish target

objects from the background, performing the computations at the superpixel level allows

us to improve accuracy of object localizations. Experimental results on the Graz-02 and

PASCAL VOC 2007 datasets show that the proposed approach is able to achieve state-

of-the-art results and provides much better saliency maps.
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CRF and dictionary learning

• Objectness potential: a class-independent unary 
potential
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Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:
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(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:
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(i, j)2E

fi, j(yi,y j,xi,x j;q) (5)

� logZ(q ,D)

where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)
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class-independent manner as: 
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of this potential function. 

Edge potential 
 

This potential models the interaction between two labels             of two neighboring 
superpixels as: 

where δ denoting unit impulse function. 

Learning 
 

We simultaneously learn the CRF parameters θ and the dictionary D by optimizing: 

 
 

Experimental Results 
 

We test the proposed model under three different settings: 
 

•  Setting 1: Set the parameter of the objectness potential            and learn the CRF 
parameters and the superpixel based dictionary D accordingly. 

•  Setting 2: Learn all the CRF parameters and the dictionary simultaneously. 
•  Setting 3: Extend the first setting by determining the parameter of the objectness 

potential     later via cross-validation, while keeping the learned dictionary D 
and the other CRF parameters fixed. 

•  Graz-02   
 

 
 
 

 
 

 
!

HACETTEPE 
UNIVERSITY 

Top down saliency estimation via superpixel-based discriminative dictionaries 
Aysun Kocak, Kemal Cizmeciler, Aykut Erdem and Erkut Erdem 

Computer Vision Lab, Hacettepe University, Turkey 
  department of 

computer engineering 

Contributions 
!  A superpixel-based top-down saliency model via joint discriminative 

dictionary and CRF learning 
!  The use of an objectness potential to include generic object information 

in saliency estimation 

Bottom-up vs. top-down visual saliency 
•  Bottom-up models only depend on low-level cues such as intensity and color, do 

not use any class knowledge and try to predict image regions that stand out from 
their surroundings.  

•  Top-down approaches are task-driven such as detecting an object instance from 
a certain category or answering a pre-defined question so they consider high-
level information and aim at generating saliency maps for the task at hand. 

 

Our approach 

KOCAK ET AL.: TOP DOWN SALIENCY ESTIMATION 5

a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =
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(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:
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where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)
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information. 
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Abstract

Predicting where humans look in images has gained significant popularity in recent

years. In this work, we present a novel method for learning top-down visual saliency,

which is well-suited to locate objects of interest in complex scenes. During training,

we jointly learn a superpixel based class-specific dictionary and a Conditional Random

Field (CRF). While using such a discriminative dictionary helps to distinguish target

objects from the background, performing the computations at the superpixel level allows

us to improve accuracy of object localizations. Experimental results on the Graz-02 and

PASCAL VOC 2007 datasets show that the proposed approach is able to achieve state-

of-the-art results and provides much better saliency maps.

1 Introduction
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Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 

 
where                  is the objectness score of superpixel      and   !denotes the parameter 
of this potential function. 

Edge potential 
 

This potential models the interaction between two labels             of two neighboring 
superpixels as: 

where δ denoting unit impulse function. 

Learning 
 

We simultaneously learn the CRF parameters θ and the dictionary D by optimizing: 

 
 

Experimental Results 
 

We test the proposed model under three different settings: 
 

•  Setting 1: Set the parameter of the objectness potential            and learn the CRF 
parameters and the superpixel based dictionary D accordingly. 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =

(
h
p

dLi if 1  i  d
�h

p
dLi if d +1  i  2d

(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:

logP(Y|X,D,q) = Â
i2V

yi(yi,xi;D,q)+ Â
i2V

gi(yi,xi;q)+ Â
(i, j)2E

fi, j(yi,y j,xi,x j;q) (5)

� logZ(q ,D)

where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 

2nd order statistics of visual features (Tuzel et al., 
2006), namely color, edge orientation and spatial 
information. 

•  The covariance matrix of feature vectors within R: 
 
 
where zi denotes the d-dimensional feature vectors 

•  Sigma points (Hong et al., 2009) computed from C 
by using Cholesky decomposition C = LLT: 
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Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 

 
where                  is the objectness score of superpixel      and   !denotes the parameter 
of this potential function. 

Edge potential 
 

This potential models the interaction between two labels             of two neighboring 
superpixels as: 

where δ denoting unit impulse function. 

Learning 
 

We simultaneously learn the CRF parameters θ and the dictionary D by optimizing: 

 
 

Experimental Results 
 

We test the proposed model under three different settings: 
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parameters and the superpixel based dictionary D accordingly. 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =

(
h
p

dLi if 1  i  d
�h

p
dLi if d +1  i  2d

(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:

logP(Y|X,D,q) = Â
i2V

yi(yi,xi;D,q)+ Â
i2V

gi(yi,xi;q)+ Â
(i, j)2E

fi, j(yi,y j,xi,x j;q) (5)

� logZ(q ,D)

where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 

2nd order statistics of visual features (Tuzel et al., 
2006), namely color, edge orientation and spatial 
information. 

•  The covariance matrix of feature vectors within R: 
 
 
where zi denotes the d-dimensional feature vectors 

•  Sigma points (Hong et al., 2009) computed from C 
by using Cholesky decomposition C = LLT: 
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• Learning: Simultaneously learn the CRF parameters θ 
and the dictionary D by optimizing: 
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Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.
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Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =

(
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(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n
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where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 

2nd order statistics of visual features (Tuzel et al., 
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•  The covariance matrix of feature vectors within R: 
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years. In this work, we present a novel method for learning top-down visual saliency,

which is well-suited to locate objects of interest in complex scenes. During training,

we jointly learn a superpixel based class-specific dictionary and a Conditional Random

Field (CRF). While using such a discriminative dictionary helps to distinguish target

objects from the background, performing the computations at the superpixel level allows

us to improve accuracy of object localizations. Experimental results on the Graz-02 and

PASCAL VOC 2007 datasets show that the proposed approach is able to achieve state-

of-the-art results and provides much better saliency maps.
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This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.
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Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =

(
h
p
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dLi if d +1  i  2d

(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:

logP(Y|X,D,q) = Â
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yi(yi,xi;D,q)+ Â
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gi(yi,xi;q)+ Â
(i, j)2E

fi, j(yi,y j,xi,x j;q) (5)
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where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 

2nd order statistics of visual features (Tuzel et al., 
2006), namely color, edge orientation and spatial 
information. 

•  The covariance matrix of feature vectors within R: 
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•  Sigma points (Hong et al., 2009) computed from C 
by using Cholesky decomposition C = LLT: 
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Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 

 
where                  is the objectness score of superpixel      and   !denotes the parameter 
of this potential function. 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.
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Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:
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with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n
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i=1:

logP(Y|X,D,q) = Â
i2V

yi(yi,xi;D,q)+ Â
i2V

gi(yi,xi;q)+ Â
(i, j)2E

fi, j(yi,y j,xi,x j;q) (5)

� logZ(q ,D)

where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that
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T aaa i (6)
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Abstract

Predicting where humans look in images has gained significant popularity in recent

years. In this work, we present a novel method for learning top-down visual saliency,

which is well-suited to locate objects of interest in complex scenes. During training,

we jointly learn a superpixel based class-specific dictionary and a Conditional Random

Field (CRF). While using such a discriminative dictionary helps to distinguish target

objects from the background, performing the computations at the superpixel level allows

us to improve accuracy of object localizations. Experimental results on the Graz-02 and

PASCAL VOC 2007 datasets show that the proposed approach is able to achieve state-

of-the-art results and provides much better saliency maps.

1 Introduction
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Qualitative analysis
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Objectness potential 
 

This potential measures the likelihood that a superpixel belongs to an object in a 
class-independent manner as: 

 
where                  is the objectness score of superpixel      and   !denotes the parameter 
of this potential function. 

Edge potential 
 

This potential models the interaction between two labels             of two neighboring 
superpixels as: 

where δ denoting unit impulse function. 

Learning 
 

We simultaneously learn the CRF parameters θ and the dictionary D by optimizing: 

 
 

Experimental Results 
 

We test the proposed model under three different settings: 
 

•  Setting 1: Set the parameter of the objectness potential            and learn the CRF 
parameters and the superpixel based dictionary D accordingly. 

•  Setting 2: Learn all the CRF parameters and the dictionary simultaneously. 
•  Setting 3: Extend the first setting by determining the parameter of the objectness 

potential     later via cross-validation, while keeping the learned dictionary D 
and the other CRF parameters fixed. 

•  Graz-02   
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Contributions 
!  A superpixel-based top-down saliency model via joint discriminative 

dictionary and CRF learning 
!  The use of an objectness potential to include generic object information 

in saliency estimation 

Bottom-up vs. top-down visual saliency 
•  Bottom-up models only depend on low-level cues such as intensity and color, do 

not use any class knowledge and try to predict image regions that stand out from 
their surroundings.  

•  Top-down approaches are task-driven such as detecting an object instance from 
a certain category or answering a pre-defined question so they consider high-
level information and aim at generating saliency maps for the task at hand. 
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a superpixel is computed as a 7⇥7 matrix. As illustrated in Fig. 3, superpixels with similar
texture and local structures are described by similar covariance matrices.

