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Previously on CMP784

» Supervised vs. Unsupervised
Representation Learning

» Sparse Coding
« Autoencoders
» Autoregressive Generative Models




Lecture overview

* Motivation for Variational Autoencoders (VAES)

* Mechanics of VAEs

» Separatibility of VAEs

 Training of VAESs

« Evaluating representations

* Vector Quantized Variational Autoencoders (VQO-VAES)

Disclaimer: Much of the material and slides for this lecture were borrowed from

— Pavlov Protopapas, Mark Glickman and Chris Tanner's Harvard CS109B class
— Andrej Risteski's CMU 10707 class
— David McAllester's TTIC 31230 class
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Recap: Autoencoders

[ Feature Representation }
Feed-back, (~ N 4 "\ Feed-forward,
enerative, bottom-u
opdown | Decoder Encoder P

N / N /
[ Input Image 1

» Detalls of what goes insider the encoder and decoder matter!
* Need constraints to avoid learning an identity.



Parameter space of autoencoder

* Let's examine the latent space of an AE.

* |s there any separation of the different
classes? If the AE learned the “essence”
of the MINIST images, similar images
should be close to each other.

* Plot the latent space and examine the
separation.

* Here we plot the 2 PCA components of
the latent space.

Image taken from A. Glassner, Deep Learning, Vol. 2: From Basics to Practice
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Traversing the latent space

* \\e start at the start of the arrows in latent
A space and then move to end of the arrow In
/ steps.

 For each value of z we use the already trained
decoder to produce an image.

AllNNNnnunG

B B
c\ C
D D

Image taken from A. Glassner, Deep Learning, Vol. 2: From Basics to Practice
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Problems with Autoencoders

* Gaps in the latent space
* Discrete latent space
» Separability in the latent space ﬂ\

“B

B
.
A
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Generative models

* Imagine we want to generate data from a distribution,

z ~ p(z)
L~ N(/L,O’)

*e.g.



Generative models

 But how do we generate such samples?

z ~ Unif (0, 1)



Generative models

 But how do we generate such samples?

z ~ Unif(0,1) x=Inz



Generative models

* [n other words we can think that if we choose z~Uniform then there is a mapping:

x = f(2)
such as:
x ~ p(x)

where In general f i1s some complicated function.

* We already know that Neural Networks are great in learning complex functions.

z~g(z) w— x=f(z) =—x~p(x)




Traditional Autoencoders

* |n traditional autoencoders, we can think of encoder and decoders as
some function mapping.

® -
W —> Encoder =>4 => Decoder —>| s

14



Variational Autoencoders

* TO go to variational autoencoders, we need to first add some
stochasticity and think of it as a probabilistic modeling.

® -
W —> Encoder =34 —> Decoder =) g

15



Variational Autoencoders

Sample from g(z)

e.g. Standard
Gaussian

z ~ g(z)

X ~ P(x|z)

16



Variational Autoencoders

B9

-

\_

Encoder

~

J

Traditional AE

Bé

-

\_

Encoder

~

J

Variational AE

e

Consider this
to be the mean
of a normal u

Consider this to
be the std of a

normal o

Randomly
chosen value
Latent value, z

17



Variational Autoencoders

3 latent
values
compute compute
3 centers 3 spreads
\étent
values




Variational Autoencoders

2 _ » encoder —»

random
numbers

v

+m =)

+C]:g

+ =[]

+a=[
latent
variables

—» decoder —»

19



Variational Autoencoders

a

ﬁ

&2 2818 20 neurons 296 012 /84 .
neurons neurons Rel U neurons neurons neurons - 7
Rel U Rel U © RelU RelU RelU
Centers
512 256 20 Random 256 512 784
neurons | | neurons | | neurons Variable neurons | | neurons | | neurons
RelLU RelLU RelLU S RelLU RelLU RelLU

20
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Separability in Variational Autoencoders

» Separability is not only between classes but ;2 Q 2 2
we also want similar items in the same class

to be near each other.

« For example, there are different ways of
writing “2", we want similar styles to end up
near each other.

* Let's examine VAE, there is something
magic happening once we add stochasticity
INn the latent space.

NINNRNRRO
NINNINIRIRO
INNINNIANIR

ININININININD
NIDNINININI NN
DOININININI PO
IESINOINHNHNHIN)IN



Separability in Variational Autoencoders

Latent Space

SD o randomly-

chosen
\ value /
<
: :
T\ / o
/ \

Mean u

Encode the first sample (a “2") and find u4, o4



Separability in Variational Autoencoders

Latent Space

SD o

/

A
™\

d3dOON4

\

randomly-
chosen
value

i

Mean u

Sample z; ~ N (4, 01)

\

DECODER

|

24



Blending Latent Variables

Latent Space

SD o

randomly-
chosen
value

/

Y.
N7

d3dOON4

\

Mean u

Decode to X,

IR

\

DECODER

|

25



Separability in Variational Autoencoders

Latent Space

SD o randomly-
chosen .
Z \ value /
L] Bﬂg 8
7\ / a
// \
Mean u

Encode the second sample (a “3") find u,, o,. Sample z, ~ N(u,, g,)

26



Separability in Variational Autoencoders

SD o

randomly-
chosen
value

/

Y.
N7

d3dOON4

\

Mean u

Decode to X,

Latent Space

o‘ﬂ

O

\

DECODER

|
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Separability in Variational Autoencoders

Latent Space

SD o
randomly-
chosen

T value ® I

M / s

Z LL

O O

: e

s \u / 1
// \

Mean u

Train with the first sample (a “2") again and find u,, oy. However z; ~ N(u4, 01)
will not be the same. It can happen to be close to the “3" In latent space.

