CMP7 84

DEEP LEARNINE

Previously on CMP784

- data preprocessing and normalization
- weight initializations
- ways to improve generalization
- babysitting the learning process
- hyperparameter selection
- optimization

Breaking news!

- Practical 2 is out!
-Convolutional Neural Networks
—Due Wednesday, Nov. 17, 23:59:59

- Project proposals is due Nov. 3!
- about a half page
- the research topic to be investigated,
- what data you will use,
- design overview,
- a list of key readings.

Note: The project should be done in pairs.

Lecture Overview

- convolution layer
- pooling layer
- revolution of depth
- design guidelines
- residual connections
- semantic segmentation networks
- object detection networks

Disclaimer: Much of the material and slides for this lecture were borrowed from

- Andrea Vedaldi's tutorial on Convolutional Networks for Computer Vision Applications
- Kaiming He's ICML 2016 tutorial on Deep Residual Networks: Deep Learning Gets Way Deeper
- Ross Girshick's talk on The Past, Present, and Future of Object Detection
- Fei-Fei Li, Andrej Karpathy and Justin Johnson's CS231n class

Perceptron

[Rosenblatt 57]

- The goal is estimating the posterior probability of the binary label y of a vector \mathbf{x} :

Discovery of oriented cells in the visual cortex

[Hubel and Wiesel 59]

oriented filter

Convolution

$\operatorname{vec} \mathbf{y}[\square] \times$

- Convolution = Spatial filtering

$$
(a \star b)[i, j]=\sum_{i^{\prime}, j^{\prime}} a\left[i^{\prime}, j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right]
$$

- Different filters (weights) reveal a different characteristics of the input.

$*^{1 / 8}$| 0 | 1 | 0 |
| :---: | :---: | :---: |
| 1 | 4 | 1 |
| 0 | 1 | 0 |

Convolution

- Convolution = Spatial filtering

$$
(a \star b)[i, j]=\sum_{i^{\prime}, j^{\prime}} a\left[i^{\prime}, j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right]
$$

- Different filters (weights) reveal a different characteristics of the input.

$* \quad$| 0 | -1 | 0 |
| :---: | :---: | :---: |
| -1 | 4 | -1 |
| 0 | -1 | 0 |

Convolution

- Convolution = Spatial filtering

$$
(a \star b)[i, j]=\sum_{i^{\prime}, j^{\prime}} a\left[i^{\prime}, j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right]
$$

- Different filters (weights) reveal a different characteristics of the input.

$* \quad$| 1 | 0 | -1 |
| :---: | :---: | :---: |
| 2 | 0 | -2 |
| 1 | 0 | -1 |

Convolutional Neural Networks in a Nutshell

- A neural network model that consists of a sequence of local \& translation invariant layers
- Many identical copies of the same neuron: Weight/parameter sharing
- Hierarchical feature learning

A bit of history

- Neocognitron model by Fukushima (1980)
- The first convolutional neural network (CNN) model
- so-called "sandwich" architecture
- simple cells act like filters
- complex cells perform pooling
- Difficult to train
- No backpropagation yet

A bit of history

- LeNet-5 model

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 86 (11): 2278-2324, 1998.

A bit of history

- AlexNet model

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS 2012.

Convolutional Neural Network

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS 2012.

Convolutional layer

- Learn a filter bank (a set of filters) once
- Use them over the input data to extract features

$$
\mathbf{y}=F * \mathbf{x}+b
$$

Data = 3D Tensors

- There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

Convolutions with 3D Filters

- Each filter acts on multiple input channels
- Local

Filters look locally

- Translation invariant

Filters act the same everywhere

Convolutional Layer

$32 \times 32 \times 3$ input

$5 \times 5 \times 3$ filter

Convolve the filter with the input i.e. "slide over the image spatially, computing dot products"

Convolutional Layer

Convolutional Layer

activation map

Convolutional Layer

consider a second, green filter

Convolutional Layer

- Multiple filters produce multiple output channels
- For example, if we had 65×5 filters, we'll get 6 separate activation maps:

We stack these up to get an output of size $28 \times 28 \times 6$.