Figure 3: Superpixels having similar
visual characteristics are represented
by similar covariance descriptors.

.

Covariance matrices do not live on an Euclidean
space which makes learning a visual dictionary from
them very hard. Therefore, we use the idea offered
by Hong et al. [17] to transform the covariance ma-
trices into an Euclidean vector space. Mathemati-
cally speaking, let C be a d ⇥d covariance matrix, a
unique set of points S = {si}, referred to as Sigma
Points, can be computed as:

si =

(
h
p

dLi if 1  i  d
�h

p
dLi if d +1  i  2d

(3)

with Li denoting the ith column of the lower triangu-
lar matrix L obtained with the Cholesky decompo-
sition C = LL

T and h being a scalar which is taken
h =

p
2 as suggested in [17]. We then define the final

descriptor of a superpixel by simply concatenating
the mean vector of the features µµµ and the elements
of S:

x(µµµ,C) = (µµµ,s1, . . . ,sd ,sd+1, . . . ,s2d)
T (4)

3.2 CRF and Dictionary Learning for Saliency Estimation

We approach top-down saliency estimation as an image labeling problem in which a higher
saliency score is assigned to superpixels corresponding to target objects. We construct a CRF
model with nodes V representing the superpixels and edges E describing the connections
among them. The saliency map is determined by finding the maximum posterior P(Y|X) of
labels Y = {yi}n

i=1 given the set of superpixels X = {xi}n
i=1:

logP(Y|X,D,q) = Â
i2V

yi(yi,xi;D,q)+ Â
i2V

gi(yi,xi;q)+ Â
(i, j)2E

fi, j(yi,y j,xi,x j;q) (5)

� logZ(q ,D)

where yi 2 {1,�1} denotes the binary label of node i 2 V indicating the presence or absence
of the target object, yi are the dictionary potentials, gi are the objectness potentials, fi, j are
the edge potentials, q are the parameters of the CRF model, and Z(q ,D) is the partition func-
tion. The model parameters q = {w,b ,r} include the parameter of the dictionary potentials
w, the parameter of the objectness potentials b and the parameter of the edge potential r .
The dictionary D used in yi encodes the prior knowledge about the target object category.

Dictionary potential. The unary potentials yi in our model depend on latent sparse variables
defined over a trained discriminative dictionary D. We use these sparse variables to learn a
linear classifier, and use this classifier directly as our unary potential so that

yi(yi,xi;D,q) =�yiw
T aaa i (6)

Superpixel representation 
•  Each superpixel is represented by means of 1st and 

2nd order statistics of visual features (Tuzel et al., 
2006), namely color, edge orientation and spatial 
information. 

•  The covariance matrix of feature vectors within R: 
 
 
where zi denotes the d-dimensional feature vectors 

•  Sigma points (Hong et al., 2009) computed from C 
by using Cholesky decomposition C = LLT: 

 
•  Final representation of a superpixel is given by: 
 

•  Training: (1) Segment the images into superpixels and represent them with the 
sigma points descriptor. (2) Extract the objectness maps. (3) Jointly learn the 
dictionary and the CRF parameters for each object category.  

•  Testing: (1) Segment the images into superpixels and represent them with the 
sigma points descriptor. (2) Compute the sparse codes of superpixels with 
dictionaries learned from data. (3) Estimate the objectness map. (4) Use the 
CRF model to infer the saliency scores. 

 

CRF and dictionary learning 
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•  The saliency map is determined by finding the maximum posterior                 of 
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Abstract

Predicting where humans look in images has gained significant popularity in recent

years. In this work, we present a novel method for learning top-down visual saliency,

which is well-suited to locate objects of interest in complex scenes. During training,

we jointly learn a superpixel based class-specific dictionary and a Conditional Random

Field (CRF). While using such a discriminative dictionary helps to distinguish target

objects from the background, performing the computations at the superpixel level allows

us to improve accuracy of object localizations. Experimental results on the Graz-02 and

PASCAL VOC 2007 datasets show that the proposed approach is able to achieve state-

of-the-art results and provides much better saliency maps.
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Main insights from natural tasks

• Vision is active not passive.
• Specific information is usually acquired at the fixation point. 
• Information is acquired “just-in-time”.

• Fixations patterns reflect learning at several 
levels: 

• what objects are relevant
• where information is located
• order of sub-tasks/properties of world.

• Fixations tightly linked to actions.

49Slide credit: A. Borji



Developments in eye tracking
• Head free:

• Head mounted IR video-based systems
• Remote systems with head tracking!
• Scene camera

50

Developments in Eye Tracking!
Head fixed /restricted:    Contact lenses: mirror / magnetic coils!

! ! ! !    Early infra-red systems!
! ! ! !    Dual Purkinje Image tracker!

Head Free:     ! !   Head mounted IR video-based systems!
! ! !               Remote systems with head tracking!
! ! ! !   Scene camera!

Developments in eye tracking

Saturday, June 22, 2013
Slide credit: A. Borji
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Ego Centric Vision 
 a.k.a 
First person vision 
(Lucas Kanade) 

Fathi et al., CVPR 2013 Pirsiavash and Ramanan CVPR 2012 

Video: http://www.youtube.com/watch?v=NSKLaRXorf4 

Saturday, June 22, 2013

Pirsiavash and Ramanan, CVPR 2012

(Lucas Kanade)

Fathi et al., ECCV 2012Mathe and Sminchisescu, ECCV 2012

6 Stefan Mathe and Cristian Sminchisescu
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Fig. 2. Illustration for our automatic AOI generation method. Areas of interest are
obtained automatically by clustering the fixations of subjects. Left: Heat maps illus-
trating the assignments of fixations to AOIs. The colored blobs have been generated
by pooling together all fixations belonging to the same AOI and performing a gaussian
blur with � = 1o visual angle. Right: Scan path through automatically generated
AOIs for three subjects. The horizontal axis denotes time. Colored boxes correspond
to the AOIs generated by the algorithm. Arrows illustrate saccades which landed in a
di↵erent AOI than the fixation preceeding them. Drawn according to scale. Semantic
labels have been manually assigned, for visualization purposes. This figure illustrates
the existence of cognitive routines centered at semantically meaningful objects.

the average p-value for each subject. Somewhat surprisingly, we find that fixa-
tion patterns of our free viewers do not deviate significantly from those of active
subjects (p = 0.65 for Hollywood-2 and p = 0.58 for UCF Sports). Since in the
Hollywood-2 dataset several actions can be present in a video, either simultane-
ously or sequentially, this rules out initial habituation e↵ects and further neglect
(free viewing) to some degree.4

Dynamic Consistency Among Subjects: Our static inter-subject agreement
analysis shows that the spatial distribution of fixations in video is highly con-
sistent across subjects. It does not however reveal whether there is significant
consistency in the order in which subjects fixate among these locations. To our
knowledge, there are no existing agreed upon dynamic consistency measures in
the community at the moment. In this section, we propose two metrics that
are sensitive to the temporal ordering among fixations and evaluate consistency
under these metrics. We first model the scanpath made by each subject as a
sequence of discrete symbols and show how this representation can be produced
automatically. We then define two metrics, AOI Markov dynamics and temporal
AOI alignment, and show how they can be computed for this representation.

4 Notice that our findings do not assume or imply that free-viewing subjects may not
be recognizing actions. However we did not ask them to perform a task, nor where
they aware of the purpose of the experiment, or the interface presented to subjects
given a task. While this is one approach to analyze task influence, it is not the only
possible. For instance, subjects may be asked to focus on di↵erent tasks (e.g. actions
versus general scene recognition), although this type of setting may induce biases
due to habituation with stimuli presented at least twice.

Fathi et al., CVPR 2011
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(Lucas Kanade)

(a) (b)

Figure 1: Graphical model representation is illustrated in (a). Term �(x,h) captures information
about context (all the video excluding regions defined by latent variables h); terms  (x, hi) capture
information about latent regions. Inferred latent regions should be discriminative and match high
density regions of eye gaze data. In (b) ground truth eye gaze density, computed from fixations of
multiple subjects, is overlaid over images from sequences of 3 different action classes (see Sect. 1).

for well defined and relatively static actions. In [7] an extension to multiple sub-volumes that model
parts of the action is proposed and amounts to a spatio-temporal part-based (pictorial structure)
model. While part-based model of [7] allows for greater flexibility, the remaining axis-aligned
nature of part sub-volumes is still largely appropriate for recognition in scenarios where camera and
subject are relatively static. This constraint is slightly relaxed in [12] where a part-based model built
on dense trajectory clustering is proposed. However, [12] relies on sophisticated pre-processing
which requires building long feature trajectories over time, which is difficult to do for fast motions
or less textured regions.