28



Separability in Variational Autoencoders

SD o

randomly-
chosen
value

/

Y.
N7

d34d0OON4

\

Mean u

Latent Space

og

.

\

DECODER

|

Decode to X;. Since the decoder only knows how to map from latent

space to X space, it will returna “3".

29



Separability in Variational Autoencoders

Train with 18t sample again

/

d3dOON4

\

SD o

randomly-
chosen
value

1N

Latent Space

N7

Mean u

-
oo

Latent space starts to
re-organize

\

DECODER

|

-
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Separability in Variational Autoencoders

And again... Latent Space
SD o randomly-
ale
e %d |
7 / I
Z— = 3 Is pushed away S
SN gz
// \
Mean u

31



Separability in Variational Autoencoders

Many times...

/

d3dOON4

\

SD o

randomly-
chosen
value

-

Mean u

Latent Space

\

DECODER

|

32



Separability in Variational Autoencoders

Now lets test again

/

d3dOON4

\

SD o

randomly-
chosen
value

Latent Space

™)
e

)
®

-

Mean u

°E

\

DECODER

|
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Separability in Variational Autoencoders

Training on 3's again
SD o

randomly-

chosen
value Y
°

7
N7

Latent Space

/
\

430d0ON3
o
V|
DECODER

\
/

Mean u




Separability in Variational Autoencoders

Many times...

/

d3dOON4

\

SD o

randomly-
chosen
value

-3

Mean u

Latent Space

>
N [T
I‘..I

o5

)
mEE

\

DECODER

|
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Training

Encoder G Decoder
X —— w; G W, —— X
Training means learning Wr and Wp,.

« Define aloss function £

» Use stochastic gradient descent (or Adam) to minimize L

The Loss function:
« Reconstruction error: Lp = %Zi(xi — %)*

« Similarity between the probability of z given x, p(z|x), and some predefined probability
distribution p(z), which can be computed by Kullback-Leibler divergence (KL):

KL(p(z|x)||p(2))

37



BayeS I a n AE Encoder G Decoder

Bayes rule: X ——  w; Q W, —— X
p(8|D) < p(D|8)p(6) °

Parameters
of the model
(@ 1s 2)

Posterior for our parameters, z is:
p(zlx, X) < p(X|z, x)p(2)

Posterior predictive, probability to see X given x; this is INFERENCE:
p(®lx) = [ p(R|z, x)p(z]x)dz

Decoder: NN Posterior

38



Bayesian AE

The posterior, P(z|x,x), can be sampled with MCMC, I.e. no minimization of
Loss function. How?

1. Set the priors, p(2)
2. Define the likelihood, P(X|z, x)
3. Propose a new z" and:
a. checkif P(z*|x,x)/P(z|x,x) >1: accept, z*
b. If P(z*|x,X)/P(z|x,Xx) <1 throw a random coin and accept/reject z*
4. This will converge to true P(z|x, x)!

5. Calculate P(%|x) = | P(%|z x)P(z|x)dz (Note: this is easily done with sample
from z and re-weight given the likelihood)

DOABLE!

39



Variational AE

Problem: z is the dimensionality of your latent space, which can be too
large. In other words this [ p(%|z, x)p(z|x)dz becomes intractable.

Instead we turn this into a minimization problem — Variational Calculus
Find a g(z|x) that is similar to p(z|x) by minimizing their difference.

After some math:

Proposal distribution

should resemble
Reconstruction Loss a Gaussian

E_ g 108(Pa(¥l2)) + KL(g,(dlx)|puta))  Eiiies

40



Variational AE

» The VAE approach: introduce an inference machine q4(z | ) that
learns to approximate the posterior pg(z | x).

» Define a variational lower bound on the data likelihood: pg(x) > L(6, ¢, x)

L(O,p,7) =Ey, (2|2) logpe(x, 2) —logqy(z | T))
_F .

g0 (zlz)HogPelx | z) + log pg(2) =
Dxr (q5(2 | 2)| po(2))

regularization term reconstruction term

* Whatis qg(z | z) ?

Slide credit: Aaron Courville g1



Variational AE: Math Maximum Likelihood?