Spatial Arrangement of Output Volume

- Depth: number of filters
- Stride: filter step size (when we "slide" it)
- Padding: zero-pad the input

Input Volume (+pad 1) (7x7x3)$x[:,:, 0]$							Filter W0 ($3 \times 3 \times 3$) w0 [:, :, 0]	
0	0	0	0	0	0	0	$0{ }^{0} 0$	-1
0	1	2	0	0	0	0	-1 0	0
0	2	2	0	0	0	0	-1 -1	-1
0	2	2	2	1	0	0	w0 [: , : , 1]	
0	1	0	0	2	0	0	1 1	
0	1	1	0	1)	0	0	0
0	0	0	0	0		0	-1	1
$x[1,:, 1]$ w0								
0	0	0	0	0	0	0	-1	
0	1	0	0		0	a	0 1 1	1
0		0	0				0 -1	0
0	0	0	1	2				
0	0	1	0		0	$0 \mathrm{beL}:,:$, 0]		
0	1	1.		120				
0800000								
0	0	0	70					
0	0	0	2			0		
0	1	2	2	2	0	0		
0	1	1	1	1	0	0		
0	1	2	0	0	0	0		
0	2	2	2	1	0	0		
0	0	0	0	0	0	0		

Filter W1 (3x3x3)
w1 [:, : , 0]

-1	0	0
1	-1	-1
0	0	-1
$w 1[:, ~: ~, ~ 1] ~$		
-1	0	1
1	-1	1
-1	0	1
$w 1[:, ~:, ~ 2]$		
-1	-1	-1
-1	1	-1
0	1	-1

Bias bl (1x1xl)
b1[:, :, 0]
0

Output Volume (3x3x2)
○ [: , : , 0]
$\begin{array}{lll}-3 & -1 & 4\end{array}$
$\begin{array}{lll}-2 & -7 & -4 \\ 1 & -1 & 1\end{array}$
o [: , : : 1]
$\begin{array}{lll}-7 & 3 & 1\end{array}$
$\begin{array}{llll}-7 & -11 & -1\end{array}$
$\begin{array}{lll}-4 & -2 & -4\end{array}$

Filter W1 (3x3x3)
w1 [:,:,0]

-1	0	0
1	-1	-1
0	0	-1

w1 [:, : , 1]
$\begin{array}{llll}-1 & 0 & 1\end{array}$

1	-1	1
-1	0	1

w1 [:, :, 2]
$\begin{array}{lll}-1 & -1 & -1\end{array}$

-1	1	-1

$\begin{array}{llll}0 & 1 & -1\end{array}$

Bias bl (1xlxl) b1[:,:,0]

0

Output Volume ($3 \times 3 \times 2$)
$0[:,:, 0]$

-3	-1	4
-2	-7	-4
1	-1	1
$0[:, ~: ~$	$, 1]$	
-7	3	1
-7	-11	-1
-4	-2	-4

Input Volume (+pad 1) (7x7x3) x[:,:,0]							Filter W0 ($3 \times 3 \times 3)$ w0 [:, :, 0]	
0	0	0	0	0	0	0	0 0	-1
0	1	2	0	0	0	0	-1 0	0
0	2	2	0	0	0	0	-1	-1
0	2	2	2	1	0	0	w0 [: ,	$1]$
0	1	0	0	2	0	0	1	
0	1	1	0	1	0		,	0
0	0	0	0	0	0	0	$1{ }^{1} 1$	1
$\mathrm{x}[:, 1,1]$								
0	0	0	0	0	0		-	
0	1	0	0	1	0	0) 1	
0	1	0	0	0	1		0 -1	0
0	0	0	1	2	0		Pias b0	x
0	0	1	0	1	0		b 0 :	, 0
0	1	1	1	1			,	
0	0	0	0	0				
$x[:,:, 2]$								
0	0	0	0	0	0	0		
0	0	0	2	2	2	0		
0	1	2	2	2	0			
0	1	1	1	1	0	0		
0	1	2	0	0	0	0		
0	2	2	2	1	0	0		
0	0	0	0	0	0	0		

Filter W1 (3x3x3)
w1 [:, : , 0]

-1	0	0
1	-1	-1
0	0	-1

w1 [:, : , 1]
$\begin{array}{lll}-1 & 0 & 1\end{array}$

1	-1	1

$\begin{array}{llll}-1 & 0 & 1\end{array}$
w1 [:, : , 2]
$\begin{array}{lll}-1 & -1 & -1\end{array}$