Most closely related approaches to our work come from [9, 18, 19]. In [18] Tran and Yuan show
that a rectangular axis-aligned volume constraint can be relaxed by efficiently searching over the
space of smooth paths within the spatio-temporal volume. The resulting Max-Path algorithm is
applied to object tracking in video. In [19] this approach is further extended by incorporating Max-
Path inference into a max-margin structured output learning framework, resulting in an approach
capable of localizing actions. We generalize Max-Path idea by allowing multiple smooth paths and
context within a latent max-margin structured output learning. In addition, our model is trained to
simultaneously localize and classify actions. Alternatively, [9] uses latent SVM to jointly detect
an actor and recognize actions. In practice, [9] relies on human detection for both inference and
learning and only sub-set of frames can be localized due to the choice of the features (HOG3D).
Similarly, [2] relies on person detection and distributed partial pose representation, in the form of
poselets, to build a spatio-temporal graph for action recognition and localization. We want to stress
that [2, 9, 18, 19] require bounding box annotations for actors in learning. In contrast, we focus on
weaker and more natural source of data – gaze, to formulate our learning criteria.

3 Recognizing and Localizing Actions in Videos

Our goal is to learn a model that can jointly localize and classify human actions in video. This prob-
lem is often tackled in the same manner as object recognition and localization in images. However,
extension to a temporal domain comes with many challenges. The core challenges we address are:
(i) dealing with a motion of the actor within the frame, resulting from camera or actor’s own motion
in the world; (ii) complexity of the resulting spatio-temporal search, that needs to search over the
space of temporal paths; (iii) ability to model coarse temporal progression of the action and action
context, and (iv) learning in absence of direct annotations for actor(s) position within the frame.

To this end, we propose a model that has the ability to localize temporally and spatially discrimi-
native regions of the video and encode the context in which these regions occur. The output of the
model indicates the absence or presence of a particular action in the video sequence while simulta-
neously extracting the most discriminative and perceptually salient spatio-temporal video regions.
During the training phase, the selection of these regions is implicitly driven by eye gaze fixations
collected by a sample of viewers. As a consequence, our model is able to perform top-down video
saliency detection conditioned on the performed action and localized action region.

3

Shapovalova et al., NIPS 2013
Figure 1: Saliency maps obtained from the gaze patterns of 12 viewers under action recognition (left
image in pair) and context recognition (right, in pair), from a single image. Note that human gaze
significantly depends on the task (see tab. 1b for quantitative results). The visualization also suggests
the existence of stable consistently fixated areas of interest (AOIs). See fig. 2 for illustration.

constrain estimates and to automatically identify the spatial support and the transitions between
AOIs in addition to their locations. We use the proposed AOI discovery tools to study inter-subject
consistency and show that, on this dataset, task instructions have a significant influence on human
visual attention patterns, both spatial and sequential. Our findings are presented in §5.
• We leverage the large amount of collected fixations and saccades in order to develop a novel, fully
trainable, eye movement prediction model. The method combines inverse reinforcement learning
and advanced computer vision descriptors in order to learn task sensitive reward functions based on
human eye movements. The model has the important property of being able to efficiently predict
scanpaths of arbitrary length, by integrating information over a long time horizon. This leads to
significantly improved estimates. Section §6.2 gives the model and its assessment.

2 Related Work

Human gaze pattern annotations have been collected for both static images[11, 13, 14, 12, 26, 18]
and for video[19, 23, 15], see [24] for a recent overview. Most of the image datasets available
have been collected under free-viewing, and the few task controlled ones[14, 7] have been designed
for small scale studies. In contrast, our dataset is both task controlled and more than one order
of magnitude larger than the existing image databases. This makes it adequate to using machine
learning techniques for saliency modeling and eye movement prediction.
The influence of task on eye movements has been investigated in early human vision studies[25, 3]
for picture viewing, but these groundbreaking studies have been fundamentally qualitative. Statisti-
cal properties like the saccade amplitude and the fixation duration have been shown to be influenced
by the task[5]. A quantitative analysis of task influence on visual search in the context of action
recognition from video appears in our prior work[19].
Human visual saliency prediction has received significant interest in computer vision (see [2] for an
overview). Recently, the trend has been to learn saliency models from fixation data in images[13, 22]
and video[15, 19]. The prediction of eye movements has been less studied. In contrast, predefined
visual saliency measures can be used to obtain scanpaths[11] in conjunction with non-maximum
suppression. Eye movements have also been modeled explicitly by maximizing the expected future
information gain[20, 4] (as one step in [20] or until the goal is reached in [4]). The methods operate
on pre-specified reward functions, which limits their applicability. The method we propose shares
some resemblance with these later methods, in that we also aim at maximizing the future expected
reward, albeit our reward function is learned instead of being pre-specified, and we work in an
inverse optimal control setting, which allows, in principle, an arbitrary time horizon. We are not
aware of any eye movement models that are learned from eye movement data.

3 Action from a Single Image – New Human Eye Movement Dataset

One objective of this work is to introduce eye movement recordings for the PASCAL VOC image
dataset used for action recognition. Presented in [10], it is one of the largest and most challenging

2

Mathe and Sminchisescu, NIPS 2013
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New Trends in Saliency Prediction
• Hierarchical processing is ubiquitous in low-level 

human vision.

• Deep unsupervised models have been present 
for over a decade.

• Nowadays, go deep and use supervision!

• Mimic human visual system and learn a saliency 
model in an end-to-end manner.  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Deep supervised models
• Typically, superior performance to unsupervised 

models 
• Large-scale proxy datasets have enabled 

effective supervised learning 
• Key considerations: 

• Network architecture 
• Incorporation of prior cues
• Supervision mechanism
• Loss function 

54adopted from N. Murray



eDN Model (Vig et al., 2014)

• 1-3 layer networks 
• Up to 43 hyper-parameters 
• Linear patch classifier is learned 
• fixated and non-fixated regions used to supervise training 
• Small-scale dataset used for training 
• Filters are drawn randomly

55

Deep supervised models

13

eDN model:

E. Vig, M. Dorr, and D. Cox. Large-scale optimization of hierarchical features for saliency prediction in natural 
images. CVPR, 2014.

adopted from N. Murray



Deep Gaze (Kummerer et al., 2015)

56adopted from N. Murray

Deep supervised models

14

Convolutional network model:
- pre-trained for visual recognition 

task
- Incorporation of centre-bias prior 

M. Kümmerer, L. Theis, and M. Bethge. Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on 
ImageNet. ICLR Workshop, 2015

• Convolutional network model 
(based on AlexNet)

• pre-trained for visual 
recognition task 

• Incorporation of centre-bias 
prior 



SALICON Model (Huang et al., 2015)

• Domain adaptation to saliency works 
• Adding multi-scale information helps

57

Deep supervised models

17

- Domain adaptation to saliency works
- Adding multi-scale information helps

X. Huang, C. Shen, X. Boix, Q. Zhao. SALICON: Reducing the Semantic Gap in Saliency Prediction by Adapting Deep 
Neural Networks. ICCV, 2015.

adopted from N. Murray



DeepSal Model (Pan et al., 2016)

• New large-scale 
datasets with proxy 
eye-fixation data

• Training all features of 
larger networks 

• Still small-scale 
compared to networks 
designed for 
semantics prediction 

58adopted from N. Murray

Deep supervised models

16

New large-scale datasets with 
proxy eye-fixation data
→ Training all features of larger 
networks
Still small-scale compared to 
networks designed for 
semantics prediction

J. Pan, E. Sayrol, X. Giro-i-Nieto, K. McGuinness, N. E. O'Connor. Shallow and Deep Convolutional Networks for 
Saliency Prediction. CVPR, 2016.



ML-Net Model (Cornia et al., 2016)

• Saliency map priors
• Multiple resolutions 

59adopted from N. Murray



SalGAN (Pan et al., 2017)

• Adversarial loss to impose prior information
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Fig. 2. Overall architecture of the proposed saliency system. The input for the saliency prediction network predicts an output saliency map given a natural

image as input. Then, the pair of saliency and image is feed into the discriminator network. The output of the discriminator is a score that tells about

whether the input saliency map is real or fake.

pixels with high ground truth fixation probability. In fact choos-
ing an appropriate loss function has become an issue that can
lead to improved results. Thus, another interesting contribu-
tion of (Huang et al., 2015) lies on minimizing loss functions
based on metrics that are di↵erentiable, such as NSS, CC, SIM
and KL divergence to train the network (see Riche et al. (2013)
and Kümmerer et al. (2015b) for the definition of these metrics.
A thorough comparison of metrics can be found in (Bylinskii
et al., 2016a)). In (Huang et al., 2015) KL divergence gave the
best results. (Jetley et al., 2016) also tested loss functions based
on probability distances, such as X2 divergence, total variation
distance, KL divergence and Bhattacharyya distance by consid-
ering saliency map models as generalized Bernoulli distribu-
tions. The Bhattacharyya distance was found to give the best
results.

In our work we present a network architecture that takes a
di↵erent approach. By incorporating the high-level adversarial
loss into the conventional saliency prediction training approach,
the proposed method achieves the state-of-the-art performance
in both MIT300 and SALICON datasets by a clear margin.

3. Architecture

The training of SalGAN is the result of two competing
convolutional neural networks: a generator of saliency maps,
which is SalGAN itself, and a discriminator network, which
aims at distinguishing between the real saliency maps and those
generated by SalGAN. This section provides details on the
structure of both modules, the considered loss functions, and
the initialization before beginning adversarial training. Fig-
ure 2 shows the architecture of the system.

