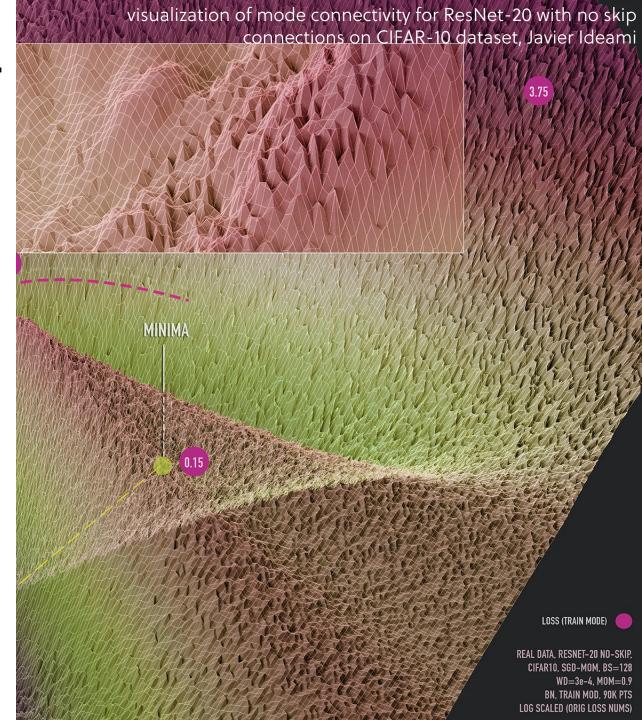


Previously on CMP784

- data preprocessing and normalization
- weight initializations
- ways to improve generalization
- babysitting the learning process
- hyperparameter selection
- optimization



Lecture Overview

- convolution layer
- design guidelines for CNNs
- CNN architectures
- transfer learning
- semantic segmentation networks
- object detection networks

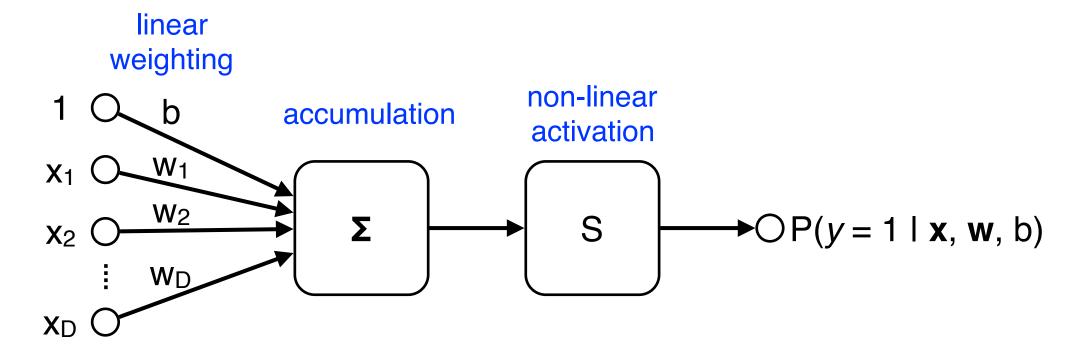
Disclaimer: Much of the material and slides for this lecture were borrowed from

- Andrea Vedaldi's tutorial on Convolutional Networks for Computer Vision Applications
- Kaiming He's ICML 2016 tutorial on Deep Residual Networks: Deep Learning Gets Way Deeper
- Ross Girshick's talk on The Past, Present, and Future of Object Detection
- Fei-Fei Li, Andrej Karpathy and Justin Johnson's CS231n class
- Justin Johnson's EECS 498/598 class

Perceptron

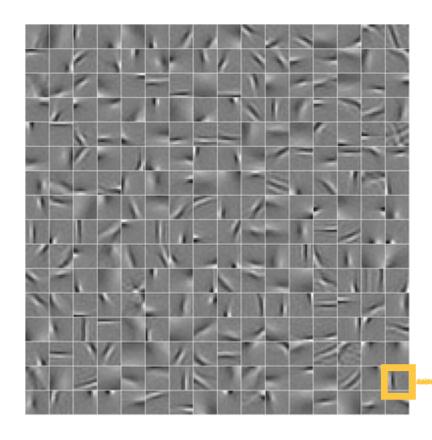
[Rosenblatt 57]

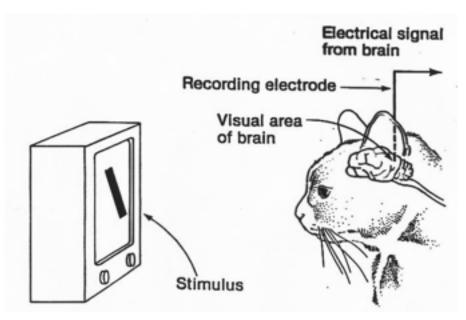
 The goal is estimating the posterior probability of the binary label y of a vector x:

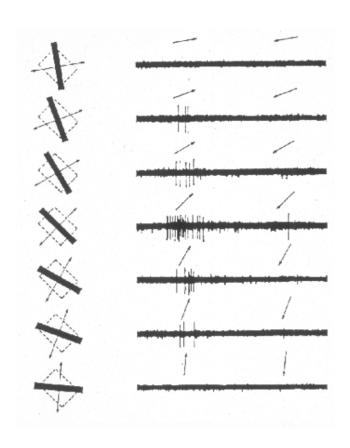


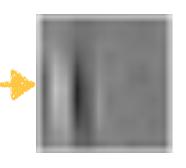
Discovery of oriented cells in the visual cortex

[Hubel and Wiesel 59]









oriented filter

Convolution

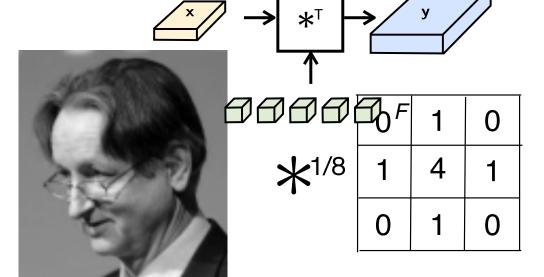
• Convolution = Spatial filt

Banded matrix equivalent to F

$$(a\star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$
 Convolution transpose

Transposed

• Different filters (weights) reveal a different characteristics of the input.



Convolution

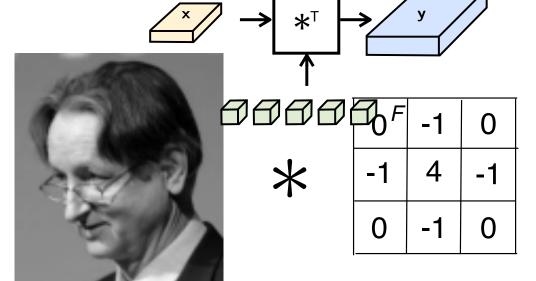
• Convolution = Spatial filt

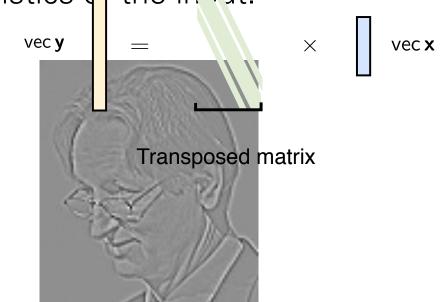
Banded matrix equivalent to F

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$
 Convolution transpose

Transposed

Different filters (weights) reveal a different characteristics of the input.





Convolution

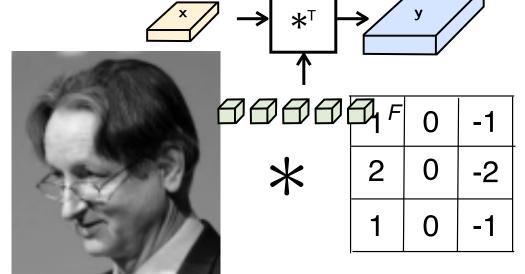
• Convolution = Spatial filt

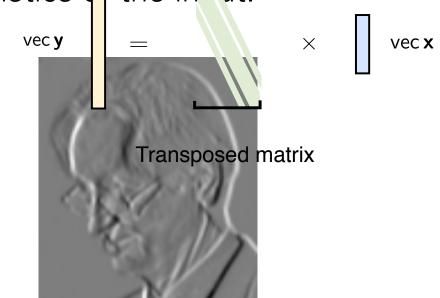
Banded matrix equivalent to F

$$(a\star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$
 Convolution transpose

Transposed

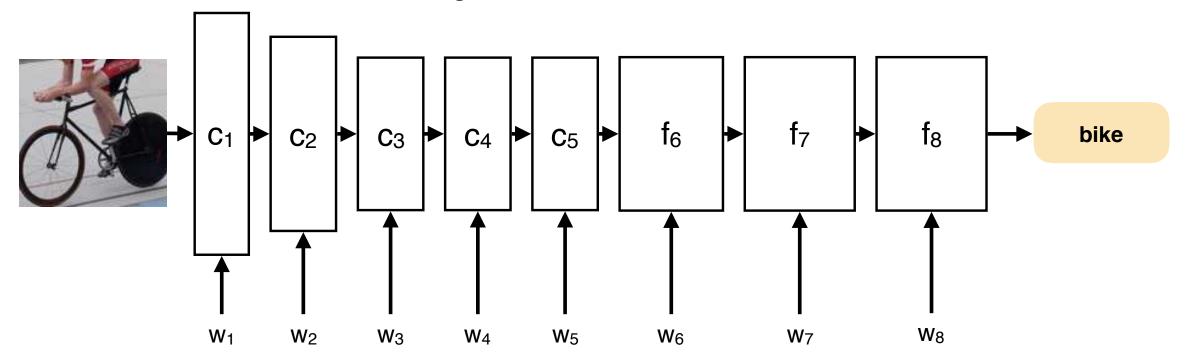
Different filters (weights) reveal a different characteristics of the input.