-1	1	-1

$\begin{array}{llll}0 & 1 & -1\end{array}$

Bias b1 (1x1xl)
b1 [:, : , 0]
0

Output Volume (3x3x2)
$\circ[:,:, 0]$

-3	-1	4	
	-2	-7	-4

$\begin{array}{lll}-2 & -7 & -4\end{array}$
[: $: 1$]
$\begin{array}{lll}-7 & 3 & 1\end{array}$
$\begin{array}{llll}-7 & -11 & -1\end{array}$
$\begin{array}{lll}-4 & -2 & -4\end{array}$

Input Volume (+pad 1) (7x7x3)

Output Volume (3x3x2)
o[:, : , 0]
$\begin{array}{lll}-3 & -1 & 4\end{array}$
$\begin{array}{lll}-2 & -7 & -4\end{array}$
$\begin{array}{lll}1 & -1 & 1\end{array}$
o[:,: , 1]
$\begin{array}{lll}-7 & 3 & 1\end{array}$
$\begin{array}{llll}-7 & -11 & -1\end{array}$
$\begin{array}{lll}-4 & -2 & -4\end{array}$

Input Volume (+pad 1) (7x7x3)
x[:, :, 0]

	,						w0	:, :	, 0]		:,	
0	0	0	0	0	0	0	0	0	-1		0	0
0	1	2	0	0	0	0	1	0	0	1	-1	-1
0	2	2	0	0	0	0	-1	-1	-1	0	0	-1
0	2	2	2	1	0	0	w0			W1		
0	1	0	0	2	0					-1	0	
0	1	1	0	1	0	0	0	0			-1	1
0	0	0	0	0	0	0				-1	0	1
x [:											
0	0	0	0	0	0						-1	-
0	1	0		1	0						1	-1
0	1	0	0	0	1					0	1	-1
0	0	0	1									
0	0		θ	1	0						:,	,
0	1	1	1	1	2	0						
0	0	0	0	0	0							

Output Volume (3x3x2)
$\circ[:,:, 0]$
$\begin{array}{lll}-3 & -1 & 4\end{array}$
$\begin{array}{lll}-2 & -7 & -4\end{array}$
$\begin{array}{lll}1 & -1 & 1\end{array}$

- [:, : , 1]
$\begin{array}{lll}-7 & 3 & 1\end{array}$
$-7 \quad-11-1$
$\begin{array}{lll}-4 & -2 & -4\end{array}$

| $x[:, ~$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 2 | 2 | 2 | 0 |
| 0 | 1 | 2 | 2 | 2 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 2 | 0 | 0 | 0 | 0 |
| 0 | 2 | 2 | 2 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Input Volume (+pad 1) (7x7x3)

$\mathrm{x}[:, ~: ~$	0	
0	0	0

$\mathrm{x}[:, ~$						
0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0

Output Volume (3x3x2)
○ [:, : , 0]
$\begin{array}{lll}-3 & -1 & 4\end{array}$
$\begin{array}{lll}-2 & -7 & -4\end{array}$
$\begin{array}{lll}1 & -1 & 1\end{array}$
-[:,:,1]
$\begin{array}{lll}-7 & 3 & 1\end{array}$

| -7 | -11 | -1 |
| :--- | :--- | :--- | :--- |

$\begin{array}{lll}-4 & -2 & -4\end{array}$

Input Volume (+pad 1) (7x7x3) $\mathrm{x}[:,:, 0]$

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0

$\begin{array}{lllllll}0 & 2 & 2 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 2 & 2 & 2 & 1 & 0\end{array}$

0	0	0	0	0	
$x[:,:, 1]$					
0	0	0	0	0	0

$0 \quad 0 \quad 0$

0

Filter W0 (3x3x3)
Filter W1 (3x3x3)

$$
\begin{gathered}
\text { w0 }[:,:, 0] \\
0
\end{gathered} 0
$$ w1 [:,

WO $[:, 2]$

$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$

Output Volume ($3 \times 3 \times 2$)
$\circ[:,:, 0]$
$\begin{array}{lll}-3 & -1 & 4\end{array}$
$\begin{array}{lll}-2 & -7 & -4\end{array}$
$\begin{array}{lll}1 & -1 & 1\end{array}$
o[:,:,1]
$\begin{array}{lll}-7 & 3 & 1\end{array}$
$\begin{array}{llll}-7 & -11 & -1\end{array}$