3.1. Generator

The generator network, SalGAN, adopts a convolutional
encoder-decoder architecture, where the encoder part includes

max pooling layers that decrease the size of the feature maps,
while the decoder part uses upsampling layers followed by con-
volutional filters to construct an output that is the same resolu-
tion as the input.

The encoder part of the network is identical in architecture to
VGG-16 (Simonyan and Zisserman, 2015), omitting the final
pooling and fully connected layers. The network is initialized
with the weights of a VGG-16 model trained on the ImageNet
data set for object classification (Deng et al., 2009). Only the
last two groups of convolutional layers in VGG-16 are modi-
fied during the training for saliency prediction, while the earlier
layers remain fixed from the original VGG-16 model. We fix
weights to save computational resources during training, even
at the possible expense of some loss in performance.

The decoder architecture is structured in the same way as the
encoder, but with the ordering of layers reversed, and with pool-
ing layers being replaced by upsampling layers. Again, ReLU
non-linearities are used in all convolution layers, and a final
1 ⇥ 1 convolution layer with sigmoid non-linearity is added to
produce the saliency map. The weights for the decoder are ran-
domly initialized. The final output of the network is a saliency
map in the same size to input image.

The implementation details of SalGAN are presented in Ta-
ble 1.

3.2. Discriminator

Table 2 gives the architecture and layer configuration for the
discriminator. In short, the network is composed of six 3x3
kernel convolutions interspersed with three pooling layers (#2),
and followed by three fully connected layers. The convolution
layers all use ReLU activations while the fully connected layers
employ tanh activations, with the exception of the final layer,
which uses a sigmoid activation.



Predicting Dynamic Saliency 
• Predict where  

humans look at  
in a dynamic  
stimuli

• A less studied,  
more challenging  
problem

• Needs processing  
both spatial and  
temporal  
information

• What deep learning offers?

61



Spatio-Temporal Saliency Networks 

• Process spatial and temporal streams 
separately (up to a point)

• Integrate these streams before extracting 
final saliency maps

• Spatial stream encodes the appearance 
information and involves RGB frames

• Temporal stream represents the motion 
information and includes optical flow 
images

• Mimic the dorsal (where) and the ventral 
(what) pathways in the human vision 
system
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F. Spatio-Temporal Saliency Network With Direct Fusion

Finally, as another baseline model, we design a single stream
network in which the appearance and optical flow images are
stacked together and fed to the network as input. This model
implements an early fusion strategy at the very beginning of
the network architecture and can be seen as a special case
of STSConvNet. Here, each layer of the network learns a set
of filters that directly acts on the given appearance and motion
frames. We refer to this model as STSDirectNet.

IV. IMPLEMENTATION DETAILS

A. Network Architectures

The architecture of our single stream models is the same with
that of the deep convolution network proposed in [25]. They take
320 × 240 × 3 pixels images and processes them by the follow-
ing operations: C(96, 7, 3) → LRN → P → C(256, 5, 2) → P
→C(512, 3, 1)→C(512, 5, 2)→C(512, 5, 2)→C(256, 7, 3)
→ C(128, 11, 5) → C(32, 11, 5) → C(1, 13, 6) → D. Here,
C(d, f, p) represents a convolutional layer with d filters of size
f × f applied to the input with padding p and stride 1. LRN
denotes a local response normalization layer that carries out a
kind of lateral inhibition, and P indicates a max pooling layer
over 3 × 3 regions with stride 2. Finally, D is a deconvolution
layer with filters of size 8 × 8 × 1 with stride 4 and padding 2
which upscales the final convolution results to the original size.
All convolutional layers except the last one are followed by a
ReLU layer. Our spatial and temporal stream models in partic-
ular differ from each other in their inputs. While the first one
processes still images, the next one accepts optical flow images
as input.

For the proposed spatio-temporal saliency networks shown in
Fig. 1(b), we employ element-wise max and convolutional fu-
sion strategies to integrate the spatial and temporal streams. Per-
forming fusion after the fifth convolutional layer gives the best
results for both of these fusion strategies. In STSMaxNet, the
single stream networks are combined by applying element-wise
max operation, which is followed by the same deconvolution
layer in the single stream models. On the other hand, STSCon-
vNet performs fusion by stacking the feature maps together
and integrating them by a convolution layer C(512, 1, 0) whose
weights are initialized with identity matrices. The remaining
layers are the same with those of the single stream models.

B. Data Preprocessing

We employ three publicly available datasets, 1.DIEM (Dy-
namic Images and Eye Movements) [35], 2. UCF-Sports [36]
datasets and 3. MIT 300 dataset [59], which are described in
detail in Section V, in our experiments. Since our networks ac-
cept inputs of size 320 × 240 × 3 pixels and outputs saliency
maps of the same size, all videos and ground truth fixation
density maps are rescaled to this size prior to training. We
use the publicly available implementation of DeepFlow [60]
and we additionally extract optical flow information from the
rescaled versions of subsequent video frames. Optical flow im-
ages are then generated by stacking horizontal and vertical flow

Fig. 2. Sample optical flow images generated for some frames of a video
sequence from UCF-Sports dataset.

components and the magnitude of the flow together. Some ex-
ample optical flow images are shown in Fig. 2.

C. Data Augmentation

Data augmentation is a widely used approach to reduce the
effect of over-fitting and improve generalization of neural net-
works. For saliency prediction, however, classical techniques
such as cropping, horizontal flipping, or RGB jittering are not
very suitable since they alter the visual stimuli used in the eye
tracking experiments in collecting the fixation data. Having said
that, horizontal flipping is used in [25] as a data augmentation
strategy although there is no theoretical basis for why this helps
to obtain better performance.

In our study, we propose to employ a new and empirically
grounded data augmentation strategy for specifically training
saliency networks. In [61], the authors performed a thorough
analysis on how image resolution affects the exploratory be-
havior of humans through an eye-tracking experiment. Their
experiments revealed that humans are quite consistent about
where they look on high and low-resolution versions of the same
images. Motivated with this observation, we process all video
sequences and produce their low-resolution versions by down-
sampling them by a factor of 2 and 4, and use these additional
images with the fixations obtained from original high-resolution
images in training. We note that in reducing the resolution of
optical flow images the magnitude should also be rescaled to
match with the down-sampling rate. It is worth-mentioning
that this new data augmentation strategy can also be used
for boosting performances of deep models for static saliency
estimation.

D. Training

We employ the weights of the pretrained CNN model in [25]
to set the initial weights of our spatial and temporal stream net-
works. In training the models, we use Caffe framework [62] and
employed Stochastic Gradient Descent with Euclidean distance
between the predicted saliency map and the ground truth. The
networks were trained over 200 K iterations where we used a
batch size of 2 images, momentum of 0.9 and weight decay of
0.0005, which is reduced by a factor of 0.1 at every 10 K itera-
tions. Depending on the network architectures, it takes between
1 day to 3 days to train our models on the DIEM dataset by using
a single 2 GB GDDR5 NVIDIA GeForce GTX 775M GPU on
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cept inputs of size 320 × 240 × 3 pixels and outputs saliency
maps of the same size, all videos and ground truth fixation
density maps are rescaled to this size prior to training. We
use the publicly available implementation of DeepFlow [60]
and we additionally extract optical flow information from the
rescaled versions of subsequent video frames. Optical flow im-
ages are then generated by stacking horizontal and vertical flow

Fig. 2. Sample optical flow images generated for some frames of a video
sequence from UCF-Sports dataset.

components and the magnitude of the flow together. Some ex-
ample optical flow images are shown in Fig. 2.

C. Data Augmentation

Data augmentation is a widely used approach to reduce the
effect of over-fitting and improve generalization of neural net-
works. For saliency prediction, however, classical techniques
such as cropping, horizontal flipping, or RGB jittering are not
very suitable since they alter the visual stimuli used in the eye
tracking experiments in collecting the fixation data. Having said
that, horizontal flipping is used in [25] as a data augmentation
strategy although there is no theoretical basis for why this helps
to obtain better performance.

In our study, we propose to employ a new and empirically
grounded data augmentation strategy for specifically training
saliency networks. In [61], the authors performed a thorough
analysis on how image resolution affects the exploratory be-
havior of humans through an eye-tracking experiment. Their
experiments revealed that humans are quite consistent about
where they look on high and low-resolution versions of the same
images. Motivated with this observation, we process all video
sequences and produce their low-resolution versions by down-
sampling them by a factor of 2 and 4, and use these additional
images with the fixations obtained from original high-resolution
images in training. We note that in reducing the resolution of
optical flow images the magnitude should also be rescaled to
match with the down-sampling rate. It is worth-mentioning
that this new data augmentation strategy can also be used
for boosting performances of deep models for static saliency
estimation.

D. Training

We employ the weights of the pretrained CNN model in [25]
to set the initial weights of our spatial and temporal stream net-
works. In training the models, we use Caffe framework [62] and
employed Stochastic Gradient Descent with Euclidean distance
between the predicted saliency map and the ground truth. The
networks were trained over 200 K iterations where we used a
batch size of 2 images, momentum of 0.9 and weight decay of
0.0005, which is reduced by a factor of 0.1 at every 10 K itera-
tions. Depending on the network architectures, it takes between
1 day to 3 days to train our models on the DIEM dataset by using
a single 2 GB GDDR5 NVIDIA GeForce GTX 775M GPU on
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F. Spatio-Temporal Saliency Network With Direct Fusion

Finally, as another baseline model, we design a single stream
network in which the appearance and optical flow images are
stacked together and fed to the network as input. This model
implements an early fusion strategy at the very beginning of
the network architecture and can be seen as a special case
of STSConvNet. Here, each layer of the network learns a set
of filters that directly acts on the given appearance and motion
frames. We refer to this model as STSDirectNet.