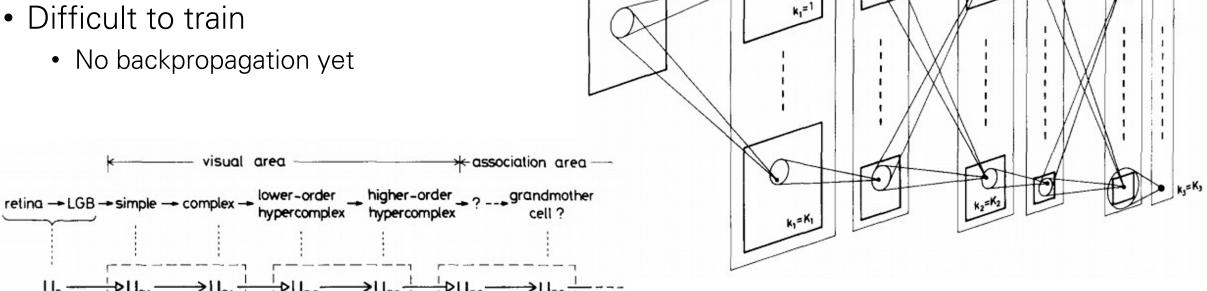
Convolutional Neural Networks in a Nutshell

- A neural network model that consists of a sequence of local & translation invariant layers
 - Many identical copies of the same neuron: Weight/parameter sharing
 - Hierarchical feature learning



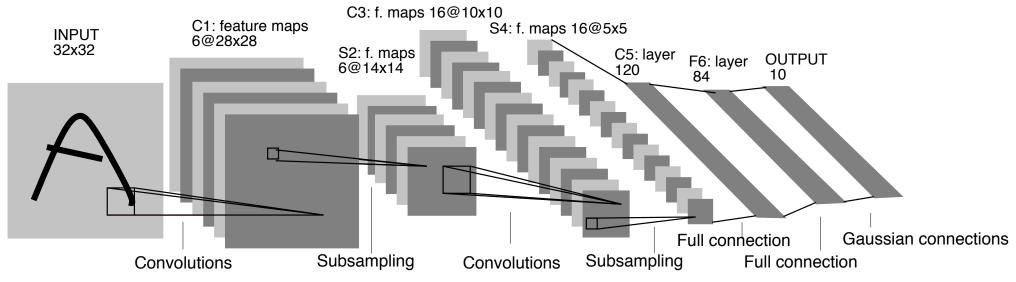
A bit of history

- Neocognitron model by Fukushima (1980)
- The first convolutional neural network (CNN) model
- so-called "sandwich" architecture
 - simple cells act like filters
 - complex cells perform pooling



A bit of history

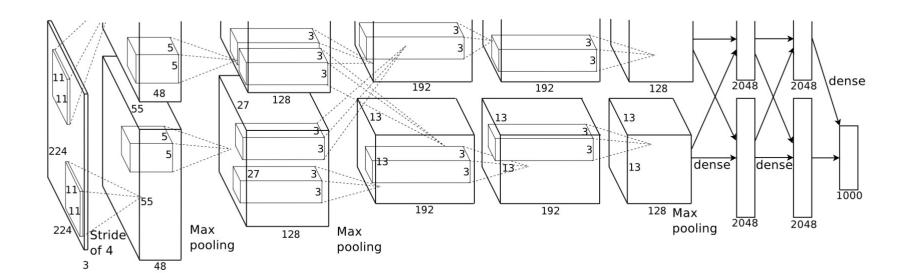
LeNet-5 model



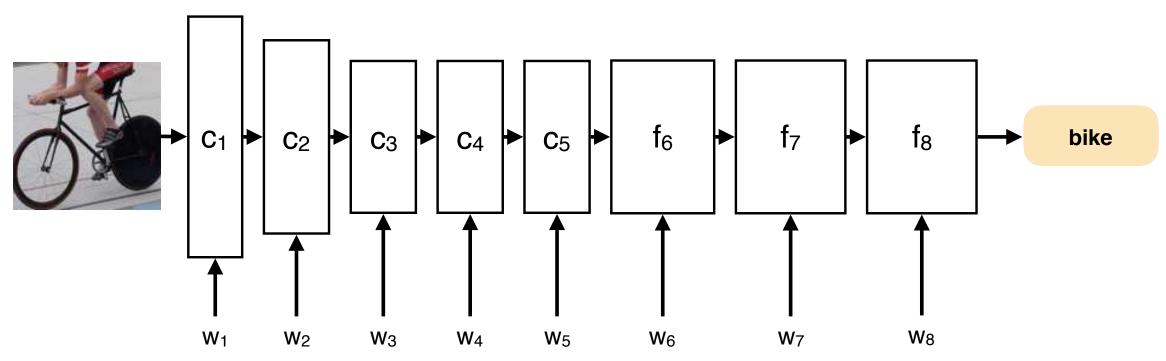
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. **Gradient-based learning applied to document recognition**. Proceedings of the IEEE. **86** (11): 2278–2324, 1998.

A bit of history

AlexNet model



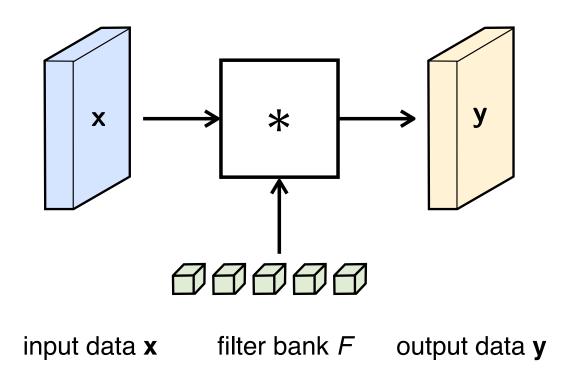
Convolutional Neural Network



A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS 2012.

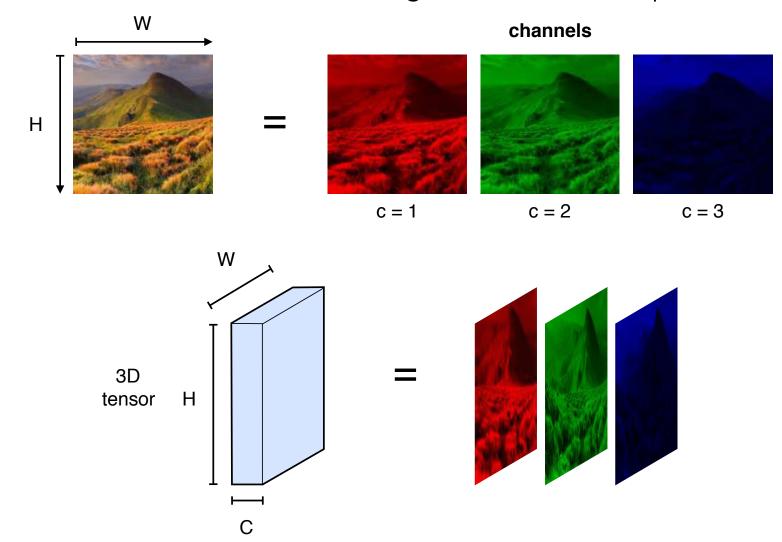
- Learn a filter bank (a set of filters) once
- Use them over the input data to extract features

$$\mathbf{y} = F * \mathbf{x} + b$$



Data = 3D Tensors

• There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

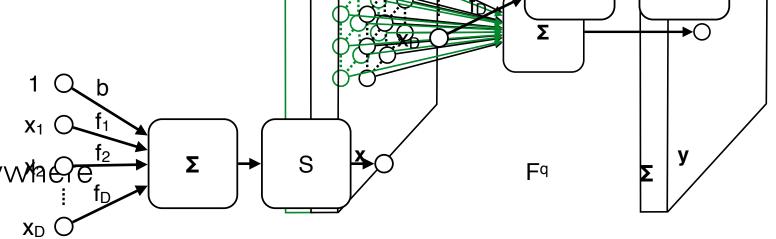


Convolutions with 3D Filters

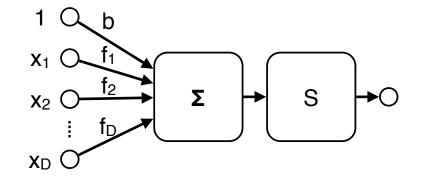
• Each filter acts on multiple input channels

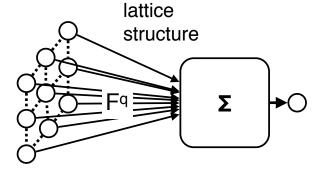
LocalFilters look locally

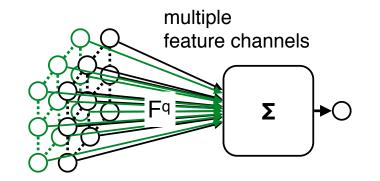
- Translation invariant x₁ O Filters act the same everywhaer