-4	-2	-4

Input Volume (+pad 1) (7x7x3)

Output Volume ($3 \times 3 \times 2$)
$\bigcirc[:,:, 0]$
$\begin{array}{lll}-3 & -1 & 4\end{array}$
$\begin{array}{lll}-2 & -7 & -4\end{array}$
$\begin{array}{lll}1 & -1 & 1\end{array}$

- [: , : , 1]
$\begin{array}{lll}-7 & 3 & 1\end{array}$
$\begin{array}{llll}-7 & -11 & -1\end{array}$

-4	-2	-4

Convolutional layers

- Local receptive field
- Each column of hidden units looks at a different input patch

Effective Receptive Field

Contributing input units to a convolutional filter.

Convolutional layers

32
28

Repeat linear / non-linear operators

Linear/Non-linear Chains

- The basic blueprint of most architectures
- Stack multiple layers of convolutions

Feature Learning

- Hierarchical layer structure allows to learn hierarchical filters (features).

Feature Learning

- Hierarchical layer structure allows to learn hierarchical filters (features).

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:
- Max pooling, average pooling, etc.

Single depth slice

$x \uparrow$| 1 | 1 | 2 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 6 | 7 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 2 | 3 | 4 |

$$
\xrightarrow{\begin{array}{l}
\text { max pool with } 2 \times 2 \\
\text { filters and stride } 2
\end{array}} \begin{array}{|l|l|}
\hline 6 & 8 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

Fully connected layer

- contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
 [227x227x3] INPUT
[55×55x96] CONV1: 9611×11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2 [27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 2565×5 filters at stride 1, pad 2
[13×13×256] MAX POOL2: 3×3 filters at stride 2
[13x13×256] NORM2: Normalization layer
[13×13×384] CONV3: 3843×3 filters at stride 1, pad 1
[13×13×384] CONV4: 3843×3 filters at stride 1, pad 1
[13×13x256] CONV5: 2563×3 filters at stride 1, pad 1
[$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2\% -> 15.4\%

Convolutional Neural Network Demo

- ConvNetJS demo: training on CIFAR-10
- http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Three Years of Progress From AlexNet (2012) to ResNet (2015)

1913

1906

1915

1927

1907

1920

1932

1924

1933

Revolution of Depth

AlexNet, 8 layers
(ILSVRC 2012)

- 5 convolutional layers
- 3 fully connected layers
- ReLU
- End-to-end (no pre-training)
- Data augmentation

Revolution of Depth

ConvNet Configuration			
B	C	D	
13 weight layers	16 weight layers	16 weight layers	

CONV3-128: [112×112×128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$ CONV3-128: [112×112x128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$ POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: $(3 * 3 * 128) * 256=294,912$
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [$28 \times 28 \times 256$] memory: $28^{*} 28^{*} 256=200 \mathrm{~K}$ params: 0
CONV3-512: [28×28×512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right) * 512=1,179,648$
CONV3-512: $[28 \times 28 \times 512]$ memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [28×28×512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$ POOL2: [14×14×512] memory: 14*14*512=100K params: 0
CONV3-512: [14×14×512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $(3 * 3 * 512) * 512=2,359,296$ CONV3-512: $[14 \times 14 \times 512]$ memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right) * 512=2,359,296$ CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$ POOL2: [7x7x512] memory: $7 * 7 * 512=25 \mathrm{~K}$ params: 0
FC: [1x1x4096] memory: 4096 params: $7 * 7 * 512 * 4096=102,760,448$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$
TOTAL memory: $24 \mathrm{M} * 4$ bytes $\sim=93 \mathrm{MB} /$ image
(only forward! ~*2 for bwd)