9*_argmaXHp9 () Maximize likelihood of dataset ~ {z(D}N
1=1

Kingma and Welling, ICLR 2014

42



Variational AE: Math Maximum Likelihood?

o —argmaXHpg (i)} Maximize likelihood of dataset {g;(@}g\i
=1
N

_ i)y Maximize log-likelihood instead
s mgmx 2:1 logpg(a: ) because sums are nicer
1=

Kingma and Welling, ICLR 2014

43



Variational AE: Math Maximum Likelihood?

o —argmaXHpg (i)} Maximize likelihood of dataset {g;(@}ﬁ
=1
N

_ 1 i)y Maximize Iog—likelihqod Instead
s meax 21 ng@(m ) because sums are nicer
1=

(i)Y _ (4) Marginalize joint
po('") = / po(; 2)dz  gistibution
Kingma and Welling, ICLR 2014

44



Variational AE: Math Maximum Likelihood?

o —argmaXHpg (i)} Maximize likelihood of dataset {g(i)}ﬁ
=1
N

_ 1 i)y Maximize Iog—likelihqod Instead
s meax 21 ng@(iv ) because sums are nicer
1=

pe(x(i)) = /pe( (), 2)dz = /pg(a:(i) | 2)pg(2)dz Intractible integral!

45



Variational AE: Math

log pg ()



Variational AE: Math

log pg (2'?) = E. g, (a0 [logpg(x(i))] (po(2(?) Does not depend on z)

47



Variational AE: Math

log pg(z'?) = E. g,z [logpg(x(i))] (po(z'Y) Does not depend on z)

(1)
=E, [log po(e™ | z)pg(z)] (Bayes’ Rule)
po(z | z)

48



Variational AE: Math

log pg(z'?) = E. 4, (e [lngg(ZC(i))] (po(z'Y) Does not depend on z)

po (2 | 2)py(2)
po(z | z()

po (2 | 2)po(2) 4o (= | 2'V)
po(z | z)  qp(z [ z)

= E. |log ] (Bayes’ Rule)

=E, |log ] (Multiply by constant)

49



Variational AE: Math

log pg(z'?) = E. q,(zla®) [lngg(ZE(i))] (po(z'Y) Does not depend on z)

po(z) | 2)po(2)
po(z | x(®)

po (x| 2)po(2) qp(z | 1)
po(z | @) qy(z | z®)

=E, |log ] (Bayes’” Rule)

=LK, |lo ultiply by constant
E. |log ] (Multiply b )

- , (4) (2)
= E. |logpg(z'¥ | z)] —E, [log 4> | 7 )] + E, [log 4s(2 | @ . )] (Logarithms)
: po(2) po(z | 2)

50



Variational AE: Math

log pg(z'?) = E. ., (zla®) [lngg(ZC(i))] (po(z'Y) Does not depend on z)

i (i)
=E., |log po(e™ | z)pg(z)] (Bayes” Rule)
_ po(z | z)

po (2D | 2)py(2) qp(z | V)
po(z | 2@)  qy(z | z@)

=E, |log ] (Multiply by constant)

i | . (4) (2)
=E. |logpe(z? | 2)| — E. [log 4z | @ )] + E, [log 42| @ . )] (Logarithms)
- - po(2) po(z | 2)

= E. |logps(z™ 2)| = Drr(gs( | ) || po(2)) + Drr(gs(z | 29) || po(z | 1))

51



Variational AE: Math

log pg(z'?) = E. 4, (zlz®) [1ogp9(:v(i))] (po(z'Y) Does not depend on z)

I (4)
= E, |log po(z™ | z)pg(z)] (Bayes’” Rule)
_ po(z | )

po (x| 2)po(2) gg(2 | 21)

po(z |z®))  qg(z ] 2)

(4) (4)

—E, [log 4> | T )] +E, [log 42 | 2 . >] (Logarithms)
po(2) po(z [ =)

= E. |logpo(z"” | )| = Drr(as(z | ) [1po(2)) + Drcr(g(2 | 27) || po(z | 27))

. J/

= E, |log ] (Multiply by constant)

=E, —logpg(a:(i) | 2)

E(x(i)a 0, ¢> “Elbow”

52



Variational AE: Math

log pg(z'?) = E. 4, (zlz®) [1ogp9(:v(i))] (po(z'Y) Does not depend on z)

I (2)
= E, |log po(a™ | z)pg(z)] (Bayes’ Rule)
_ po(z [ z)

po(x | 2)pg(2) qs(2 | =)
po(z ) q(z [ z)

= E, |log ] (Multiply by constant)

- . . (4) (4)
=E. |logpg(z'9 | 2)| — E, [log 42| @ )] +E, [ 42 | 2 >] (Logarithms)
- - po(z) ® po(z | @)

=E. |logpe(z") | 2)| — Dx1(gs(z | 27) || po(z )) + Dicr(gg(z | 2) |l po(z | 21)))
> 0

E(x(i)a 0, ¢> “Elbow”