 X_1

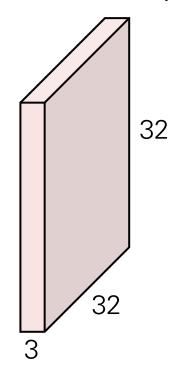




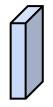


S

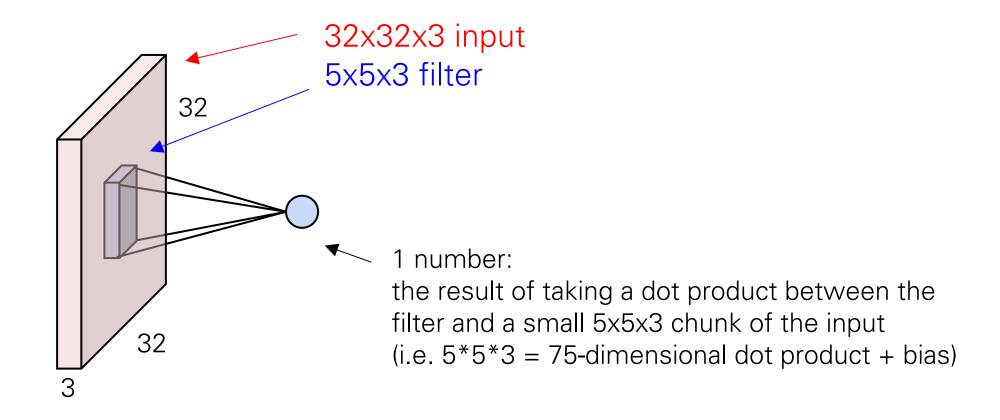
32x32x3 input

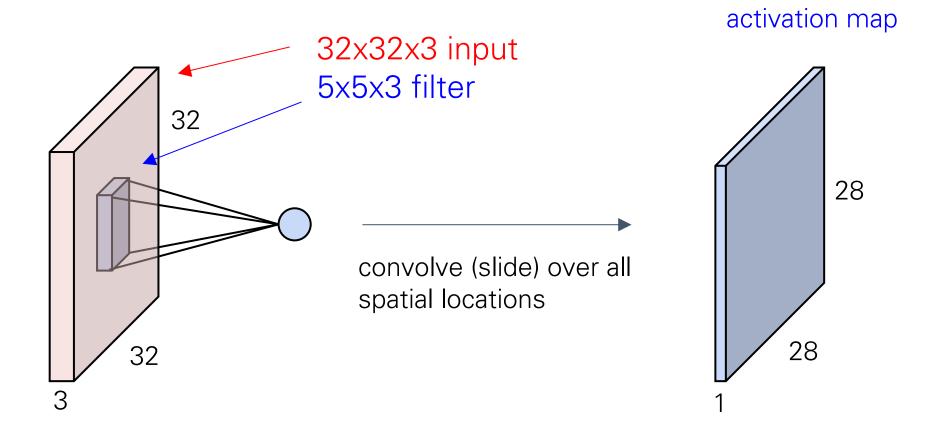


5x5x3 filter

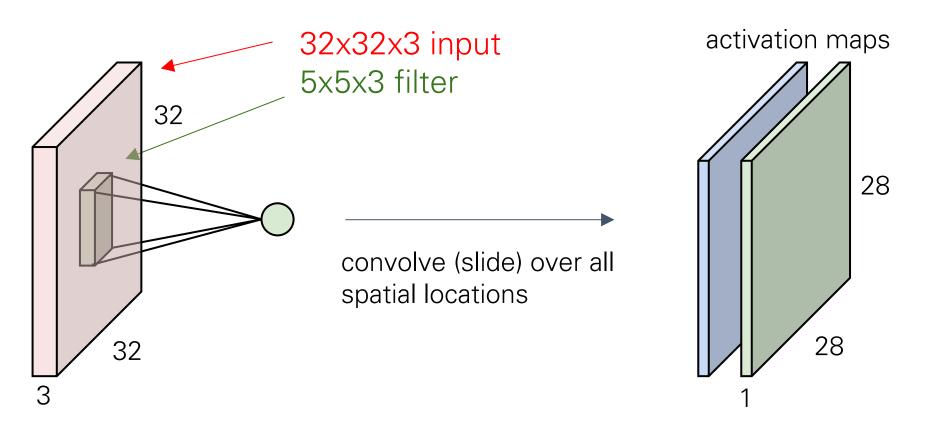


Convolve the filter with the input i.e. "slide over the image spatially, computing dot products"

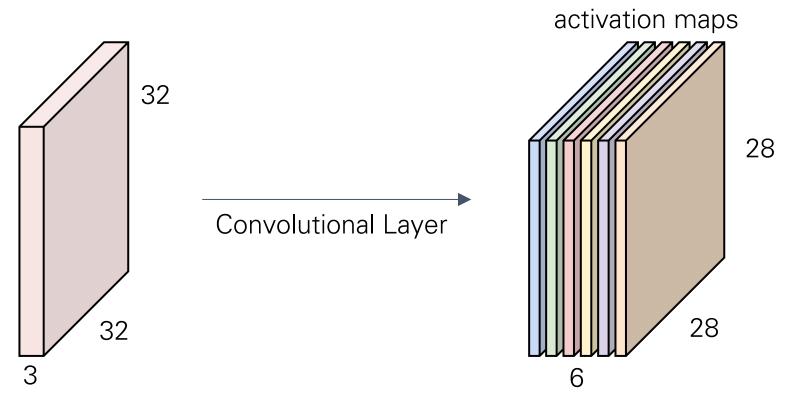




consider a second, green filter

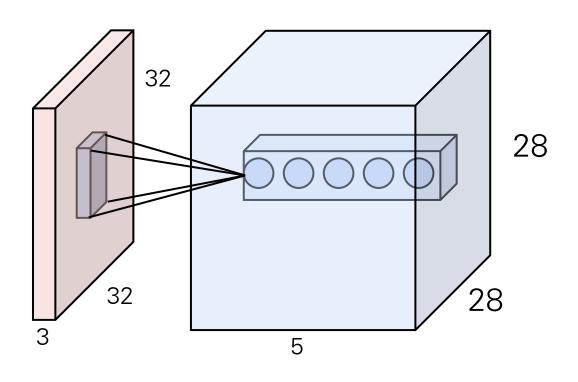


- Multiple filters produce multiple output channels
- For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



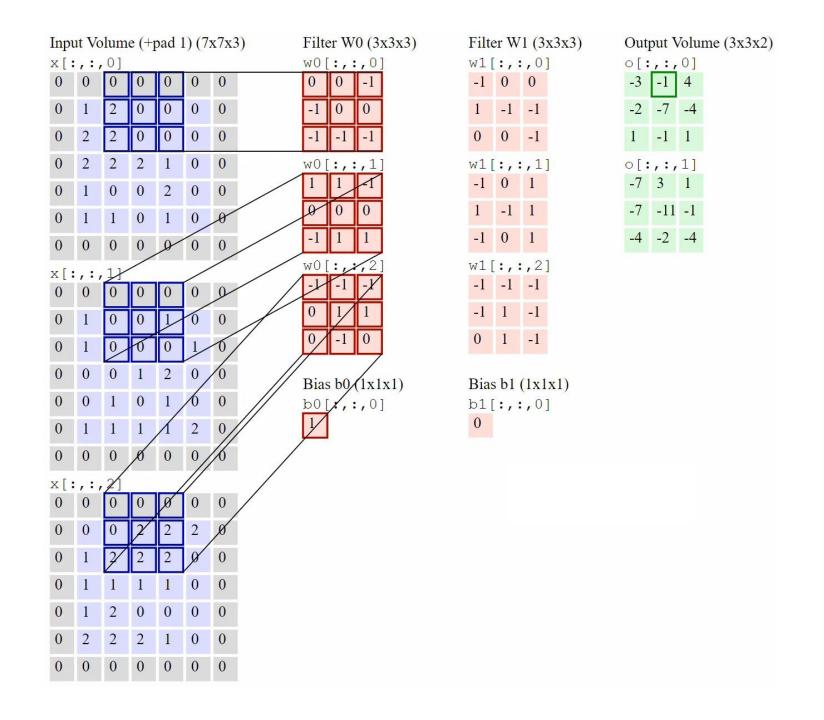
We stack these up to get an output of size 28x28x6.

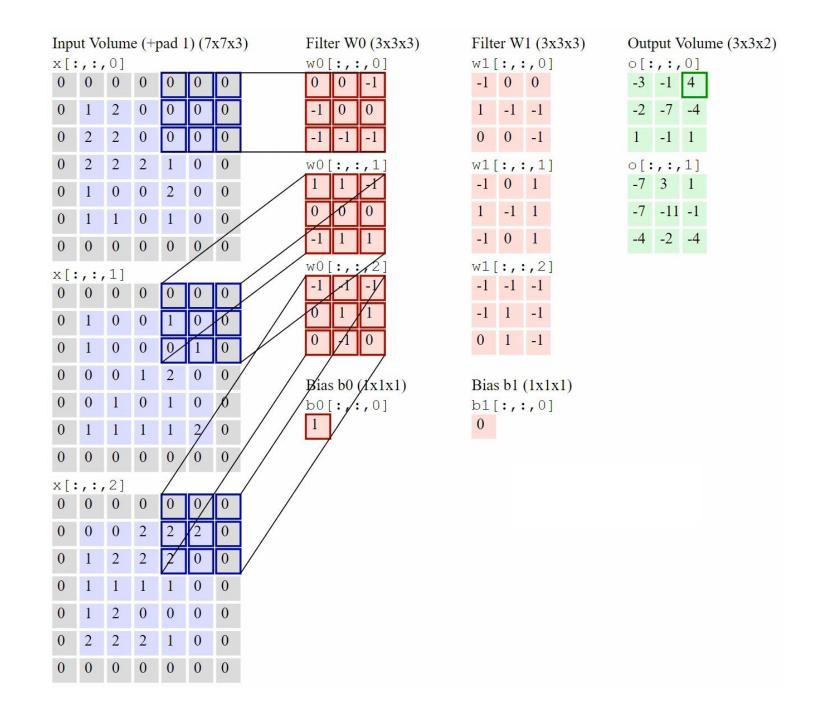
Spatial Arrangement of Output Volume

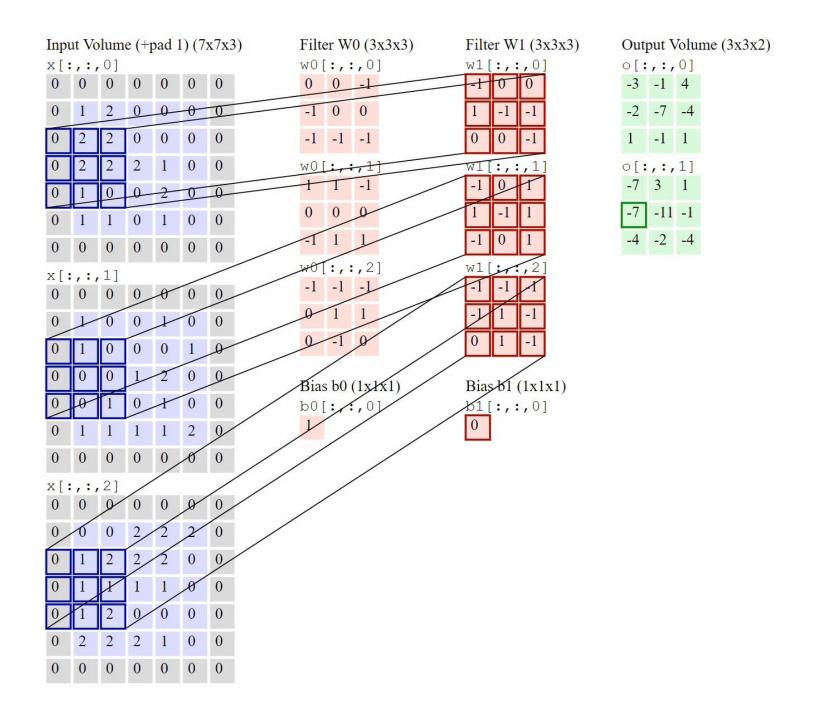


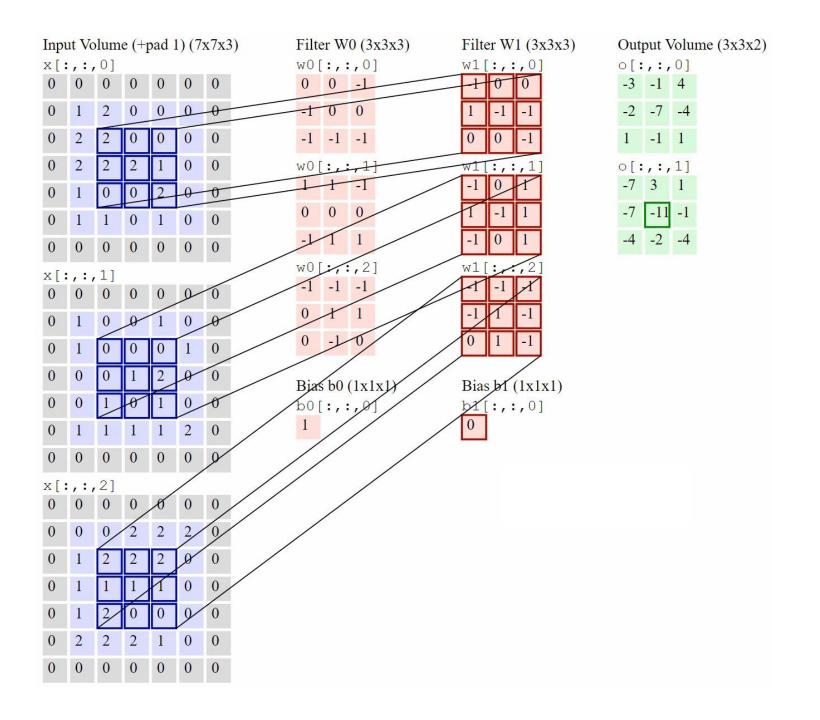
- **Depth:** number of filters
- **Stride:** filter step size (when we "slide" it)
- Padding: zero-pad the input