CONV3-64: [224×224×64] memory: $224^{*} 224^{*} 64=3.2 \mathrm{M}$-params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$
POOL2: [112×112×64] memory: 112*112*64=800K params: 0
CONV3-128: [$112 \times 112 \times 128$] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV3-128: [$112 \times 112 \times 128$] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$
POOL2: [56x56x128] memory: $56 * 56 * 128=400 \mathrm{~K}$ params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: $\left(3^{*} 3^{*} 128\right) * 256=294,912$
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right) * 256=589,824$
POOL2: [$28 \times 28 \times 256$] memory: $28^{*} 28^{*} 256=200 \mathrm{~K}$ params: 0
CONV3-512: $[28 \times 28 \times 512]$ memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right) * 512=1,179,648$
CONV3-512: $[28 \times 28 \times 512]$ memory: $28^{*} 28 * 512=400 \mathrm{~K}$ params: $(3 * 3 * 512) * 512=2,359,296$
CONV3-512: $[28 \times 28 \times 512]$ memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right) * 512=2,359,296$
POOL2: [14×14×512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: 0
CONV3-512: $[14 \times 14 \times 512]$ memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $(3 * 3 * 512) * 512=2,359,296$
CONV3-512: [14x14×512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $(3 * 3 * 512) * 512=2,359,296$
CONV3-512: [14×14×512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right) * 512=2,359,296$ POOL2: [7x7x512] memory: $7 * 7 * 512=25 \mathrm{~K}$ params: 0
FC: $[1 \times 1 \times 4096]$ memory: 4096 params: $7^{*} 7^{*} 512^{*} 4096=102,760,448$
FC: $[1 \times 1 \times 4096]$ memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$

Note:

Most memory is in early CONV

TOTAL memory: 24 M * 4 bytes $\sim=93 \mathrm{MB}$ / image
(only forward! $\sim * 2$ for bwd)
TOTAL params: 138M parameters

Revolution of Depth

VGG, 19 layers
(ILSVRC 2014)

GoogLeNet

[Szegedy et al., 2014]

Inception module

GoogLeNet

[Szegedy et al., 2014]

| type | patch size/
 stride | output
 size | depth | $\# 1 \times 1$ | $\# 3 \times 3$
 reduce | $\# 3 \times 3$ | $\# 5 \times 5$
 reduce | $\# 5 \times 5$ | pool
 proj | params |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ops

Fun features:

- Only 5 million params! (Removes FC layers completely)

Compared to AlexNet:

- 12X less params
- $2 x$ more compute - 6.67% (vs. 16.4\%)

Revolution of Depth

AlexNet, 8 layers	VGG, 19 layers	
(ILSVRC 2012)	(ILSVRC 2014)	ResNet,
		152 layers
(ILSVRC 2015)		

Revolution of Depth

ResNet, 152 layers (ILSVRC 2015)

Residual Net (ResNet)

[He et al., 2015]

How deep is enough?

152 convolutional layers \rightarrow

Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proc. NIPS, 2012.
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich. Going deeper with convolutions. In Proc. CVPR, 2015.
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015.
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.

How deep is enough?

- $3 \times$ more accurate in 3 years

Speed

- $5 \times$ slower

- Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
- Reason: Far fewer feature channels (quadratic speed/space gain)
- Moral: Optimize your architecture

Model Size

- Num. of parameters is about the same

- Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
- Reason: Far fewer feature channels (quadratic speed/space gain)
- Moral: Optimize your architecture

ResNeXt: Both Wider and Deeper

ResNeXt:
uniform multi-branch

- shortcut, bottleneck, and multi-branch
- Better accuracy (when having the same FLOPs/\#params as ResNet)

DenseNet

- 201 layers, 20M parameters
- Densely connected blocks
- Alleviates vanishing gradient
- Strengthens feature propagation
- Encourages feature reuse

Design Guidelines

Design Guidelines

features

image

Guideline 1: Avoid tight bottlenecks

- From bottom to top
- The spatial resolution $\mathrm{H} \times \mathrm{W}$ decreases
- The number of channels C increases
- Guideline
- Avoid tight information bottleneck
- Decrease the data volume $\mathrm{H} \times \mathrm{W} \times \mathrm{C}$ slowly
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR 2015.
C. Szegedy, V. Vanhoucke, S. loffe, and J. Shlens. Rethinking the inception architecture for computer vision. In CVPR 2016.