53



Variational AE: Math

log pg(z'?) = E. 4, (zlz®) [logpg(:v(i))] (po(z'Y) Does not depend on z)

po (x| 2)po(2

- ( )]
— E. |[lo . Bayes’ Rule
i g p@(z ‘ CE’(Z)) ( y )
- (1) (1)
— E, |log po (™ | z)pg(z) 4(2 | @ : )] (Multiply by constant)
_ po(z [ z)  gy(z [ 2)
[ (@) [ ] qp(z | ) \ z(V))
=E, [logpg(x' | 2)| — E, |log +E, (Logarithms)
: : po(z) | ()
= E. |logpg(z'") | 2)| = Drr(as(= | =) || po(z )) +DKL(<J¢( &) | po(z | 21)))
L(z,0,6) “Elbow" ="

log po () > L(2, 0, ¢)

Variational lower bound (elbow)
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Variational AE: Math

log pg(z'?) = E. 4, (zlz®) [lngg(ZL’(i))] (po(z'Y) Does not depend on z)

pe(l’(i) | Z)pe(z)]
. Bayes’ Rule

e | 2)pe(2) go(z | 2)

= E, |log

=E, . . Multiply by constant)
T e Ouiny b
- | . (4) (4)
=E. |logpg(z'9 | 2)| — E, [log 42| @ )] +E, [ (2] >] (Logarithms)
: - po(z) (2 | )
=E. _10gpe(ﬂf(i) | 2)| = Drcr(gs(# | =) (| po(2 )) +DKL(<J¢( &) | po(z | 21)))

L(,6,¢) “Elbow" 20

Variational lower bound (elbow) Training: MaX|m|zeTower bound
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Variational AE: Math

log pg(z'?) = E. 4, (zlz®) [lngg(ZE(i))] (po(z'Y) Does not depend on z)
Reconstruct

: I (2)
the input — g~ log po(z™ | Z)(ZZG(Z)] (Bayes’ Rule)
data : bo (() | 2() o
= E, log Po(@ | 2)po(2) gp(= | @ : )] (Multiply by constant)
po(z |2D)  gg(z | 2)
- , : (2) (2)
=E. |logpd(z'9 | 2)| — E, [log 42| @ )] +E, [ (2] >] (Logarithms)
: - po(z) (2 | 2®)
~(B: [logpo(a | 9] |- Drcslasls 1) l1po(2)) + Drstaot =) 1tz 159
) >0

‘C(x(i)a 0, ¢> “Elbow” N

Variational lower bound (elbow) Training: MaX|m|ze Tower bound
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Variational AE: Math Latent states

should follow
the prior

log pg(z'?) = E. 4, (zlz®) [lngg(ZE(i))] (po(z'Y) Does not depend on z)

Reconstruct

_ (z(®)
the input — g~ 1ogp ‘ ’ (z )] (Bayes’ Rule
data po(= | @ |
_E. | pem@)’ 40(2 | ) (Multiply b tant)
= E. |log | x(z ) 20(2 [20) ultiply by constant)
| (%) (4)
—E, logp (a:(’) | z) —E, [log 4s(2) @ )] +E, [ (2] >] (Logarithms)
: : py(2) (2 | z®)
=|E, _logpe(ar(i) | Z)J_ Drr(gs(z | ) || po(2)) DKL(%( | 2) || po(z | 2 ))
,C(.I'(Z), 0, ¢> “Elbow" N - O
Variational lower bound (elbow) Training: MaX|m|zeTower bound
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Variational AE: Math Latent states

should follow

log pg(z'?) = E. 4, (zlz®) [lngg(ZC(z))] (po(z'Y) Does not depend on z)

Reconstruct , the prior
the input = EJo po(at | 2)po(2) (Bayes’ Rule
data /_z\\g po(z | @) y
o IN\e (29 | 2)pe(z) gg(z | 2P)
sampling — % 'R\ po(z [20)  gg(z [2a®) |/ (Multiply by constant)
_ (i) _ qp (2 ) \ z")
reparam. - ('] Z): E, [log pé(Z) ] +E, [ 20 )] (Logarithms)
Egg: paper) |e-L (a1 ] Z)J— Dir(gs(z | %) | pg(2)) [ DKL(C]¢( &) | po(z | 21)))
E(aj(Z)’ 0, ¢> "Elbow" N O
log pg (CIJ(i)) > ,C(Clj(i), 0, ) 0", " = = arg max L(zD 0, )

.y 0,0
Variational lower bound (elbow) Training: Maximize Tower bound
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Variational AE: Math

Latent states
should follow

log po(z') =E_ . (1.0 |logpe(z®) (po(z'Y) Does not depend on z) :
Reconstruct ¢ ([7;) ] the prior
the input = ExJjog pe(; v ” i)(f)9)(z)] (Bayes’ Rule Everything is
data \ o | Gaussian,
./:;JZ\ N e (| Z)(ZZ)H(Z) qo (% | JJE:) Dl by constant) closed form
Sampling po(z |z))  qe(z | 2¥) solution!
with | (4) (i)
eparam. = (2 ] 2)| ~ E. [log %(;4/(2) )] +E. llog ‘Zj(z ;] (Logarithms)
ek - (@ 2)|HDxrao(z |27 l1p0(2)) | Drce(as(z | 29) 1 po(z | 2))
(see paper) L -
L(9,6,) “Elbow" 20