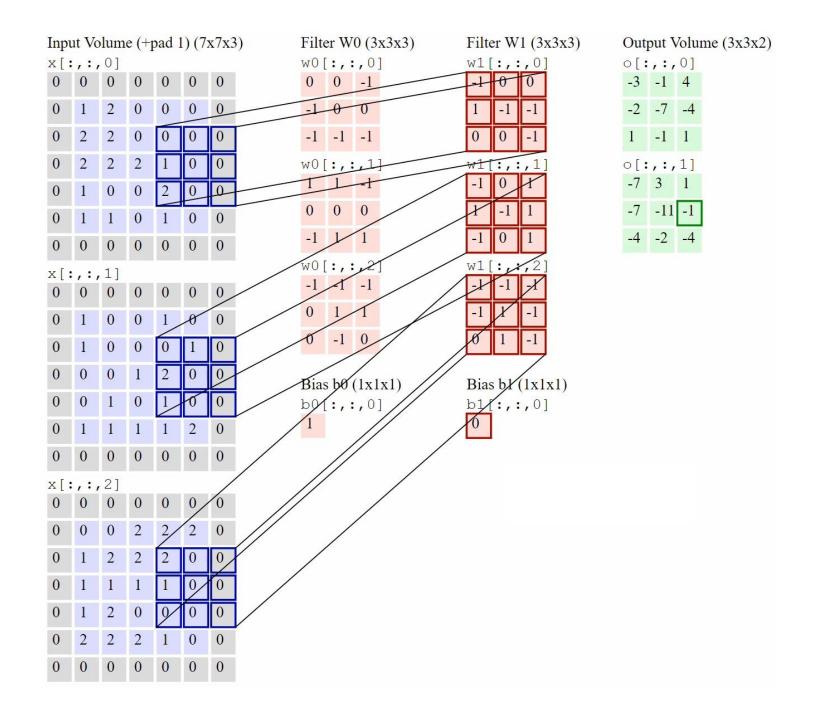
Input Volume (+pad 1) (7x7x3)	Filter W0 (3x3x3)	Filter W1 (3x3x3)	Output Volume (3x3x2)
x[:,:,0]	w0[:,:,0]	w1[:,:,0]	0[:,:,0]
0 0 0 0 0 0	0 0 -1	-1 0 0	-3 -1 4
0 1 2 0 0 0 0	-1 0 0	1 -1 -1	-2 -7 -4
0 2 2 0 0 0 0	-1 -1 -1	0 0 -1	1 -1 1
0 2 2 2 1 0 0	w0[:,:,1]	w1[:,:,1]	0[:,:,1]
0 1 0 0 2 0 0	1 1 1	-1 0 1	-7 3 1
0 1 1 0 1 0 0	0 0 0	1 -1 1	-7 -11 -1
0 0 0 0 0 0 0	-1 1 1	-1 0 1	-4 -2 -4
x[.,:,1]	w0[:,,2]	w1[:,:,2]	
0 0 0 0 0 0	0 1 1	-1 1 -1	
0 1 0 0 1 0 0	0 -1 0	0 1 -1	
0 1 0 0 0 1 0	-10	0 1 -1	
0 0 0 1 2 0 0	Bias b0 (1x1x1)	Bias b1 (1x1x1)	
0 0 1 0 1 0 0	b0[:,:,0]	b1[:,:,0]	
0 1 1/1 1 2/0		0	
0 9 0 0 9 0 0			
[0, 1, 2]			
0 1 1 1 1 0 0			
0 1 2 0 0 0 0			
0 2 2 2 1 0 0			
0 0 0 0 0 0 0			