IV. IMPLEMENTATION DETAILS

A. Network Architectures

The architecture of our single stream models is the same with
that of the deep convolution network proposed in [25]. They take
320 × 240 × 3 pixels images and processes them by the follow-
ing operations: C(96, 7, 3) → LRN → P → C(256, 5, 2) → P
→C(512, 3, 1)→C(512, 5, 2)→C(512, 5, 2)→C(256, 7, 3)
→ C(128, 11, 5) → C(32, 11, 5) → C(1, 13, 6) → D. Here,
C(d, f, p) represents a convolutional layer with d filters of size
f × f applied to the input with padding p and stride 1. LRN
denotes a local response normalization layer that carries out a
kind of lateral inhibition, and P indicates a max pooling layer
over 3 × 3 regions with stride 2. Finally, D is a deconvolution
layer with filters of size 8 × 8 × 1 with stride 4 and padding 2
which upscales the final convolution results to the original size.
All convolutional layers except the last one are followed by a
ReLU layer. Our spatial and temporal stream models in partic-
ular differ from each other in their inputs. While the first one
processes still images, the next one accepts optical flow images
as input.

For the proposed spatio-temporal saliency networks shown in
Fig. 1(b), we employ element-wise max and convolutional fu-
sion strategies to integrate the spatial and temporal streams. Per-
forming fusion after the fifth convolutional layer gives the best
results for both of these fusion strategies. In STSMaxNet, the
single stream networks are combined by applying element-wise
max operation, which is followed by the same deconvolution
layer in the single stream models. On the other hand, STSCon-
vNet performs fusion by stacking the feature maps together
and integrating them by a convolution layer C(512, 1, 0) whose
weights are initialized with identity matrices. The remaining
layers are the same with those of the single stream models.

B. Data Preprocessing

We employ three publicly available datasets, 1.DIEM (Dy-
namic Images and Eye Movements) [35], 2. UCF-Sports [36]
datasets and 3. MIT 300 dataset [59], which are described in
detail in Section V, in our experiments. Since our networks ac-
cept inputs of size 320 × 240 × 3 pixels and outputs saliency
maps of the same size, all videos and ground truth fixation
density maps are rescaled to this size prior to training. We
use the publicly available implementation of DeepFlow [60]
and we additionally extract optical flow information from the
rescaled versions of subsequent video frames. Optical flow im-
ages are then generated by stacking horizontal and vertical flow

Fig. 2. Sample optical flow images generated for some frames of a video
sequence from UCF-Sports dataset.

components and the magnitude of the flow together. Some ex-
ample optical flow images are shown in Fig. 2.

C. Data Augmentation

Data augmentation is a widely used approach to reduce the
effect of over-fitting and improve generalization of neural net-
works. For saliency prediction, however, classical techniques
such as cropping, horizontal flipping, or RGB jittering are not
very suitable since they alter the visual stimuli used in the eye
tracking experiments in collecting the fixation data. Having said
that, horizontal flipping is used in [25] as a data augmentation
strategy although there is no theoretical basis for why this helps
to obtain better performance.

In our study, we propose to employ a new and empirically
grounded data augmentation strategy for specifically training
saliency networks. In [61], the authors performed a thorough
analysis on how image resolution affects the exploratory be-
havior of humans through an eye-tracking experiment. Their
experiments revealed that humans are quite consistent about
where they look on high and low-resolution versions of the same
images. Motivated with this observation, we process all video
sequences and produce their low-resolution versions by down-
sampling them by a factor of 2 and 4, and use these additional
images with the fixations obtained from original high-resolution
images in training. We note that in reducing the resolution of
optical flow images the magnitude should also be rescaled to
match with the down-sampling rate. It is worth-mentioning
that this new data augmentation strategy can also be used
for boosting performances of deep models for static saliency
estimation.

D. Training

We employ the weights of the pretrained CNN model in [25]
to set the initial weights of our spatial and temporal stream net-
works. In training the models, we use Caffe framework [62] and
employed Stochastic Gradient Descent with Euclidean distance
between the predicted saliency map and the ground truth. The
networks were trained over 200 K iterations where we used a
batch size of 2 images, momentum of 0.9 and weight decay of
0.0005, which is reduced by a factor of 0.1 at every 10 K itera-
tions. Depending on the network architectures, it takes between
1 day to 3 days to train our models on the DIEM dataset by using
a single 2 GB GDDR5 NVIDIA GeForce GTX 775M GPU on
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Spatio-Temporal Saliency Networks (Bak et al., 2018) 

• Two-stream CNNs for saliency prediction from 
videos

- One of the first deep models for dynamic saliency 
prediction

• Element-wise and convolutional fusion strategies 
to integrate spatial and temporal information. 

• Experiments on 
- DIEM (Mital et al., 2011) : 84 videos, fixations from 50 

subjects
- UCF-Sports (Mathe and Sminchisescu, 2015) : 150 

videos, fixations from 16 subjects
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Spatio-Temporal Saliency Networks (Bak et al., 2018) 

• Two base network models
• 9 convolution + 1 deconvolution layers
• 25.8M parameters
• Spatial stream
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(a) Single stream saliency networks (b) Two-stream saliency networks

Fig. 1. (a) The baseline single stream saliency networks. While SSNet utilizes only spatial (appearance) information and accepts still video frames, TSNet
exploits only temporal information whose input is given in the form of optical flow images. (b) The proposed two-stream spatio-temporal saliency networks.
STSMaxNet performs fusion by using element-wise max fusion, whereas STSConvNet employs convolutional fusion after the fifth convolution layers.

(fractionally strided convolution) layer to up sample to the
original image size. Note that it does not use any temporal
information and exploits only appearance information to pre-
dict saliency in still video frames. We refer to this network
architecture as SSNet.

B. Temporal Saliency Network

Saliency prediction from videos is inherently different than
estimating saliency from still images in that our attention is
highly affected by the local motion contrast of the foreground
objects. To understand the contribution of temporal informa-
tion to the saliency prediction, we develop a second single
stream baseline. As given in the bottom row of Figure 1(a),
this model is just a replica of the spatial stream net but the
input is provided in the form of optical flow images, as in [34],
computed from two subsequent frames. We refer to this single
stream network architecture as TSNet.

C. Spatio-Temporal Saliency Network with Direct Averaging

As a baseline model, we define a network model which
integrates the responses of the final layers of the spatial and
the temporal saliency networks by using direct averaging. Note
that this model does not consider a learning strategy on how
to combine these two-stream network and consider each one
of the single-stream networks equally reliable. We refer to this
two-stream network architecture as STSAvgNet.

D. Spatio-Temporal Saliency Network with Max Fusion

This network model accepts both a video frame and the
corresponding optical flow image as inputs and merges to-
gether the spatial and temporal single stream networks via
element-wise max fusion. That is, given two feature maps

xs
,xt 2 RH⇥W⇥D from the spatial and temporal streams,

with W,H,D denoting the width, height and the number of
channels (filters), max fusion takes the maximum of these two
feature maps at every spatial location i and j, and channel d,
as:
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This fusion strategy assumes arbitrary correspondences be-
tween the spatial and temporal streams (due to the max
operation), and thus this spatio-temporal model seeks filters
so that these arbitrary correspondences become as meaningful
as possible according to the joint loss. After this fusion step,
it also uses a deconvolution layer to produce an up-sampled
saliency map as the final result as illustrated in the top row of
Figure 1(b). We refer to this two-stream network architecture
as STSMaxNet.

E. Spatio-Temporal Saliency with Convolutional Fusion

Our last network model integrates spatial and temporal
streams by applying convolutional fusion. That is, the corre-
sponding feature maps xs and xt respectively from the spatial
and temporal streams are stacked together and then combined
as follows:

yconv =
⇥
xs xt

⇤
⇤ f + b , (2)

where f 2 R1⇥1⇥2D⇥D denotes a bank of 1 ⇥ 1 filters, and
b 2 RD represents the bias term.

The main advantage of the convolutional fusion over the
element-wise max fusion is that the filterbank f learns the opti-
mal correspondences between the spatial and temporal streams
based on the loss function, and reduces the number of channels
by a factor of two through the weighted combinations of xs

and xt with weights given by f at each spatial location. As
demonstrated in the bottom row of Figure 1(b), this is followed
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(a) Single stream saliency networks (b) Two-stream saliency networks

Fig. 1. (a) The baseline single stream saliency networks. While SSNet utilizes only spatial (appearance) information and accepts still video frames, TSNet
exploits only temporal information whose input is given in the form of optical flow images. (b) The proposed two-stream spatio-temporal saliency networks.
STSMaxNet performs fusion by using element-wise max fusion, whereas STSConvNet employs convolutional fusion after the fifth convolution layers.