Variational lower bound (elbow)

Training: MaX|m|ze Tower bound
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Training VAE

* Apply stochastic gradient descent (SGD)

Problem:
« Sampling step not differentiable

» Use a re-parameterization trick

— Move sampling to input layer, so that the sampling step Is independent
of the model

60



Reparametrization Trick

---------------
=)
-
-
=
-

Encoder
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Reparametrization Trick

el
‘C—---- ------.
=
-
-
-
-

Encoder
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Reparametrization Trick

_____________
- - -
-
-

Encoder
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Training VAE

el /o]y
-~ ABNBE

Variational AE:

Input Image:
Output Images:

L9

Input Image:

<3

Difference: i

=) ) = 2 5
ool | da 2 (lem | Eca

& Vl s{ — (‘J _—

4
(€ o




» Because of the prior N(O, 1) everything is center at (0,0) with spread
of approx 1.

Latent space of VAE

* More separable than AE
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Lecture overview

* Motivation for Variational Autoencoders (VAES)

* Mechanics of VAEs

» Separatibility of VAEs

 Training of VAESs

« Evaluating representations

* Vector Quantized Variational Autoencoders (VQO-VAES)

Disclaimer: Much of the material and slides for this lecture were borrowed from

— Pavlov Protopapas, Mark Glickman and Chris Tanner's Harvard CS109B class
— Andrej Risteski's CMU 10707 class
— David McAllester's TTIC 31230 class
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Desiderata for representations

What do we want out a representation?
Many possible answers here. First, a few uncontroversial desiderata:

 Interpretability: if the derived features are semantically meaningful, and
Interpretable by a human, they can be easily evaluated.
(e.g. noisy-OR: "features” are diseases a patient has)

Sparsity of a representation is an important subcase: "explanatory’ features for
sample can be examined if there are a small number of them.

 Downstream usability: the features are "useful” for downstream tasks.
Some examples:

Improving label efficiency: if, for a task, a linear (or otherwise "simple’)
classifier can be trained on features and it works well, smaller # of labeled
samples are needed.
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Desiderate for representations

* Obvious issue: interpretability and “usefulness” are not easily mathematically
expressed. We need some “proxies” that induce such properties.

This Is a lot more contraversial — here we survey some general desiderata, proposed
as early as Bengio-Courville-Vincent "14:

* Hierarchy/compositionality: video/images/text/ are expected to have hierarchical
structure — depth helps induce such structure.

« Semantic clusterability: features of the same “semantic class” (e.g. images in the
same category) are clustered.

* Linear interpolation: in representation space, linear interpolations produce
meaningful data points (i.e. “latent space is convex”). Sometimes called manifold
flattening.

* Disentangling: features capture “independent factors of variation” of data. (Bengio-
Courville-Vincent '14). Has been very popular in modern unsupervised learning,
though many potential issues with it.
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Semantic clustering

 Semantic clusterability: features of the same “semantic class”
(e.g. Images In the same category) are clustered together.

Latent Variable T-SNE per Class

N m
50 - , -
C) .' S ‘.
[ 3 ®
o
El L

The Intultion:

If semantic classes are linearly (or other
simple function) separable, and labels
on downstream tasks depend linearly
on semantic classes — can afford to
learn a simple classifier!!

25 4

—-50 1

—-75 4

=75 =50 -25 0 25 50 75 100

t-SNE projection of VAE-learned features of the 10 MNIST classes.

Image from https://pyro.ai/fexamples/vae.html
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Semantic clustering

 Semantic clusterability: features of the same “semantic class”
(e.g. Images In the same category) are clustered together.

Kmeans Clustering with Genre

—30 20 -10 0 10 20 0

t-SNE projection of word embeddings for artists (clustered by genre). Image from https://medium.com/free-code-
camp/learn-tensorflow-the- word2vec-model-and-the-tsne-algorithm-using-rock-bands-97¢99b5dcb3a
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Linear interpolation

* Linear interpolation: in representation space, linear interpolations

produce meaningful data points. (i.e. “latent space is convex”)
d
d=2z3—12, ZZ+Z

The intuition:

The data manifold is
complicated/curved.

The latent variable

AAAAR2 2333333 manifold is a convex

000000555555 set = moving In straight
lines keeps us on It.
117717979

Interpolations for a VAE trained on MNIST.
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Linear interpolation

* Linear interpolation: in representation space, linear interpolations
produce meaningful data points. (i.e. “latent space is convex”)

Interpolations for a BigGAN, image from
https://thegradient.pub/bigganex-a-dive-into- the-latent-space-of-biggan/
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Disentangled representations

* Disentangling: features capture “independent factors of variation” of data.
(Bengio-Courville-Vincent '14).