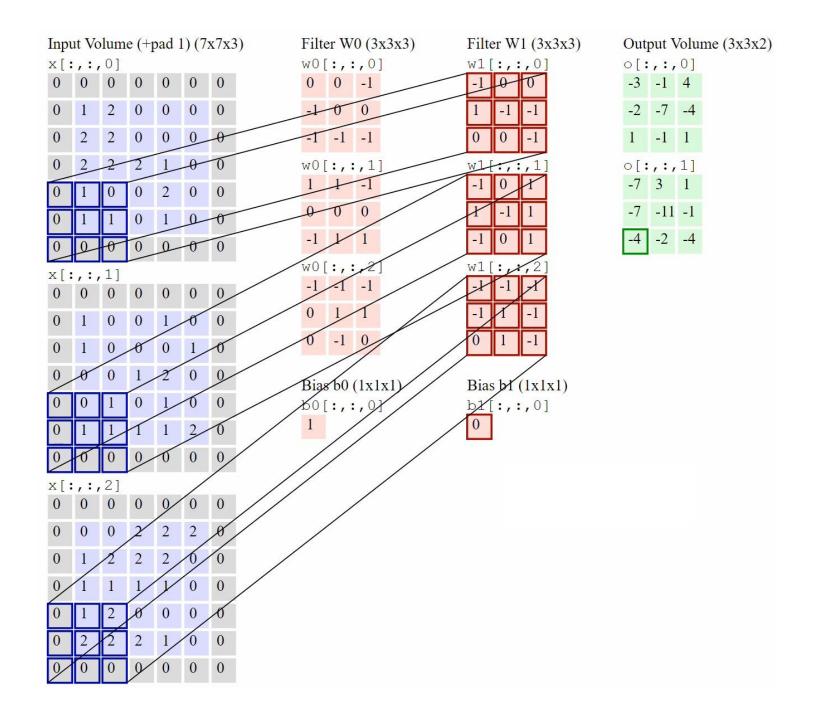


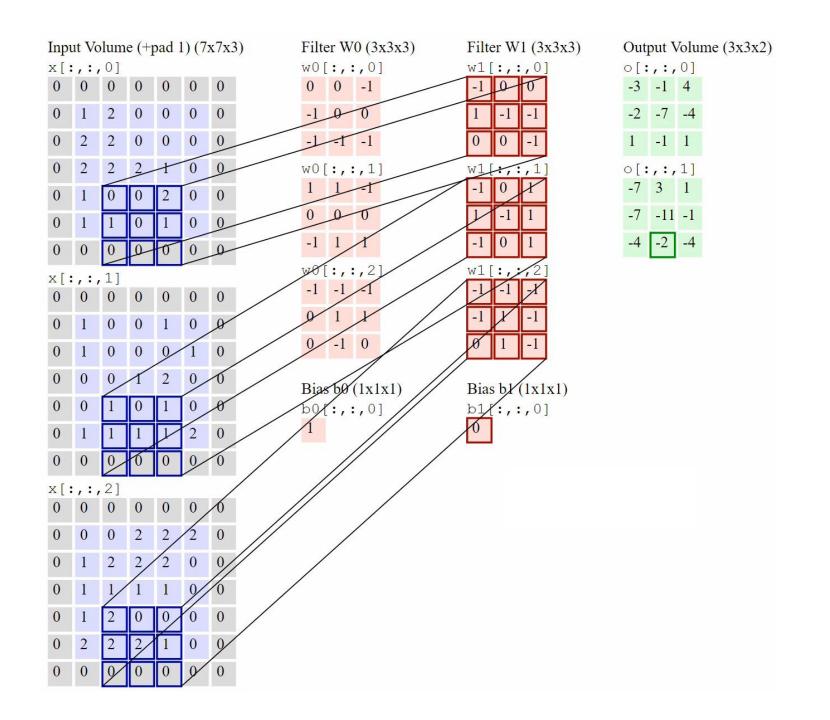


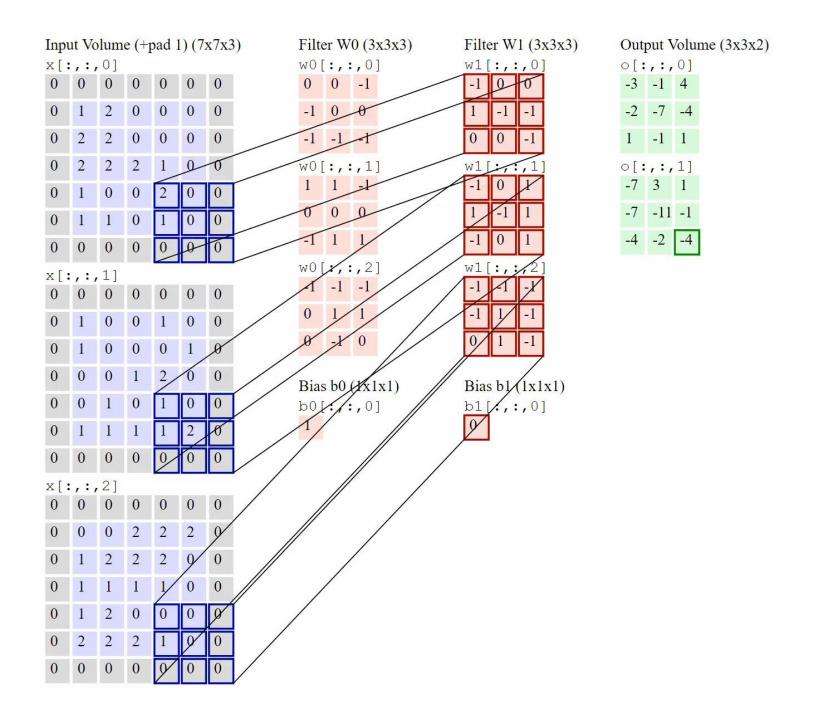




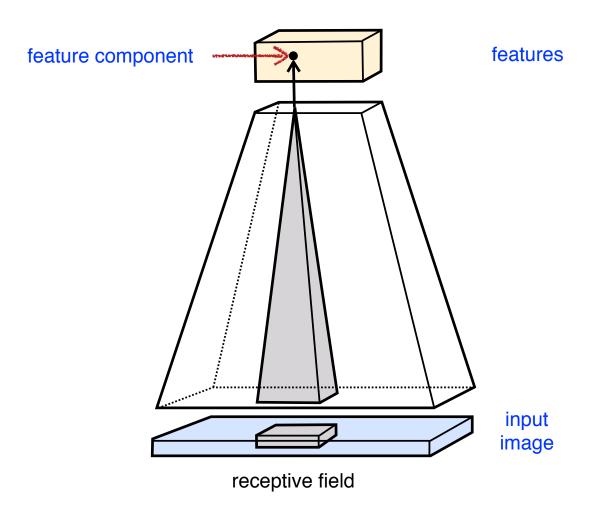






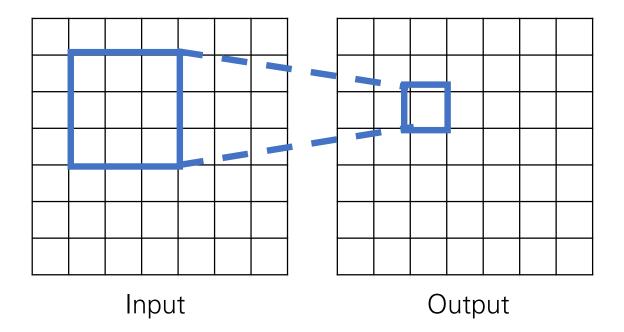


- Local receptive field
- Each column of hidden units looks at a different input patch



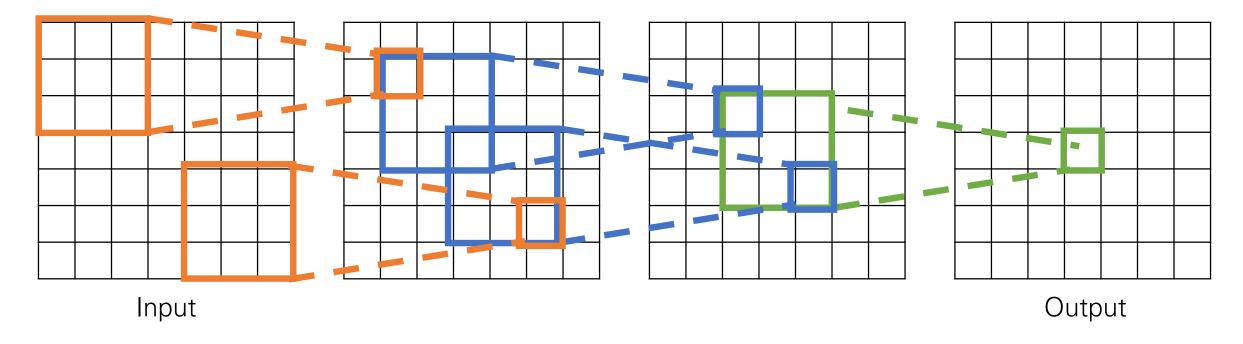
Receptive Fields

 For convolution with kernel size K, each element in the output depends on a K x K receptive field in the input



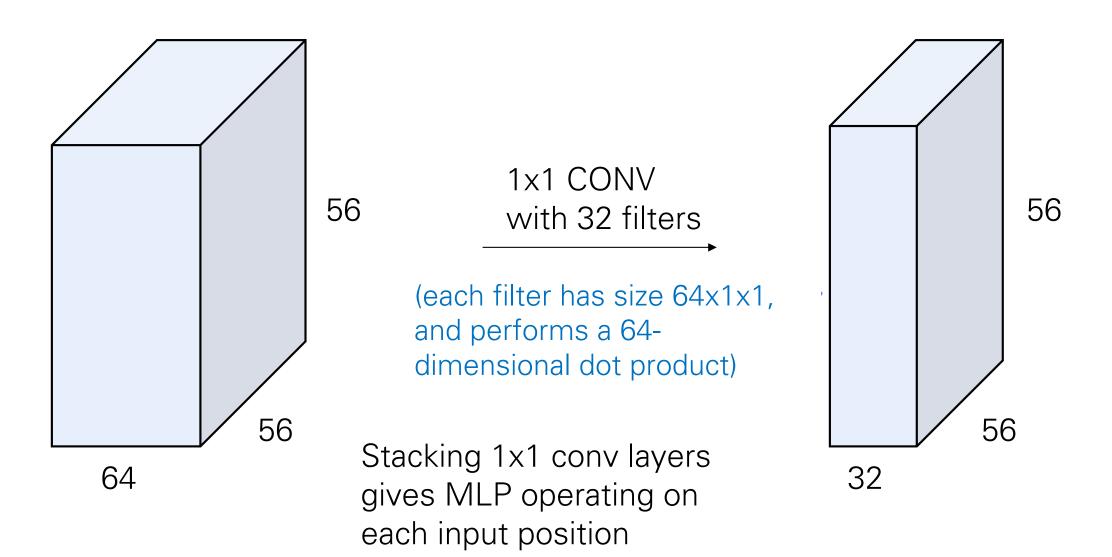
Receptive Fields

 Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K – 1)



Problem: For large images we need many layers for each output to "see" the whole image image