(fractionally strided convolution) layer to up sample to the
original image size. Note that it does not use any temporal
information and exploits only appearance information to pre-
dict saliency in still video frames. We refer to this network
architecture as SSNet.

B. Temporal Saliency Network

Saliency prediction from videos is inherently different than
estimating saliency from still images in that our attention is
highly affected by the local motion contrast of the foreground
objects. To understand the contribution of temporal informa-
tion to the saliency prediction, we develop a second single
stream baseline. As given in the bottom row of Figure 1(a),
this model is just a replica of the spatial stream net but the
input is provided in the form of optical flow images, as in [34],
computed from two subsequent frames. We refer to this single
stream network architecture as TSNet.

C. Spatio-Temporal Saliency Network with Direct Averaging

As a baseline model, we define a network model which
integrates the responses of the final layers of the spatial and
the temporal saliency networks by using direct averaging. Note
that this model does not consider a learning strategy on how
to combine these two-stream network and consider each one
of the single-stream networks equally reliable. We refer to this
two-stream network architecture as STSAvgNet.

D. Spatio-Temporal Saliency Network with Max Fusion

This network model accepts both a video frame and the
corresponding optical flow image as inputs and merges to-
gether the spatial and temporal single stream networks via
element-wise max fusion. That is, given two feature maps

xs
,xt 2 RH⇥W⇥D from the spatial and temporal streams,

with W,H,D denoting the width, height and the number of
channels (filters), max fusion takes the maximum of these two
feature maps at every spatial location i and j, and channel d,
as:
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i,j,d
= max
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This fusion strategy assumes arbitrary correspondences be-
tween the spatial and temporal streams (due to the max
operation), and thus this spatio-temporal model seeks filters
so that these arbitrary correspondences become as meaningful
as possible according to the joint loss. After this fusion step,
it also uses a deconvolution layer to produce an up-sampled
saliency map as the final result as illustrated in the top row of
Figure 1(b). We refer to this two-stream network architecture
as STSMaxNet.

E. Spatio-Temporal Saliency with Convolutional Fusion

Our last network model integrates spatial and temporal
streams by applying convolutional fusion. That is, the corre-
sponding feature maps xs and xt respectively from the spatial
and temporal streams are stacked together and then combined
as follows:

yconv =
⇥
xs xt

⇤
⇤ f + b , (2)

where f 2 R1⇥1⇥2D⇥D denotes a bank of 1 ⇥ 1 filters, and
b 2 RD represents the bias term.

The main advantage of the convolutional fusion over the
element-wise max fusion is that the filterbank f learns the opti-
mal correspondences between the spatial and temporal streams
based on the loss function, and reduces the number of channels
by a factor of two through the weighted combinations of xs

and xt with weights given by f at each spatial location. As
demonstrated in the bottom row of Figure 1(b), this is followed

• Two base network models
• 9 convolution + 1 deconvolution layers
• 25.8M parameters
• Temporal stream
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(a) Single stream saliency networks (b) Two-stream saliency networks

Fig. 1. (a) The baseline single stream saliency networks. While SSNet utilizes only spatial (appearance) information and accepts still video frames, TSNet
exploits only temporal information whose input is given in the form of optical flow images. (b) The proposed two-stream spatio-temporal saliency networks.
STSMaxNet performs fusion by using element-wise max fusion, whereas STSConvNet employs convolutional fusion after the fifth convolution layers.

(fractionally strided convolution) layer to up sample to the
original image size. Note that it does not use any temporal
information and exploits only appearance information to pre-
dict saliency in still video frames. We refer to this network
architecture as SSNet.

B. Temporal Saliency Network

Saliency prediction from videos is inherently different than
estimating saliency from still images in that our attention is
highly affected by the local motion contrast of the foreground
objects. To understand the contribution of temporal informa-
tion to the saliency prediction, we develop a second single
stream baseline. As given in the bottom row of Figure 1(a),
this model is just a replica of the spatial stream net but the
input is provided in the form of optical flow images, as in [34],
computed from two subsequent frames. We refer to this single
stream network architecture as TSNet.

C. Spatio-Temporal Saliency Network with Direct Averaging

As a baseline model, we define a network model which
integrates the responses of the final layers of the spatial and
the temporal saliency networks by using direct averaging. Note
that this model does not consider a learning strategy on how
to combine these two-stream network and consider each one
of the single-stream networks equally reliable. We refer to this
two-stream network architecture as STSAvgNet.

D. Spatio-Temporal Saliency Network with Max Fusion

This network model accepts both a video frame and the
corresponding optical flow image as inputs and merges to-
gether the spatial and temporal single stream networks via
element-wise max fusion. That is, given two feature maps

xs
,xt 2 RH⇥W⇥D from the spatial and temporal streams,

with W,H,D denoting the width, height and the number of
channels (filters), max fusion takes the maximum of these two
feature maps at every spatial location i and j, and channel d,
as:
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This fusion strategy assumes arbitrary correspondences be-
tween the spatial and temporal streams (due to the max
operation), and thus this spatio-temporal model seeks filters
so that these arbitrary correspondences become as meaningful
as possible according to the joint loss. After this fusion step,
it also uses a deconvolution layer to produce an up-sampled
saliency map as the final result as illustrated in the top row of
Figure 1(b). We refer to this two-stream network architecture
as STSMaxNet.

E. Spatio-Temporal Saliency with Convolutional Fusion

Our last network model integrates spatial and temporal
streams by applying convolutional fusion. That is, the corre-
sponding feature maps xs and xt respectively from the spatial
and temporal streams are stacked together and then combined
as follows:

yconv =
⇥
xs xt

⇤
⇤ f + b , (2)

where f 2 R1⇥1⇥2D⇥D denotes a bank of 1 ⇥ 1 filters, and
b 2 RD represents the bias term.

The main advantage of the convolutional fusion over the
element-wise max fusion is that the filterbank f learns the opti-
mal correspondences between the spatial and temporal streams
based on the loss function, and reduces the number of channels
by a factor of two through the weighted combinations of xs

and xt with weights given by f at each spatial location. As
demonstrated in the bottom row of Figure 1(b), this is followed
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(a) Single stream saliency networks (b) Two-stream saliency networks

Fig. 1. (a) The baseline single stream saliency networks. While SSNet utilizes only spatial (appearance) information and accepts still video frames, TSNet
exploits only temporal information whose input is given in the form of optical flow images. (b) The proposed two-stream spatio-temporal saliency networks.
STSMaxNet performs fusion by using element-wise max fusion, whereas STSConvNet employs convolutional fusion after the fifth convolution layers.

(fractionally strided convolution) layer to up sample to the
original image size. Note that it does not use any temporal
information and exploits only appearance information to pre-
dict saliency in still video frames. We refer to this network
architecture as SSNet.

B. Temporal Saliency Network

Saliency prediction from videos is inherently different than
estimating saliency from still images in that our attention is
highly affected by the local motion contrast of the foreground
objects. To understand the contribution of temporal informa-
tion to the saliency prediction, we develop a second single
stream baseline. As given in the bottom row of Figure 1(a),
this model is just a replica of the spatial stream net but the
input is provided in the form of optical flow images, as in [34],
computed from two subsequent frames. We refer to this single
stream network architecture as TSNet.

C. Spatio-Temporal Saliency Network with Direct Averaging

As a baseline model, we define a network model which
integrates the responses of the final layers of the spatial and
the temporal saliency networks by using direct averaging. Note
that this model does not consider a learning strategy on how
to combine these two-stream network and consider each one
of the single-stream networks equally reliable. We refer to this
two-stream network architecture as STSAvgNet.

D. Spatio-Temporal Saliency Network with Max Fusion

This network model accepts both a video frame and the
corresponding optical flow image as inputs and merges to-
gether the spatial and temporal single stream networks via
element-wise max fusion. That is, given two feature maps

xs
,xt 2 RH⇥W⇥D from the spatial and temporal streams,

with W,H,D denoting the width, height and the number of
channels (filters), max fusion takes the maximum of these two
feature maps at every spatial location i and j, and channel d,
as:
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This fusion strategy assumes arbitrary correspondences be-
tween the spatial and temporal streams (due to the max
operation), and thus this spatio-temporal model seeks filters
so that these arbitrary correspondences become as meaningful
as possible according to the joint loss. After this fusion step,
it also uses a deconvolution layer to produce an up-sampled
saliency map as the final result as illustrated in the top row of
Figure 1(b). We refer to this two-stream network architecture
as STSMaxNet.

E. Spatio-Temporal Saliency with Convolutional Fusion

Our last network model integrates spatial and temporal
streams by applying convolutional fusion. That is, the corre-
sponding feature maps xs and xt respectively from the spatial
and temporal streams are stacked together and then combined
as follows:

yconv =
⇥
xs xt

⇤
⇤ f + b , (2)

where f 2 R1⇥1⇥2D⇥D denotes a bank of 1 ⇥ 1 filters, and
b 2 RD represents the bias term.