Receptive Field

neuron's receptive field

Must be large enough

- Receptive field of a neuron
-The image region influencing a neuron
-Anything happening outside is invisible to the neuron

- Importance

- Large image structures cannot be detected by neurons with small receptive fields
- Enlarging the receptive field
- Large filters
- Chains of small filters

Design Guidelines

Guideline 2: Prefer small filter chains

One big filter bank

5×5 filters

+ ReLU

Two smaller filter banks

$$
\begin{array}{cc}
3 \times 3 \text { filters } & 3 \times 3 \text { filters } \\
+ \text { ReLU } & + \text { ReLU }
\end{array}
$$

- Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
- Reason: Far fewer feature channels (quadratic speed/space gain)
- Moral: Optimize your architecture

Design Guidelines

Guideline 3：

Keep the number of channels at bay

F 日回日回
$H_{f} \times W_{f} \times C \times K$
Num．of operations
$\frac{H \times H_{f}}{\text { stride }} \times \frac{W \times W_{f}}{\text { stride }} \times C \times K$

Num．of parameters

complexity $\propto C \times K$

Design Guidelines

Guideline 4:

M filters
Less
computations with filter groups

Did we see this before?
complexity $\propto(C \times K) / G$

AlexNet

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS 2012.

Design Guidelines

Guideline 4:

Less
computations with filter groups

Full filters

Group-sparse filters

complexity: $C \times K / G$

Groups = filters, seen as a matrix, have a "block" structure

Design Guidelines

Guideline 5:

Low-rank decompositions
filter bank $3 \times 3 \times C \times K$
decompose spatially

groups $3 \times 3 \times C / G \times K / G$
*

"network in network"
$1 \times 1 \times K \times K$

Design Guidelines

Guideline 6:
Dilated Convolutions

49 coefficients
18 degrees of freedom

$=$| 3×3 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | |
| | | |
| | | | | \mathbf{a} | 0 | \mathbf{b} | 0 | \mathbf{c} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| \mathbf{d} | 0 | \mathbf{e} | 0 | \mathbf{f} |
| 0 | 0 | 0 | 0 | 0 |
| \mathbf{g} | 0 | \mathbf{h} | 0 | \mathbf{i} |

25 coefficients
9 degrees of freedom

Exponential expansion of the receptive field without loss of resolution

A Closer Look to
 Residual Learning

Residual Learning

Fixed identity // learned residual

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR 2016.

Residual Learning

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets
- This is optimization issue, deeper models are harder to optimize

Residual Learning

- Richer solution space
- A deeper model should not have higher training error
- A solution by construction:
- original layers: copied from a
- learned shallower model
- extra layers: set as identity
- at least the same training error

Residual Learning

- The loss surface of a 56-layer net using the CIFAR-10 dataset, both without (left) and with (right) residual connections.

Transfer Learning with

 Convolutional Neural Networks
Beyond CNNs

- Do features extracted from the CNN generalize other tasks and datasets?
- Donahue et al. (2013), Chatfield et al. (2014), Razavian et al. (2014), Yosinski et al. (2014), etc.
- CNN activations as deep features
- Finetuning CNNs

CNN activations as deep features

- CNNs discover effective representations. Why not to use them?

CNN activations as deep features

- CNNs discover effective representations. Why not to use them?

CNN activations as deep features

- CNNs discover effective representations. Why not to use them?

Zeiler et al., 2014

CNN activations as deep features

- CNNs discover effective representations. Why not

Zeiler et al., 2014

CNNs as deep features

- CNNs discover effective representations. Why not to use them?
- structure, construction
- covering
- commodity, trade good, good
- conveyance, transport
- invertebrate
- bird
- hunting dog

LLC
t-SNE feature visualizations on the ILSVRC-2012

GIST

Conv-1 activations

Conv-6 activations

Transfer Learning with CNNs

- A CNN trained on a (large enough) dataset generalizes to other visual tasks

A. Joulin, L.J.P. van der Maaten, A. Jabri, and N. Vasilache Learning visual features from Large Weakly supervised Data. ECCV 2016

Transfer Learning with CNNs

- Keep layers 1-7 of our ImageNet-trained model fixed
- Train a new softmax classifier on top using the training images of the new dataset.

image	
conv-64	I. Train on
conv-64	
maxpool	
conv-128	
conv-128	
maxpool	
conv-256	
conv-256	
maxpool	
conv-512	
conv-512	
maxpool	
conv-512	
conv-512	
maxpool	
FC-4096	
Fc-4096	
FC-1000	
softmax	

How transferable are features in CNN networks?

- Divide ImageNet into man-made objects A (449 classes) and natural objects B (551 classes)
- The transferability of features decreases as the distance between the base task and target task increases

How transferable are features in CNN networks?