1x1 Convolution



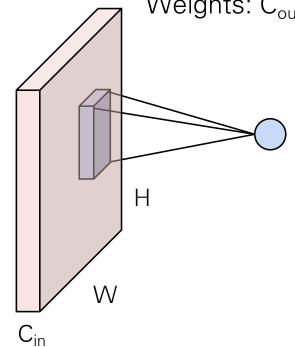
Other types of convolution

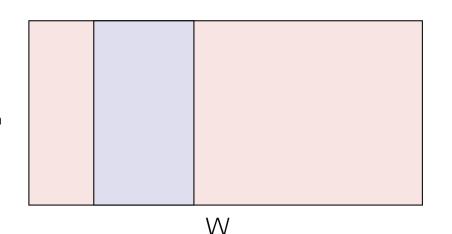
So far: 2D Convolution

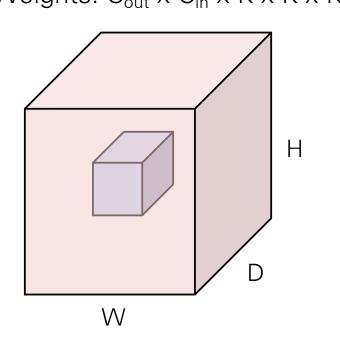
1D Convolution

3D Convolution

Input: C_{in} x W

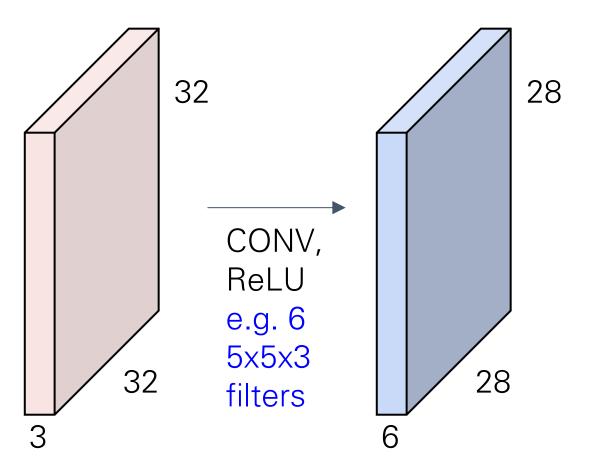




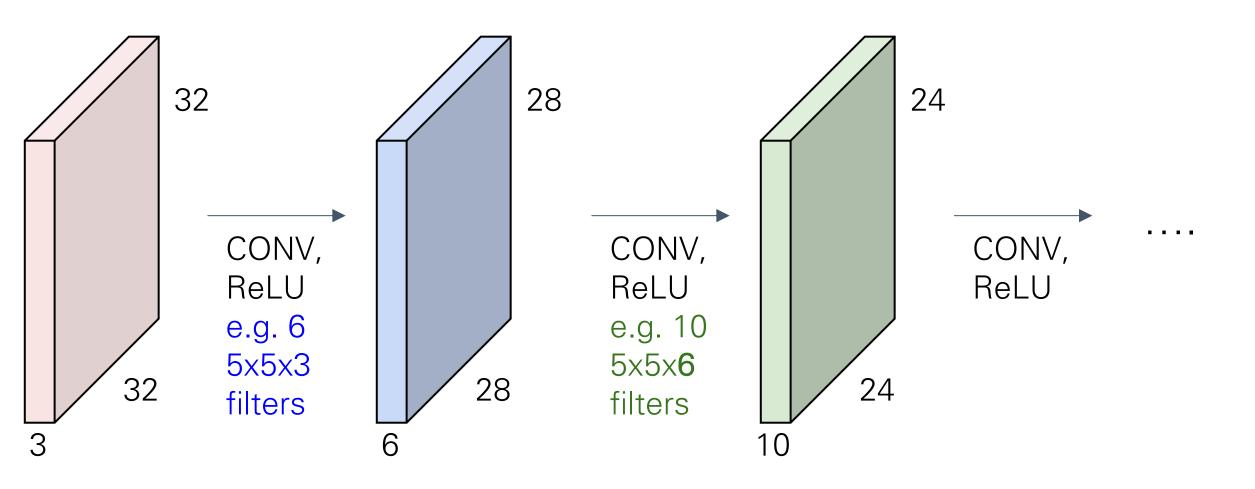


C_{in}-dim vector at each point in the volume

Convolutional layers

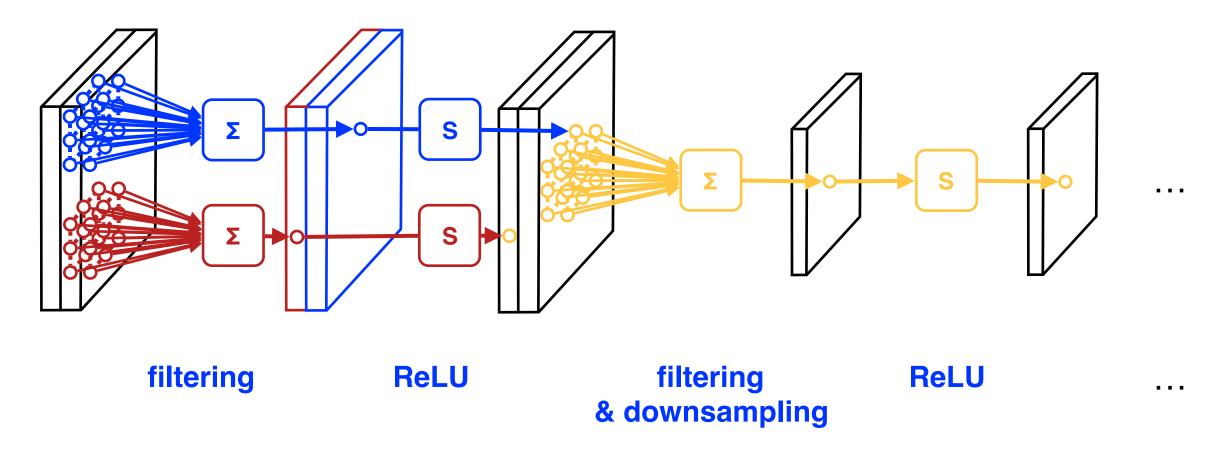


Repeat linear / non-linear operators



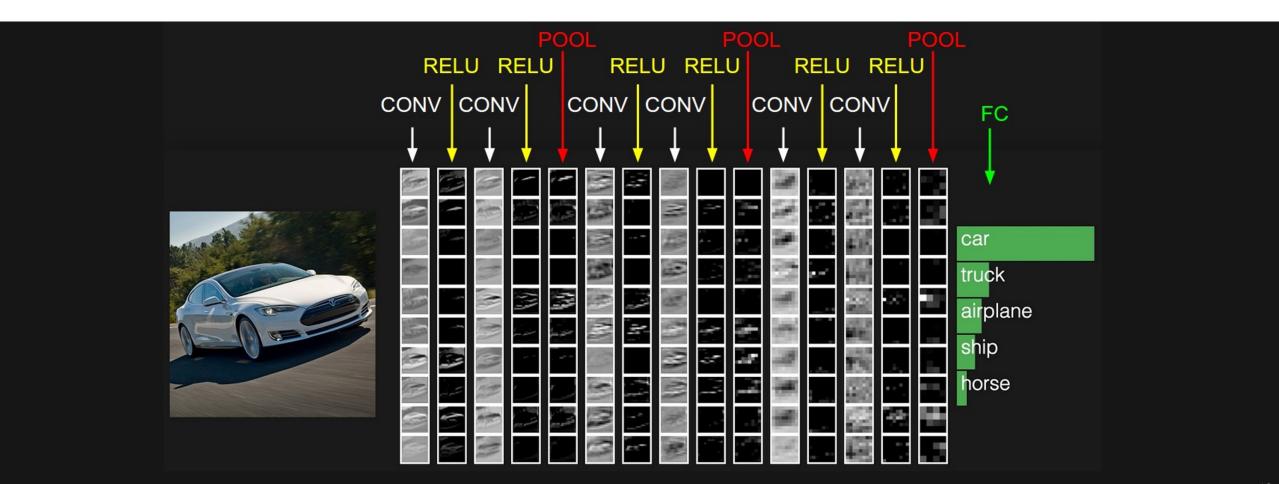
Linear/Non-linear Chains

- The basic blueprint of most architectures
- Stack multiple layers of convolutions



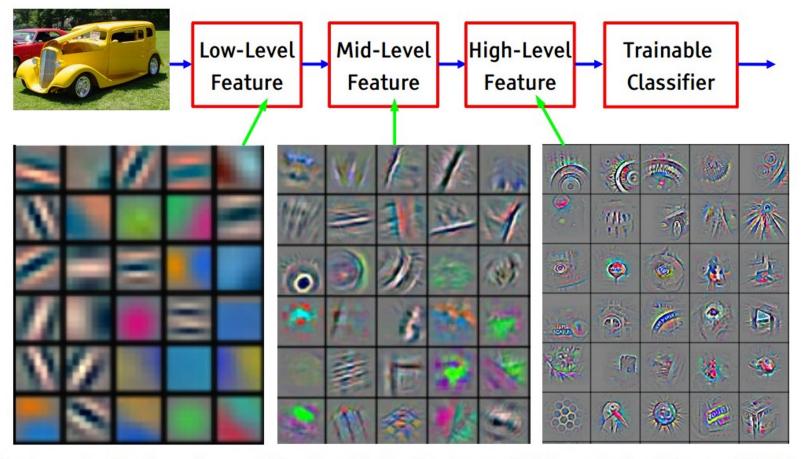
Feature Learning

• Hierarchical layer structure allows to learn hierarchical filters (features).



Feature Learning

Hierarchical layer structure allows to learn hierarchical filters (features).



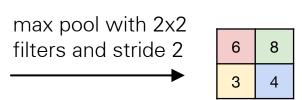
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

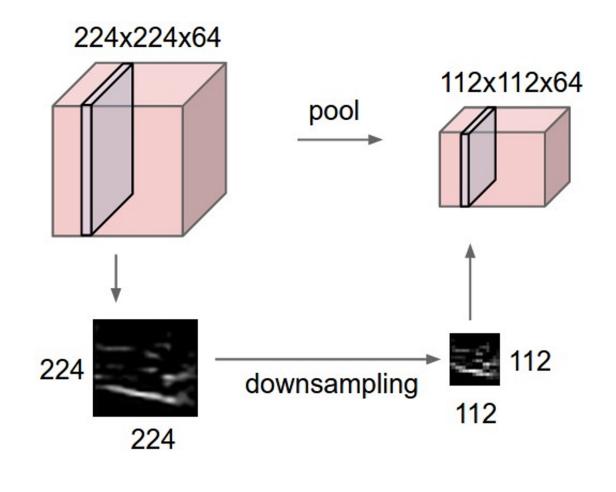
Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:
- Max pooling, average pooling, etc.

Single depth slice

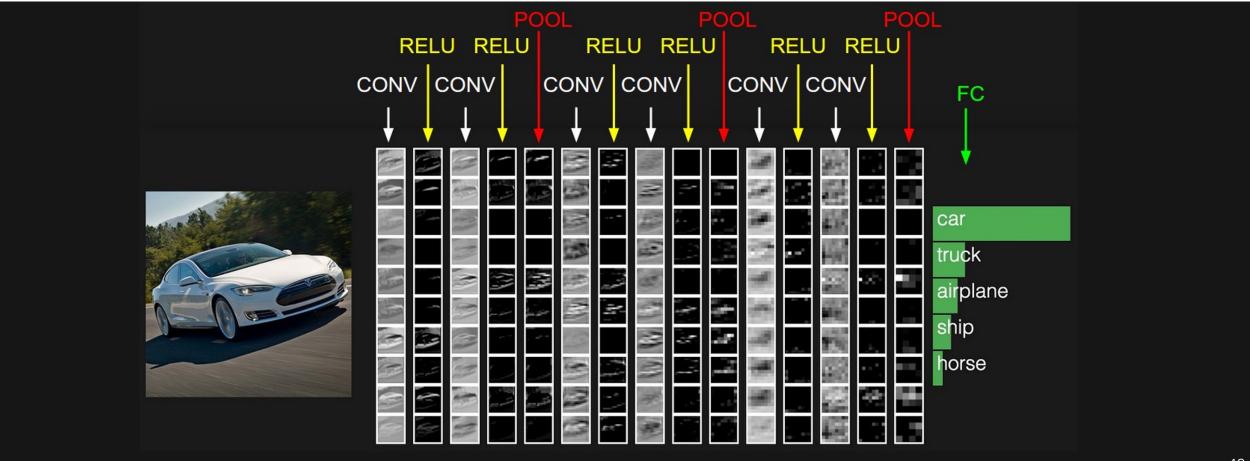
× ↑	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4
ı				

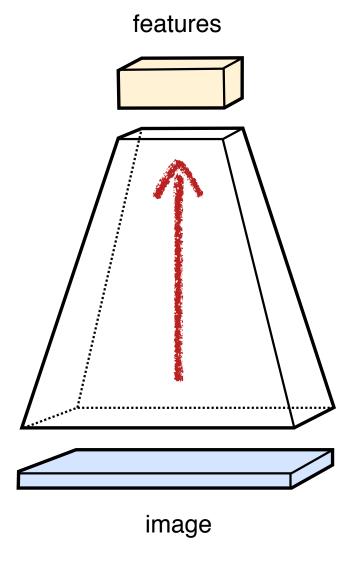




Fully connected layer

 contains neurons that connect to the entire input volume, as in ordinary Neural Networks





Guideline 1: Avoid tight bottlenecks

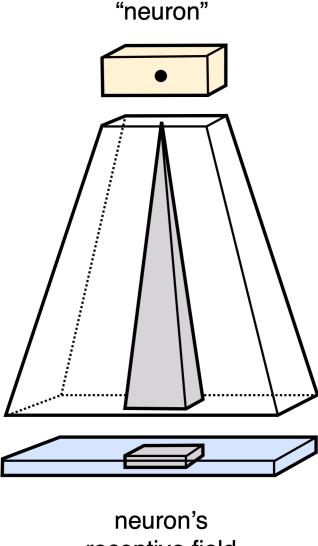
From bottom to top

- The spatial resolution HxW decreases
- The number of channels C increases

Guideline

- Avoid tight information bottleneck
- Decrease the data volume $H \times W \times C$ slowly
- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR 2015.
- C. Szegedy, V. Vanhoucke, S. loffe, and J. Shlens. **Rethinking the inception architecture for computer vision**. In CVPR 2016.