The main advantage of the convolutional fusion over the
element-wise max fusion is that the filterbank f learns the opti-
mal correspondences between the spatial and temporal streams
based on the loss function, and reduces the number of channels
by a factor of two through the weighted combinations of xs

and xt with weights given by f at each spatial location. As
demonstrated in the bottom row of Figure 1(b), this is followed



Spatio-Temporal Saliency Networks (Bak et al., 2018) 

68



Spatio-Temporal Saliency Networks (Bak et al., 2018) 

69



ACLNet (Wang et al., 2018) 
• A CNN-LSTM network architecture with an attention mechanism
• Attention mechanism explicitly encodes static saliency 

information
• LSTM focuses on learning more flexible temporal saliency 

representation across successive frames.  
• Attention and LSTM modules are trained in an iterative manner
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Figure 3. Network architecture of the proposed video saliency model. (a) Attentive CNN-LSTM architecture. (b) CNN layers with
attention module are used for learning intra-frame static features, where the attention module is learned with the supervision from static
saliency data. (c) ConvLSTM used for learning sequential saliency representations.

a more explicit spatial saliency representation. This helps
disentangle underlying spatial and temporal factors of dy-
namic attention, and allows convLSTM better capture tem-
poral dynamics.
• CNN-LSTM architecture introduces a large number of pa-
rameters for modeling spatial and temporal patterns. How-
ever, for sequential data such as videos, obtaining labelled
data is costly. Even though there are large-scale datasets
like DHF1K that have 1K videos, the amount of training
data is still insufficient, considering the high correlation
among frames within same video. The supervised attentive
module is able to leverage existing rich static fixation data
to improve the generalization power of our model.
• In VGG-16, we remove the last two pooling layers to ob-
tain a large feature map. This dramatically decreases the
receptive field (212⇥212!140⇥140), which cannot cover
the whole frame (224⇥224). To remedy this, we insert a
set of down- and up-sampling operations into the attention
module, which would enhance the intra-frame saliency in-
formation with an enlarged receptive field. By this, our
model is able to make more accurate predictions from a
global view.

As demonstrated in Fig. 3 (b), our attentive module is
built upon the conv5-3 layer, as an additional branch of sev-
eral conv layers interleaved with pooling, and upsampling
operations. Given the input feature X , with pooling lay-
ers, the attention module generates a downsampled atten-
tion map (7⇥7) with an enlarged receptive field (260⇥260).
Then the small attention map is ⇥4 upsampled as the same
spatial dimensions of X . Let M 2 [0, 1]28⇥28 be the up-
sampled attention map, the feature X 2 R28⇥28⇥512 from
conv5-3 layer can be further enhanced by:

X̂
c = M � X

c, (6)

where c 2 {1, . . . , 512} is the index of the channel. Here,
the attention module work as a feature selector to enhance
the feature representation.

The above attention module may lose useful information
for learning a dynamic saliency representation, as the atten-
tion module only considers static saliency information in

Figure 4. Performance of our model with or without attention
module on the training and validation sets of DHF1K. With ex-
tra static saliency training data, the attention module significantly
improves training efficiency and performance.

still video frames. For this, inspired by the recent advances
of attention mechanism and residual connection [19, 54],
we improve Eq. 6 in residual form:

X̂
c = (1 +M) � X c. (7)

With the residual connection, both the original CNN fea-
tures and the enhanced features are combined and fed to the
LSTM model. In Fig. 4, we observe that the model with
supervised attention module gains better training efficiency
on the training set and improved performance on the vali-
dation set. In §5.2 and §5.4, more detailed explorations for
the attention module are offered.

Different from previous attention mechanisms that learn
task-related attention in an implicit way, our attention mod-
ule can learn from existing large-scale static fixation data in
an explicit and supervised manner (detailed in next part).

Loss function. We use the following loss function [23]
that considers three different saliency evaluation metrics in-
stead of one. The rationale here is that no single metric can
fully capture how satisfactory a saliency map is.

We denote the predicted saliency map as Y2 [0, 1]28⇥28,
the map of fixation locations as P 2 {0, 1}28⇥28 and the
continuous saliency map (distribution) as Q2 [0, 1]28⇥28.
Here the fixation map P is discrete, that records whether a
pixel receives human fixation. The continuous saliency map
is obtained via blurring each fixation location with a small
Gaussian kernel. Our loss functions is defined as follows:

L(Y,P,Q)=LKL(Y,Q)+↵1LCC(Y,Q)+↵2LNSS(Y,P ), (8)



SalEMA (Linardos et al., 2019) 
• an encoder-decoder architecture motivated by SALGAN
• an additional recurrent structure using exponential moving 

average (EMA)
• convolutional state from the previous frame affects the current 

prediction
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LINARDOS ET AL: TEMPORAL RECURRENCES FOR VIDEO SALIENCY PREDICTION 3

Figure 1: Architecture of the our model. A frame is input to the model at each time step.
Information encoded from the past frames persists via our recurrence that is located deeper in
the network. The output is a per-frame saliency map.

3 Architecture
The adopted neural architecture follows an encoder-decoder scheme that processes the tem-
poral recurrence in the bottleneck. The topology of both encoder-decoder is adopted from
SalGAN [17], a previous work on saliency prediction for still images. SalGAN encoder
corresponded to the popular VGG-16 convolutional network [19] designed and trained to
solve an image classification task. At the decoder side, SalGAN used the same layers as in
the encoder in reverse order, and interspersed by upsampling instead of pooling operations.
Furthermore, when transferring SalGAN from its original implementation to our framework
of choice (PyTorch) we observed a drop in performance. As we were not able to solve or
explain this, we instead fine tuned SalGAN using just the BCE loss on the SALICON dataset.
We name the resulting architecture SalBCE.

We introduce a temporally aware component into the SalBCE network. This is either
the addition of a ConvLSTM layer or an exponential moving average (EMA) applied on a
pre-existing convolutional layer. Figure 1 presents a schematic of our architecture.

3.1 ConvLSTM
An LSTM is an autoregressive architecture that controls the flow of information in the network
using 3 gates: update, forget, and output (Figure 2, left). In ConvLSTMs [26], the operations
at each gate are convolutions. Temporal information is preserved in the cell state Ct upon
which gated element-wise operations are performed by the update and forget gate. The
hidden state Ht is concatenated with the input at each step and propagated through linear and
non-linear operations at the gates. At each gate the current state St of the model is passed
through the ConvLSTM gates and the cell state Ct and hidden state Ht are updated. In the
following equations ‘�’ represents the element-wise product, ‘⇤’ a convolution operation,
‘s ’ the sigmoid logistic function and ‘tanh’ the hyperbolic tangent. The update, forget, and

4 LINARDOS ET AL: TEMPORAL RECURRENCES FOR VIDEO SALIENCY PREDICTION

Figure 2: (Left) LSTM recurrence. Parametric operations are highlighted in yellow. (Right)
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and the new cell state Ct and hidden state Ht are then given by:

Ct = ft �Ct�1 +ut � tanh(W S

C
⇤St +W

H

C
⇤Ht�1 +bC) (4)

Ht = ot � tanh(Ct) (5)

where W
⇤
⇤ and b⇤ are the model parameters.

We added the ConvLSTM architecture at the bottleneck of our model, so that the input
to the ConvLSTM is an encoded representation of the frame at time t. The output cell state
Ct is fed to the decoder for further processing that results in a saliency map. To obtain the
saliency map, a 1⇥1 convolution is used at the final layer of the decoder, so as to filter out all
channels but one. We sequentially pass video frames to the model as input and get a sequence
of time-correlated saliency maps in the output. The ConvLSTM component learns to leverage
the temporal features during training. The name we gave to this type of model is SalCLSTM.

3.2 Exponential Moving Average

As an alternative approach, the exponential moving average (EMA) recurrence [18] is added
on a specified layer so that at time t the convolutional state of this layer will be a decaying
weighted average of the current and all previous states (Figure 2, right). At time t the
convolutional layer St outputs a state that is fed to the exponential weighted average. The
output Et is then propagated further in the model. Note that there is a hyperparameter a that
affects the impact of previous states on the current time step (the lower the value the higher
the impact).

Et = aSt +(1�a)Et�1 (6)

This recurrence is straightforward to implement, especially compared to the ConvLSTM.
We experimented with the placement of the EMA function at several different layers with
a = 0.1. We name our model SalEMA. On the initial step, where there is no past information,
the model runs like a static saliency map predictor.



STRA-Net (Lai et al., 2019) 
• a two-stream spatiotemporal network with dense residual cross 

connections and a composite attention module
• enhances spatiotemporal saliency representation with multi-

scale information 
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Fig. 2: Architecture overview. Two tightly coupled streams take RGB frames and stacked optical flows as inputs, respectively,
and output the comprehensive spatiotemporal saliency representation. The spatiotemporal saliency representations are further
enhanced with multi-scale information through a composite attention mechanism. A lightweight recurrent unit, convGRU, is
incorporated to facilitate learning the temporal transition of visual attention.

model the attention transitions over time, we augment our
model with a lightweight recurrent layer, i.e., convGRU, which
is more flexible for learning from relatively small dynamic
fixation datasets, compared with complex LSTM structure.

III. OUR APPROACH

A. Architecture Overview

Video carries both spatial and temporal information in the
form of the individual frame appearance and the motion across
frames, respectively. Such nature inspires us to build our
model upon a two-stream architecture to better process the
appearance and motion information, as shown in Fig. 2.