- An open research problem

Semantic Segmentation

Semantic Image Segmentation

- Label individual pixels

Convolutional Layers

- Local receptive field

Fully Connected Layers

- Global receptive field
class predictions

Convolutional vs. Fully Connected

- Comparing

Responses are spatially selective, can be used to localize things.

Responses are global, do not characterize well position fields

Fully-Connected Layer = Large Filter

Fully-Convolutional Neural Networks

Fully-Convolutional Neural Networks

- Dense evaluation

- Apply the whole network convolutional
- Estimates a vector of class probabilities at each pixel
- Downsampling
- In practice most network downsample the data fast
- The output is very low resolution (e.g. 1/32 of original)

Upsampling The Resolution

- Interpolating filter

Upsampling filters allow to increase the resolution of the output
Very useful to get full-resolution segmentation results

Deconvolution Layer

- Or convolution transpose

Deconvolution Layer

- Or convolution transpose

Convolution

As matrix multiplication

Banded matrix equivalent to F

Deconvolution Layer

- Or convolution transpose

Convolution

Convolution transpose

As matrix multiplication

Banded matrix equivalent to F

U-Architectures

- Image to image

input image

U-Architectures

- Image to image

U-Architectures

- Image to image

U-Architectures

- Several variants: FCN, U-arch, deconvolution, ...

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In CVPR 2015
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV 2015
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI 2015

Object Detection

MS COCO
MS CO
Dataset
Images
MS CO
Dataset
Images

MS COCO

- 80 different categories

tv

MS COCO Dataset Images $+$

Annotations

COCO Object Detection Average Precision (\%)

- Area under a detector's precision-recall curve, averaged over...
- Object categories
- True positive overlap requirement (loU from 0.5 to 0.95 ; see below)

More than one "stage" (\approx proposal based; but doesn't require proposals) classification of reduced output

One stage

Direct classification
Of all output space elements

Redmond et al. You Only Look Once:
Unified Real-time Object Detection. In CVPR 2016

"You only look once"
"Single shot"

COCO Object Detection Average Precision (\%)

Past
(best circa 2012)

5

DPM
(Pre DL)
Felzenszwalb, Girshick, McAllester, Ramanan. Object Detection with Discriminatively Trained Part Based Models. PAMI 2010.

COCO Object Detection Average Precision (\%)

Past	Early
(best circa	
2012)	

COCO Object Detection Average Precision (\%)

Past (best circa 2012)	Early 2015	
5	15	19
\square	\square	\square

COCO Object Detection Average Precision (\%)

Past (best circa 2012)	Early 2015		
			29
	15	19	
5			
$\begin{gathered} \text { DPM } \\ \text { (Pre DL) } \end{gathered}$	Fast R-CNN (AlexNet)	Fast R-CNN (VGG-16)	Faster R-CNN (VGG-16)

COCO Object Detection Average Precision (\%)

[^0]
COCO Object Detection Average Precision (\%)

COCO Object Detection Average Precision (\%)

Past (best circa	Early 2015					2017
						46
				36	39	
			29			
	15	19				
5						
DPM (Pre DL)	Fast R-CNN (AlexNet)	Fast R-CNN (VGG-16)	Faster R-CNN (VGG-16)	Faster R-CNN (ResNet-50)	Faster R-CNN (R-101-FPN)	Mask R-CNN (X-152-FPN)

COCO Object Detection Average Precision (\%)

"Slow" R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

"Slow" R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

Very heavy per-region computation E.g., 2000 full network evaluations

"Slow" R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

Generalized R-CNN Approach to Detection

Fast R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

Softmax clf.

Lightweight per-region computation

Fast R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

Whole-image FCN

- Use any standard ConvNet as the "backbone architecture"
- AlexNet, VGG, ResNet, Inception, Inception-ResNet, ResNeXt, DenseNet, ...
- Use the first N layers with spatial extent (e.g., up to "conv5")

Fast R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

RoIPool (on each Proposal)

RoIPool (on each Proposal)

RoIPool (on each Proposal)

Fast R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

Faster R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

Region Proposal Network (RPN)

Proposals = sliding window object/not-object classifier + box regression inside the same network

Mask R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

Mask R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

RoIAlign (on each Proposal)

RoIAlign (on each Proposal)

Feature value is average of interpolated values on grid

Compare to RolPool

(c) RoIAlign (ResNet-50-C4): Mask results with various RoI layers. Our RoIAlign layer improves AP by ~ 3 points and AP_{75} by ~ 5 points. Using proper alignment is the only factor that contributes to the large gap between RoI layers.