Receptive Field



receptive field

Must be large enough

Receptive field of a neuron

- The image region influencing a neuron
- Anything happening outside is invisible to the neuron

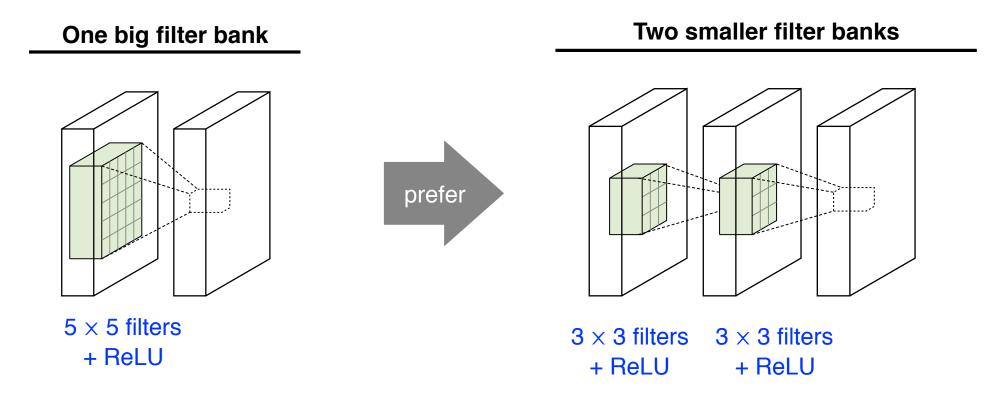
Importance

- Large image structures cannot be detected by neurons with small receptive fields

Enlarging the receptive field

- Large filters
- Chains of small filters

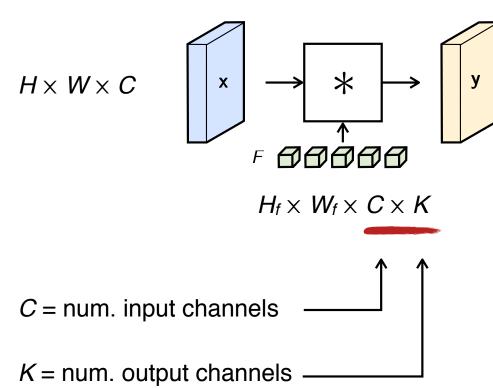
Guideline 2: Prefer small filter chains



- Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
- Reason: Far fewer feature channels (quadratic speed/space gain)
- Moral: Optimize your architecture

Guideline 3:

Keep the number of channels at bay



Num. of operations

$$\frac{H \times H_f}{\text{stride}} \times \frac{W \times W_f}{\text{stride}} \times C \times K$$

Num. of parameters

$$H_f \times W_f \times C \times K$$

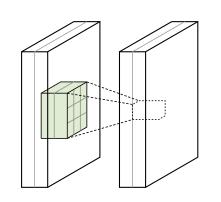
complexity $\propto C \times K$

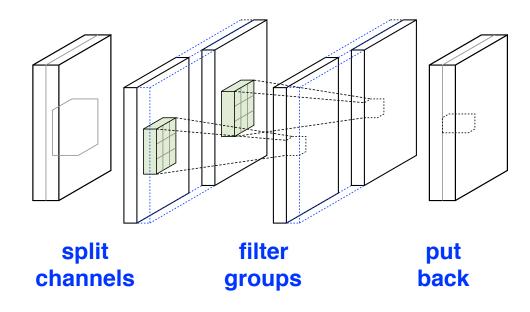
Guideline 4:

M filters

G groups of M/G filters

Less computations with filter groups

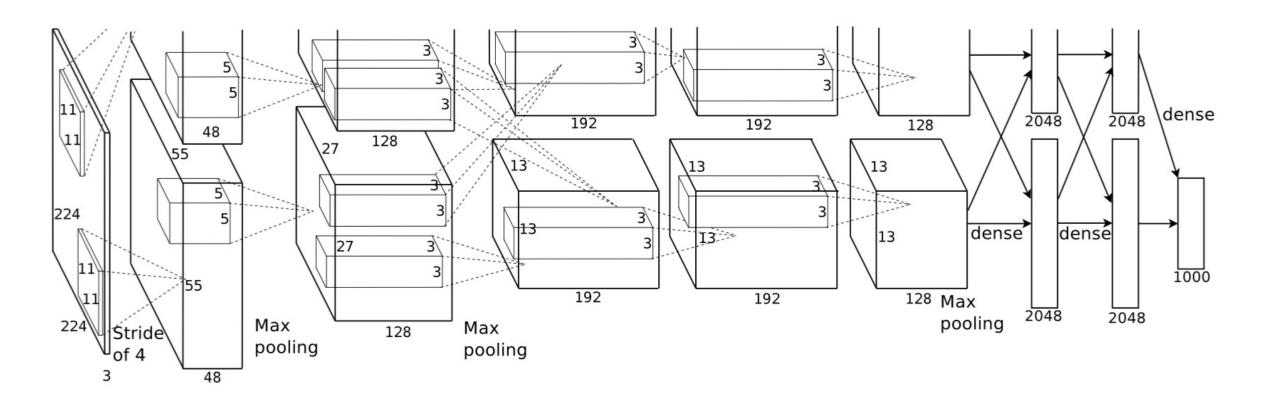




Did we see this before?

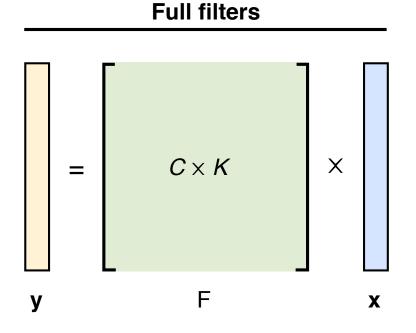
complexity $\propto (C \times K) / G$

AlexNet



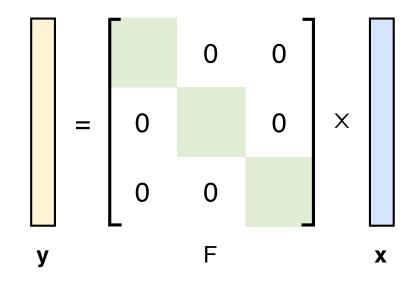
Guideline 4:

Less computations with filter groups



complexity: $C \times K$

Group-sparse filters

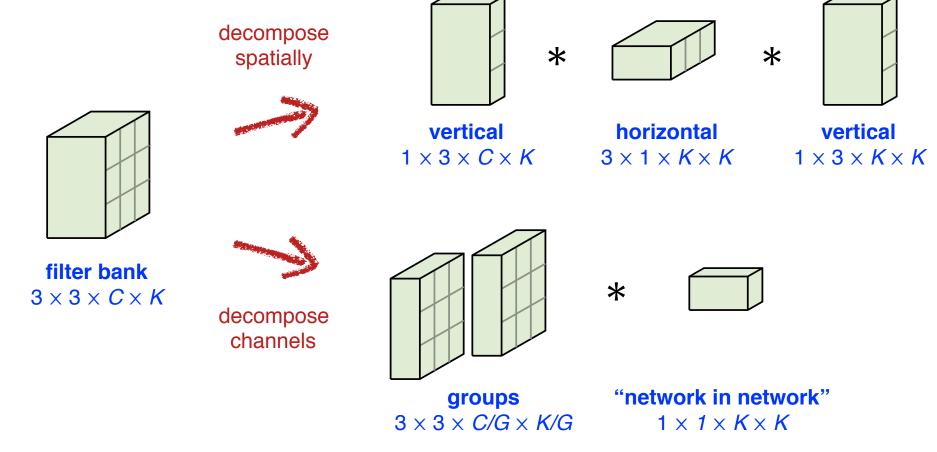


complexity: $C \times K / G$

Groups = filters, seen as a matrix, have a "block" structure

Guideline 5:

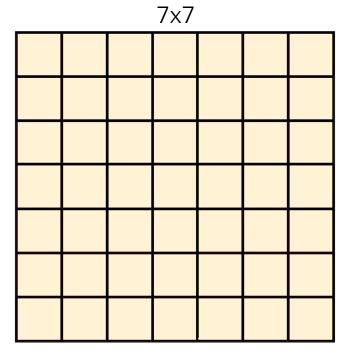
Low-rank decompositions



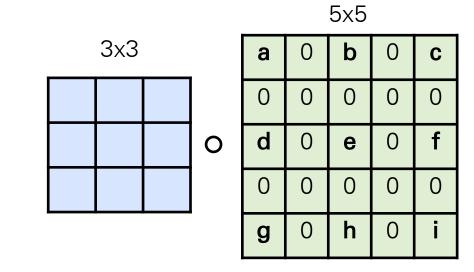
Make sure to mix the information

Guideline 6:

Dilated Convolutions



49 coefficients18 degrees of freedom



25 coefficients9 degrees of freedom

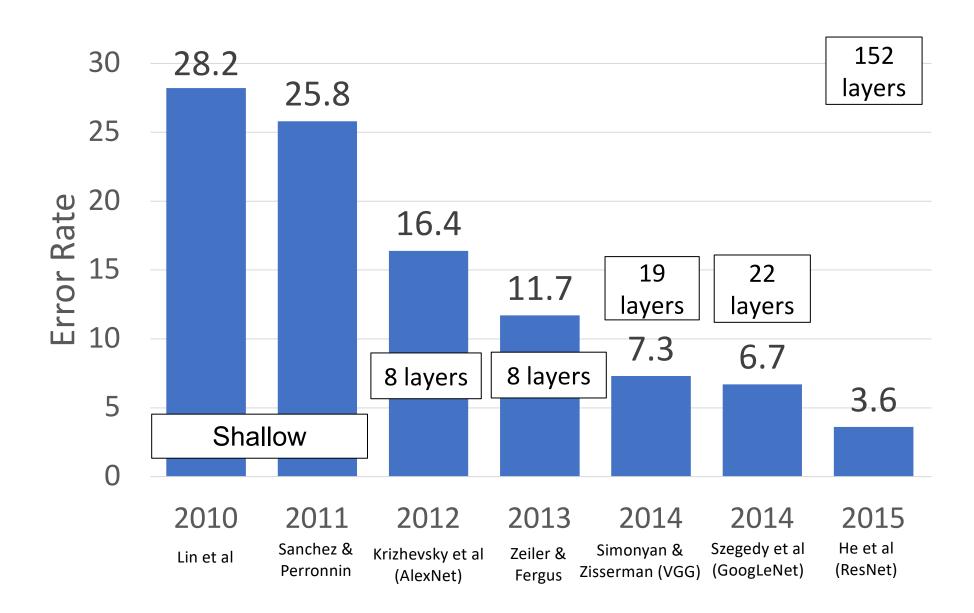
Exponential expansion of the receptive field without loss of resolution

Convolutional Neural Network Demo

- ConvNetJS demo: training on CIFAR-10
- http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

CNN Architectures

ImageNet Classification Challenge



AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

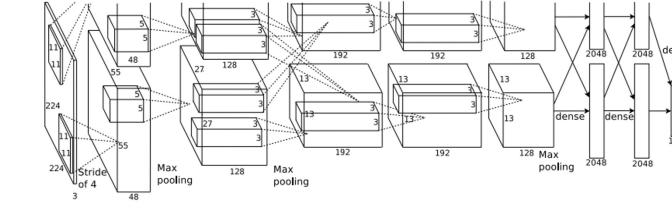
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