 For concreteness, let's assume that we have a latent variable model for data
with latent variables z, observables x, and joint distribution py(z, x)

* There are (at least) two ways to formalize this.

s . .
Prior disentangling: is a product distribution, i.e.pg(z) = II;pe(2;)
Classical example: ICA (independent component analysis)

Posterior disentangling: fit a variational posterior gg s.t. qg(z|®) is (on
average over X) a product distribution

In other words /(149(z|€*'3)2?(€13)d€13 — usually called the aggregate posterior — Is

W
\Close to a product distribution.

J
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Disentangled representations

(a) Skln colour

;b) Age/gender

FEEERNl LLLERRE CEEEEEE

Figure 4: Latent factors learnt by 3-VAE on celebA: traversal of individual latents demonstrates
that 5-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.

» Posterior disentangling in B-VAE. To produce plots, infer latent
variable for an image, then change a single latent variable gradually.

Irina Higgins et al. B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. ICLR 2017. 74



Prior disentangling

 Prior disentangling: pg(z) is a product distribution, i.e. pg(z) = I1;pg(z;)

Classical example: ICA (independent component analysis), also called the
“cocktall party problem™.

Assume data Is generated as

Sources Mixing Observation ICA estimation
ﬁ i@» If z has an independent, non-Gaussian prior,
d K model is identifiable and efficiently learnable.
o ‘ » (See, e.g. Frieze-Jerum-Kannan "96,
e 0f - ' . K '-/\9)) Anandkumar et al "12)

o

Other examples: noisy-OR networks (diseases are independent), general Bayesian nets, viewing
top variables as z's, GANSs, ...
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Posterior disentanglement in VAEs

» Recall the “regularization” view of the VAEs objective:

22Eq i) log p(z|h") — KL(q(h"|z)||p(R"))

\ J
Y \ v J

"Reconstruction” error "Regularization towards prior”

» Consider a prior which is a product distribution (e.g. standard Gaussian):

The KL term implicitly penalizes distributions for which
ZKL hL\az Hp(hL)) %]Ewwp*KL(q(hL]a:)Hp(hL))

IS large — 1.e. the aggregated posterior is far from a product distribution
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Posterior disentanglement in VAEs

» Recall the “regularization” view of the VAEs objective:

22Eq i) log p(z|h") — KL(q(h"|z)||p(R"))

\ J
Y \ v J

"Reconstruction” error "Regularization towards prior”

" The KL term implicitly penalizes distributions for which

ZKL (q(h*)z)||p(hY)) = Epnpr KL(g(hE|2)||p(RT))

on reconstruction or disentanglement:
B-VAE objective: Y _E, g, logp(z|h”) — BKL(g(h"|z)|p(h"))

rThe iIdea of Higgins et al 17 introduce a “weighting” factor to put more weight |
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Posterior disentanglement in VAEs

(uonejol) yinwizy (e)

(3|1ws) uonowa (q)

(@bulyy) stey (3)
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Posterior disentanglement in VAEs
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Irina Higgins et al. B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. ICLR 2017. 79



Posterior disentanglement in VAEs
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Measuring disentanglement

* Metrics are typically defined assuming access to a dataset with K “ground-truth”

variation factors.

BetaVVAE metric: based on "linear separability" of factors

Generate a training set of samples as follows:
Sample a batch of B samples as follows:
Pick a ground-truth variation factor k uniformly at random from [K].
Generate two sets of “ground truth” latent factors, v,, v, € R, s.t.
(V{), = (V,),, and other coords are independently, randomly sampled.
Generate images x4, X, from v, v,.

Infer latent vars z,, z, using model we are evaluating. (e.g. encoder in VAE)
Calculate average z,,4 Of | ; - Z, | in batch, add (z,,, k) to training set.

KTrain linear predictor on training set, evaluate it's test performance.

\
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Measuring disentanglement

BetaVVAE metric: based on ‘linear separability" of factors

~

Generate a training set of samples as follows:
Sample a batch of B samples as follows:
Pick a ground-truth variation factor k uniformly at random from [K].
Generate two sets of “ground truth” latent factors, v,, v, € R, s.t.

(V{), = (V,),, and other coords are independently, randomly sampled.
Generate images Xx;, X, from v;, v,.

Infer latent vars z,, z, using model we are evaluating. (e.g. encoder in VAE)
Calculate average z,,4 Of | Z; - Z, | in batch, add (z,,, k) to training set.

\Train linear predictor on training set, evaluate it's test performance.

* Intuition: averaging should make coords in z,,4 different from k smaller, thus linear
classitier should “focus” on k.

* Many variants of this exist. (e.g. FactorVAE, mutual information gap, etc.)
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Measuring disentanglement

» Locatello et al '19, “Challenging Common Assumptions in the Unsupervised
Learning of Disentangled Representations” (Best paper award ar ICML'19):
A large-scale study of disentanglement measures, as well as gen. models.