Compare to RolPool

Quantization breaks pixel-to-pixel alignment

Instance Segmentation

Mask R-CNN

Per-image computation
Per-region computation for each $r_{i} \in r(I)$

Mask Head (on each Proposal)

- Task specific heads for ...
- Object classification
-Bounding box detection
- Instance mask prediction

Standard Fast/er R-CNN head

RolAlign transformed features

Mask Head (on each Proposal)

- Task specific heads for ...
- Object classification
- Bounding box detection
- Instance mask prediction

RoIAlign transformed features

RolAlign

Mask R-CNN: Extension to 2D Human Pose

Per-region computation for each $r_{i} \in r(I)$

Pose Head

(Not shown: Head architecture is slightly different for keypoints) keypoints

- Add keypoint head ($28 \times 28 \times 17$)

left_wrist 0.91

right_knee 0.99

left_shoulder 0.97right_shoulder 1.0

right_wrist 0.97

left_ankle 0.91

left hip 0.96

right_ankle 0.98

left_elbow 0.41

right hip 0.97

17 keypoint "mask predictions shown as heatmaps with OKS scores from argmax positions

- Predict one "mask" for each keypoint
- Softmax over spatial locations (encodes one keypoint per mask "prior")

Mask R-CNN: Training

- Same as "image centric" Fast/er R-CNN training
- But with training targets for masks

Example Mask Training Targets

Mask R-CNN: Inference

1. Perform Faster R-CNN inference

- Run backbone FCN
- Generate proposals with RPN
-Score the proposals with clf. head
- Refine proposals with box regressor
-Apply NMS and take the top K (= 100, e.g.)

2. Run RolAlign and mask head on top- K refined, post-NMS boxes

- Fast (only compute masks for top-K detections)
- Improves accuracy (uses refined detection boxes, not proposals)

Mask Prediction

Validation image with box detection shown in red
28×28 soft prediction from Mask R-CNN (enlarged)

Soft prediction resampled to image coordinates (bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Mask Prediction

Validation image with box detection shown in red
28×28 soft prediction from Mask R-CNN (enlarged)

Soft prediction resampled to image coordinates (bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Quantization breaks pixel-to-pixel alignment

RoIPool coordinate quantization

Mask Prediction

Validation image with box detection shown in red
28×28 soft prediction

Resized soft prediction

Final mask

Mask Prediction

28×28 soft prediction

Resized Soft prediction

Is Object Detection Solved?

- Obviously no; there are frequently silly errors
- But it is getting frustratingly good
- The errors are often reasonable
- The bottlenecks are raw recognition and "reasoning"

elephant 1.00
elephant 0.9 x
elephont
elephant 0.98

Addressing other tasks...

Addressing other tasks...

Addressing other tasks...

$224 \times 224 \times 3$

A block of compute with a few million parameters.

Addressing other tasks...

this part changes from task to task

$224 \times 224 \times 3$

4

desired thing

A block of compute with a few million parameters.

Image Classification

thing $=$ a vector of probabilities for different classes

$224 \times 224 \times 3$

e.g. vector of 1000 numbers giving probabilities for different classes.

Segmentation

$224 \times 224 \times 3$

224x224x20 array of class probabilities at each pixel.

Localization

$224 \times 224 \times 3$

Class
probabilities (as before)

4 numbers:

- X coord
- Y coord
- Width
- Height

Image Captioning

$224 \times 224 \times 3$
A sequence of 10,000-dimensional vectors giving probabilities of different words in the caption.

Reinforcement Learning

Autoencoders

$224 \times 224 \times 3$

Variational Autoencoders

reparameterization
layer

$224 \times 224 \times 3$

[Kingma et al.], [Rezende et al.], [Salimans et al.]

Addressing other tasks...

- 1D convolution \approx Time Delay Neural Networks (Waibel et al. 1989, Collobert and Weston 2011)
- Two main paradigms:
- Context window modeling: For tagging, etc. get the surrounding context before tagging
- Sentence modeling: Do convolution to extract n-grams, pooling to combine over whole sentence

Addressing other tasks...

Ω

- CNNs for audio processing: MFCC features + Time Delay Neural Networks

Next lecture: Understanding and Visualizing ConvNets

[^0]: Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