Two parallel DNN streams are used to handle the spatial and
temporal information of an input video, i.e. the RGB frames
and the optical flows, respectively. To learn the comprehensive
spatiotemporal saliency representation, we fuse the saliency
features from two streams by incorporating dense residual
cross connections among different layers of two DNNs, in
Section III-B. To further enhance the spatiotemporal saliency
representations with multi-scale information, in Section III-C,
we incorporate a composite attention module to learn the local
and global attention priors. To learn the temporal attention
transitions more efficiently from limited data, we introduce
convGRU, a lightweight RNN structure, into our network.
More details can be found in Section III-D. In Section III-F,
we present the implementation details and training protocols.

B. Spatiotemporal Residual Network

1) Residual Learning: Before going deep into our spa-
tiotemporal residual learning framework, we first give a brief
introduction of residual learning [22], which is used as the
building block of our model. Let x and H(x) denote the input
feature and the desired underlying mapping, residual learning
is learn the residual of identity mapping F(x) = H(x) � x,

instead of the original, unreferenced mapping H(x) (see Fig. 3
(a)). Thus H(x) can be computed as:

H(x) = x+ F(x). (1)

Such kind of residual design can ease the training of relatively
deep network architecture.

2) Appearance and Motion Streams: Our appearance and
motion streams contain several residual blocks (borrowed from
the five convolution blocks of ResNet-50 [22]). The l-th (l 2
{1, . . . , L}) residual block is defined as:

xl = xl�1 + F (xl�1;Wl) , (2)

where xl�1 and xl are the input and output of the l-th
block, respectively, and F is the nonlinear mapping with
weights Wl. Given a set of video frames {I

t
}
T

t=1 and the
corresponding optical flows {O

t
}
T

t=1. The appearance stream
takes one single video frame I

t as input, and produce the
appearance feature. The optical flows {O

t
,O

t+1
, . . . ,O

t+S
}

from the neighboring S frames are fed into the motion stream
for obtaining corresponding motion features.

3) Dense Residual Connection across Two Streams: Pre-
vious methods largely build the two streams separately; only
adopting late fusion ‘outside’ of the two streams. There is no
information exchange between the two streams. Differently,
in our model the two streams are more tightly incorporated
to learn more comprehensive spatial and temporal features.
This is achieved via adding dense residual cross connections
between the corresponding layers (see Fig. 2 and Fig. 3 (c)).

Considering the fact that spatial stream tends to dominate
the motion stream during training [62], we first inject the
motion features x

m into the appearance stream, resulting in
a cross connection strategy (see Fig. 3 (d)). Intuitively, the
appearance feature x

a

l
in l-th residual layer of appearance

stream can be improved via:

x
a

l
 x

a

l
� x

m

l
, (3)
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• a 3D fully-convolutional encoder-decoder network architecture
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the encoded features  
while aggregating  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Abstract

TASED-Net is a 3D fully-convolutional network archi-

tecture for video saliency detection. It consists of two

building blocks: first, the encoder network extracts low-

resolution spatiotemporal features from an input clip of sev-

eral consecutive frames, and then the following prediction

network decodes the encoded features spatially while ag-

gregating all the temporal information. As a result, a single

prediction map is produced from an input clip of multiple

frames. Frame-wise saliency maps can be predicted by ap-

plying TASED-Net in a sliding-window fashion to a video.

The proposed approach assumes that the saliency map of

any frame can be predicted by considering a limited num-

ber of past frames. The results of our extensive experiments

on video saliency detection validate this assumption and

demonstrate that our fully-convolutional model with tem-

poral aggregation method is effective. TASED-Net signifi-

cantly outperforms previous state-of-the-art approaches on

all three major large-scale datasets of video saliency detec-

tion: DHF1K, Hollywood2, and UCFSports. After analyz-

ing the results qualitatively, we observe that our model is

especially better at attending to salient moving objects.

1. Introduction

Video saliency detection aims to model the gaze fixation
patterns of humans when viewing a dynamic scene. Be-
cause the predicted saliency map can be used to prioritize
the video information across space and time, this task has a
number of applications such as video surveillance [12, 41],
video captioning [27], video compression [11, 13], etc.

Previous state-of-the-art approaches for video saliency
detection [3, 19, 39] largely depend on LSTMs [16] to
aggregate information temporally. For example, OM-
CNN [19] feeds spatial features from YOLO [31] and tem-
poral features from FlowNet [10] into a two-layer LSTM.
The leading state-of-the-art model, ACLNet [39], also uses

Figure 1: An illustration for the overall flow of TASED-
Net. The encoder network extracts spatiotemporal features
from an input clip of T frames. The prediction network de-
codes spatially and also aggregates temporally the features
to produce a single saliency map of the last input frame.
This process is applied in a sliding window fashion with a
window size of T .

a LSTM to aggregate spatial features guided by frame-wise
image saliency maps. The strong performance of LSTM-
based approaches over non-LSTM based ones suggests that
aggregating information temporally boosts performance on
video saliency detection.

However, all of these LSTM-based, existing video
saliency models fail to jointly process spatial and tempo-
ral information when predicting a saliency map from the
extracted features. Specifically, either spatial decoding and
temporal aggregation are performed separately, or only one
of these two processes is considered for the final prediction.
The existing works are hence unable to leverage the col-
lective spatiotemporal information, which is expected to be
important to video saliency [9, 25].

To this end, we propose a novel 3D fully-convolutional
encoder-decoder network architecture for video saliency de-
tection, which we call the Temporally-Aggregating Spa-
tial Encoder-Decoder Network (TASED-Net). As described
in Figure 1, TASED-Net progressively reduces the tempo-
ral dimensionality within both the encoder and the decoder
subnetworks, which enables it to spatially upsample the en-
coded features and temporally aggregate all the information
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Figure 2: A detailed illustration of our proposed TASED-Net architecture. Violet boxes are convolutional operation blocks
taken from the S3D [40] network pre-trained on the Kinetics dataset [21]. Pink boxes represent spatial decoding blocks.
Green boxes are temporal convolutions that reduce the temporal dimension; within these blocks, p and q are set to reduce the
temporal size of the output to 1. The 1 × 1 × 1 convolutional operation in orange re-distributes the channel information of
the encoded features. Because the unpooling layers operate only in spatial dimensions, switches [42] from the pooling layers
cannot be reused. Auxiliary poolings are used as extra poolings to obtain properly-sized switches for the unpooling layers.
Dashed arrows represent switch transfer. Note that Auxiliary poolings are not included in the main data stream.

learnable upsampling method through transposed convolu-
tion, which inspires our Auxiliary pooling.

Recent 3D ConvNets. 3D ConvNets have achieved
state-of-the-art results in the action recognition task. Above
all, 3D ConvNets inflated from 2D ConvNets are leading
the field by leveraging successful 2D network architectures
as well as their parameters. Carreira and Zisserman [5]
propose I3D, which inflates the 2D convolutional filters of
Inception [36] to produce a 3D ConvNet with strong per-
formance. Xie et al. [40] further explore inflated 3D Con-
vNets by proposing a more computationally-efficient archi-
tecture called S3D. Hara et al. [14] experimentally show
that various other inflated 3D ConvNets are also effective
and predict that 3D ConvNets pre-trained on the Kinetics
dataset [21] can retrace the success story of 2D ConvNets,
i.e. that they can be used to initialize models for many other
fields of video analysis, just as VGG-16 [34] has been ap-
plied to diverse image-based problems. We adopt S3D as
the encoder network for our approach with the hope that it
takes advantage of the successful architecture and the large-
scale video dataset for effective transfer learning.

3. Approach

3.1. Architecture Overview

The overall flow of our proposed architecture is illus-
trated in Figure 1. We choose this design based on three as-
sumptions: (i) saliency detection of any frame can be done
well by only considering a fixed number of consequent past

frames (we will call this number T throughout this paper);
(ii) given an input of T frames, predicting a single saliency
map for one specific time step is better than predicting maps
for two or more steps at once; and (iii) there are enough
number of frames in a video (specifically, the total number
of frames of a video is not less than 2T − 1).

The encoder network first encodes an input clip of
T frames spatiotemporally; this provides a deep low-
resolution feature representation. Then, the following
prediction network decodes the features spatially while
jointly aggregating temporal information to produce a full-
resolution prediction map for a single time step. We note
that unlike the previous state-of-the-art models that use
LSTM, our method is conditioned on a fixed number of
previous frames when predicting a saliency map. The pre-
diction network is devised to coincide with the second as-
sumption by predicting a single saliency map correspond-
ing to the last frame of an input clip. Frame-wise saliency
maps are predicted by applying the architecture in a slid-
ing window fashion. In other words, St, a saliency map at
t, is predicted given an input clip (It−T+1, ..., It) for any
t ∈ {T, ..., N}, where It is the frame at time step t and N
is the total number of frames in the video.

The problem with this configuration is that the first T −
1 saliency maps are not predicted. Our workaround is to
reverse the chronological order of the first T −1 input clips.
That is, St for t ∈ {1, ..., T−1} is predicted by conditioning
on (It+T−1, ..., It). As a result, our architecture can predict
a frame-wise saliency map for every frame as long as our

2396



Beyond saliency 

74

Thanks for your attention!