Dataset = NoisydSprites

BetaVAE Score ( -m e . s -

(A)
FactorVAE Score (B)m 100 52 38 -
e (0 44 | 48 2 -
DCI Disentanglement (D) - 41 52 38 -

6 -8 10

SAP (F) - 38 42 38

(A) (B) (C) (D)

Modularity (E) - 46 25

Figure 2. Rank correlation of different metrics on Noisy-dSprites.
Overall, we observe that all metrics except Modularity seem mildly
correlated with the pairs BetaVAE and FactorVAE, and MIG and
DCI Disentanglement strongly correlated with each other.
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Usefulness of disentanglement?

* Downstream classification task: predict true ground-truth factors
(w/ multiclass logistic regression)

 Careful to extrapolate too much — task/setup Is a little contrived.

,Dataset = dSprites,

1 1 1 1
BetaVAE Score- 18 | 65 28 28 | 67 76 S00-

FactorVAE Score- 13 49 13 12 58 71 43 46 -
mc- 18 [ 20 -1 mm- G | e

DCI Disentanglement- 19 65 18 4 mmm 62 54 -

Modularity - -3 -9 115 18 -6 -17 -19 -14
SAP- 12 64 20 12 741 77 74 75 56 49
I | I I I I I
o o o o o o =~ =
— o o o —~ S S o od =
e - o o = — o o = o
— o — o m = — o O
- o — (G} m - — k>)‘ ~
- [a'd G} [aa] = c >
= IT) m S g
LD i
A v
&= A
w =
i

Figure 5. Rank correlations between disentanglement metrics and
downstream performance (accuracy and efficiency) on dSprites.

Locatello et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019. 84



Usefulness of disentanglement?

 Statistical efficiency measure: average accuracy based on 100 samples
divided by the average accuracy based on 10,000 samples

sng 3-VAE eo s [-TCVAE +*o DIP-VAE-II
+ 44 FactorVAE «* s DIP-VAE-I vvv AnnealedVAE

Metric = FacforVAE Score

©
o))
S
I
]
[ |

\ Py

¢“v @u’a Yo :

Y (I \ s @‘-\ !i), uf &
L ‘\\V"”O\wf&_@;‘l'-; -l

Efficiency (GBT)
(@]
(9]
(@)]
saiudsp =' 1959196

Ve e eine "
0.48 o TS’Q&?M:;{H nﬁ'!'
| | ﬂ 1=
"ﬂf.Mﬁ’ L]
0.40 - | | | |
0 . 2 o " 4 O : 6 0 . 8 1 . 0
Value

Figure 6. Statistical efficiency of the FactorVAE Score for learning

a GBT downstream task on dSprites.
Locatello et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019. 85



Issue of ill-posedness?

» Similar issues plague disentangling that do "flat minima": a model can
be re-parametrized, s.t. the distribution over the data I1s unchanged,
but It can be arbitrarily more "entangled”.

 Thus, some kind of inductive bias both on model class and data
Seems necessary.

- As a simple example: consider.z ~ N (0, I), let 7z = Uz, for any
non-identity orthogonal matrix U.

» Then, under any "intuitive" understanding of entangling, z’ seems
entangled with z - small changes of coordinates of z cause global
changes in z’.

Locatello et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019.
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Lecture overview

* Motivation for Variational Autoencoders (VAES)

* Mechanics of VAEs

» Separatibility of VAEs

 Training of VAESs

« Evaluating representations

» Vector Quantized Variational Autoencoders (VQ-VAES)

Disclaimer: Much of the material and slides for this lecture were borrowed from

— Pavlov Protopapas, Mark Glickman and Chris Tanner's Harvard CS109B class
— Andrej Risteski's CMU 10707 class
— David McAllester's TTIC 31230 class
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Gaussian VAEs 2013

Sample z ~ N(0, ) and compute yq(2)

[Alec Radford]



Vector Quantized VAEs (VQ-VAE) 2019

VQ-VAE-2, Razavi et al., NeurlPS 2019
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Vector Quantized VAEs (VQ-VAE) 2019

Figure 1: Class-conditional 256x256 image samples from a two-level model trained on ImageNet.

VQ-VAE-2, Razavi et al., NeurlPS 2019
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Vector Quantized VAEs (VQ-VAE)

* VO-VAEs effectively perform k-means on vectors in the model so as
to represent vectors by discrete cluster centers.

* For concreteness we will consider VO-VAEs on images with a single
layer of quantization.

* \We use x and y for spatial image coordinates and use s (for signal) to
denote images.
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VQ-VAE Encoder-Decoder

« We train a dictionary C'|K, I| where C'|k, I] is the center vector of cluster k.
L|IX,Y,I] = Encg(s)

zlx,y| = argmin ||Llz,y, I| = Clk, I]||
k
Llz,y, 1] = Clz[z,y), 1]
§ = Decg(L[X,Y, I])

* The “symbolic image” z[X, Y | is the latent variable.
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VQ-VAE Training Loss

* \\We preserve information about the image s by minimi;ing the
distortion between L| XY, I| and its reconstruction L|X,Y, I

®* = argmin Es S||L[X,Y, I] _z[X7Y7 ]]H2+ H3_§H2
D
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Parameter-Specific Learning Rates

LY 1) = LIX, Y NP = ) L[z, y, 1) = Clef, ), 10|
LY

» For the gradient of this they use

for z,y Llv,y,I].grad += 2B(L[x,y, I] — Clz[z,y], I])
for z,y Clzlz,yl, I].grad += 2(Clz|z,y], ] — Lz, y, I])

* This gives a parameter-specific learning rate for C|K, I].

« Parameter-specific learning rates do not change the stationary points (the
points where the gradients are zero).
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The Relationship to K-means

for x,y Clzlx,y|, I].grad += 2(C|z|x,y|, I| — L|z,y, I])

» At a stationary point we get that C'k, I| is the mean of the set of
vectors Llz,y, I] with z[z,y] =k (asin K-means).
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Straight Through Gradients

* The latent variables are discrete so some approximation to SGD must
be used.

* The authors use “straight-through” gradients.

A

for x,y Llz,y,I].grad += L|x,y, I|.grad

+ This assumes low distortion between L[X,Y,I] and L[X,Y,I].
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Training Phase |

* Once the model is trained we can sample images s and compute the
“symbolic image” z|X,Y]|.

» Given samples of symbolic images z| X, Y| we can learn an auto-
regressive model of these symbolic images using a pixel- CNN.

* This yields a prior probability distribution Pg(z[.X, Y]) which provides
a tighter upper bound on the rate.

* \We can then measure compression and distortion for test images.
This is something GANs cannot do.
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Multi-Layer Vector Quantized VAEs

VQ-VAE Encoder and Decoder Training

Top _ _\LQ_ g
Level

Bottom
Level

Original Reconstruction

Image Generation
- B
l Condition

had

)
o,
P —— -./ /i /
- / A{ .
TN

Generation
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Quantitative Evaluation

* The VQO-VAE2 paper reports a classification accuracy score (CAS) for
class-conditional image generation.

* \We generate image-class pairs from the generative model trained on

the ImageNet training data.

* \\We then train an image classifier from the generated pairs and
measure Its accuracy on the ImageNet test set.

Top-1 Accuracy Top-5 Accuracy

BigGAN deep
VQ-VAE
VQ-VAE after reconstructing

42.65 65.92
54.83 77.59
58.74 80.98

Real data

73.09 91.47
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Direct Rate-Distortion Evaluation

» Rate-distortion metrics for image compression to discrete rep-
resentations support unambiguous rate-distortion evaluation.

» Rate-distortion metrics also allow one to explore the rate-distortion

trade-off.

Train NLL  Validation NLLL. Train MSE Validation MSE

Top prior
Bottom prior

3.40 3.41 - -
3.45 3.45

VQ Decoder

- - 0.0047 0.0050

Table 1: Train and validation negative log-likelihood (NLL) for top and bottom prior measured by
encoding train and validation set resp., as well as Mean Squared Error for train and validation set.
The small difference in both NLL and MSE suggests that neither the prior network nor the VQ-VAE

overfit.
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Image Compression

htop ht0p7 hmiddle ht0p7 hmiddlea hbottom Original

Figure 3: Reconstructions from a hierarchical VQ-VAE with three latent maps (top, middle, bottom).
The rightmost image is the original. Each latent map adds extra detail to the reconstruction. These
latent maps are approximately 3072x, 768x, 192x times smaller than the original image (respectively).
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Vector Quantization (Emergent Symbols)

* VVector quantization represents a distribution (or density) on vectors
with a discrete set of embedded symbols.

» VVector quantization optimizes a rate-distortion tradeoff for vector
compression.

* The VQ-VAE uses vector guantization to construct a discrete
representation of images and hence a measurable image
compression rate-distortion trade-off.
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Symbols: A Better Learning Bias

* Do the objects of reality fall into categories?
* [ so, shouldn’t a learning architecture be designed to categorize?

* \Whole image symbols would yield emergent whole image
classification.
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Symbols: Improved Interpretability

» VVector quantization shifts interpretation from linear threshold units
to the emergent symbols.

* This seems related to the use of t-SNE as a tool in interpretation.
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Symbols: Unifying Vision and Language

* Modern language models use word vectors.
* \Word vectors are embedded symbols.

* Vector quantization also results in models based on embedded
symbols.
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Symbols: Addressing the “Forgetting”
Problem

* \\When we learn to ski we do not forget how to ride a bicycle.

* However, when a model is trained on a first task, retraining on a
second tasks degrades performance on the first (the model
“forgets”).

» But embedded symbols can be task specific.

* The embedding of a task-specific symbol will not change when
training on a different task.
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Symbols: Improved Transfer Learning

 Embedded symbols can be domain specific.

» Separating domain-general parameters from domain-specific
parameters may improve transfer between domains.
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Next lecture:
Self-Supervised Learning