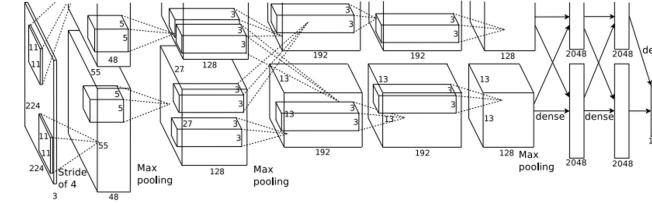
[1000] FC8: 1000 neurons (class scores)



Details/Retrospectives:

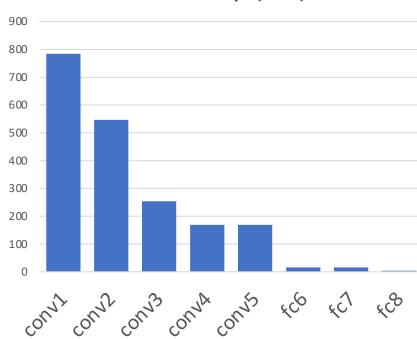
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

AlexNet



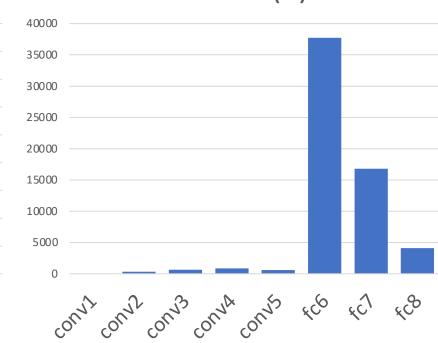
Most of the memory usage is in the early convolution layers

Memory (KB)

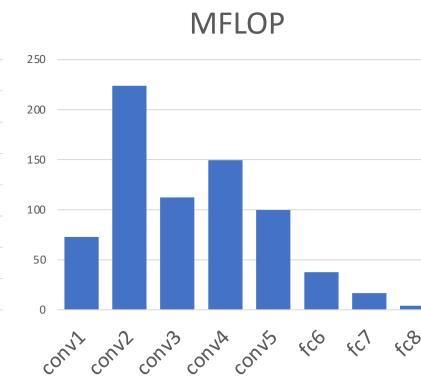


Nearly all parameters are in the fullyconnected layers

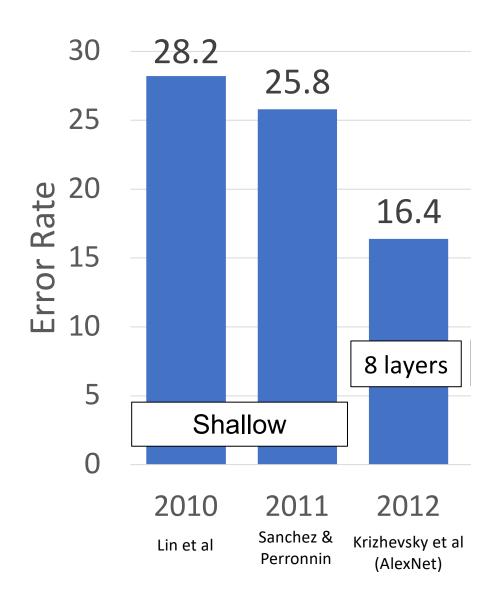
Params (K)



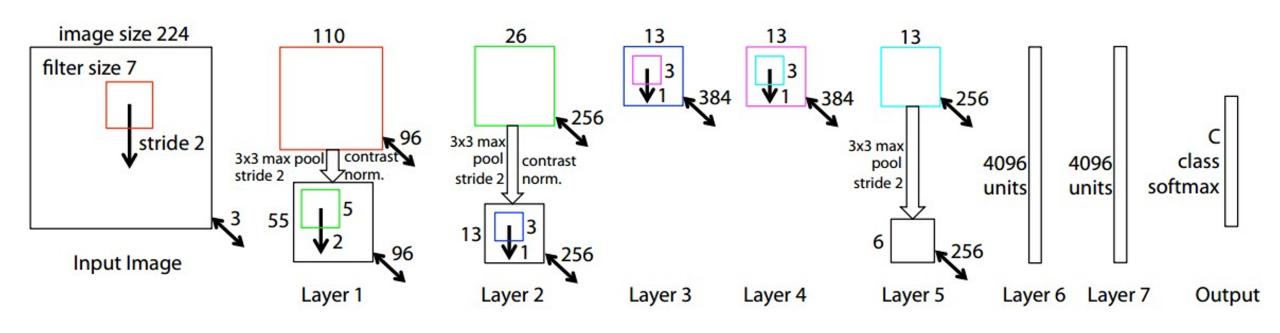
Most floating-point ops occur in the convolution layers



ImageNet Classification Challenge



ZFNet: A Bigger AlexNet



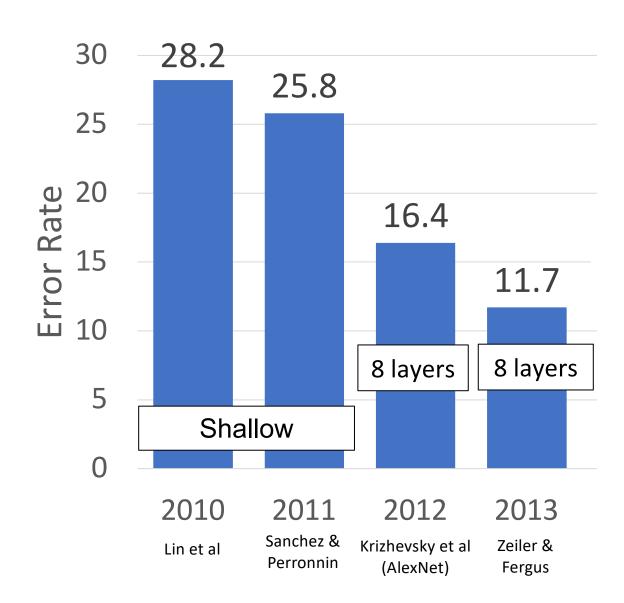
AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error

ImageNet Classification Challenge



INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases				
[===		ConvNet Configuration		
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	В	C	D	_
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	13 weight	16 weight	16 weight	19
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	layers	layers	layers	
CO(NV)-120. $ZX ZX ZO $		24 RGB image	2	
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,45	6 conv3-64	conv3-64	conv3-64	cc
POOL2: [56x56x128] memory: 56*56*128=400K params: 0		conv3-64	conv3-64	cc
,	conv3-128	pool conv3-128	conv3-128	co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	conv3-128	conv3-128	conv3-128	col
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	maxpool			
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-256	conv3-256	conv3-256	co
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	conv3-256	conv3-256	conv3-256	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648		conv1-256	conv3-256	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296			i .	col
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	maxpool			
	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	CO
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	COIIV3-312	conv1-512	conv3-512	CO
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		CONVI-312	CONVS-312	col
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	maxpool			-
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	CO
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	conv3-512	conv3-512	conv3-512	CO
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448		conv1-512	conv3-512	CO
				col
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216		maxpool		
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000		FC-4096 FC-4096		
TOTAL memory: $24NA * 4 bytes = 02NAD / image$		FC-1000		
TOTAL memory: 24M * 4 bytes ~= 93MB / image		soft-max		
(only forward! ~*2 for bwd)				

TOTAL params: 138M parameters

VGG-16 Net

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Network has 5 convolutional stages:

Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

AlexNet

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

Pool

3x3 conv, 128

Pool

3x3 conv, 64

Input

VGG16

Softmax

FC 1000

FC 4096

FC 4096

Pool

FC 1000 FC 4096 FC 4096 Pool Pool Pool Pool Pool Input VGG19

Softmax

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool Pool

Network has 5 convolutional stages:

Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool Pool 11x11 conv. 96 VGG16

AlexNet

Input VGG19

Softmax FC 1000

FC 4096

FC 4096

Pool

Pool

Pool

Pool

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels Conv layers at each spatial resolution take the same amount of computation!

Network has 5 convolutional stages:

Stage 1: conv-conv-pool

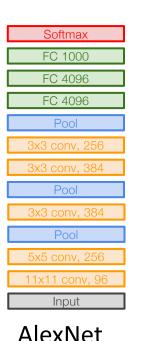
Stage 2: conv-conv-pool

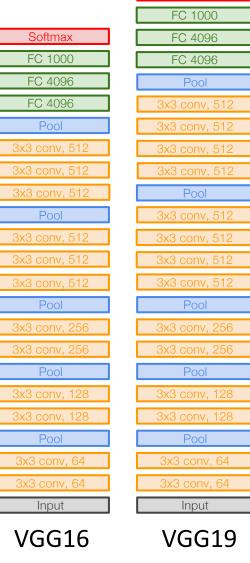
Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool

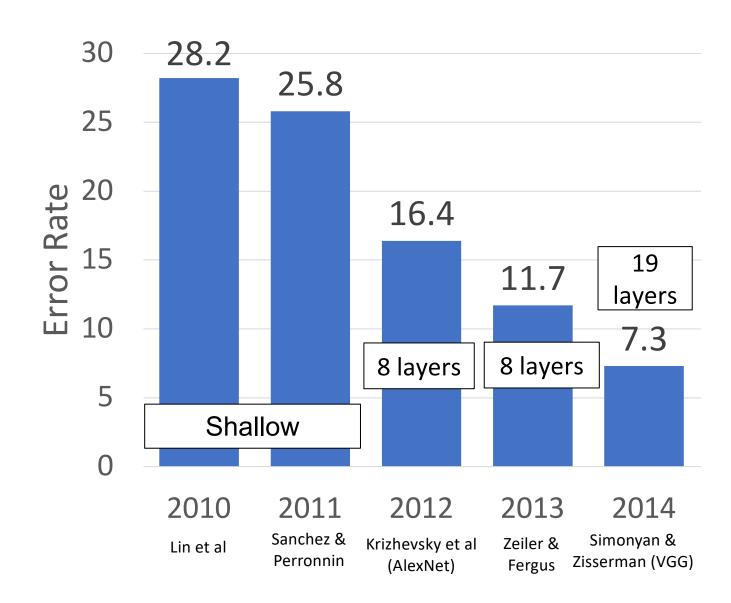
(VGG-19 has 4 conv in stages 4 and 5)

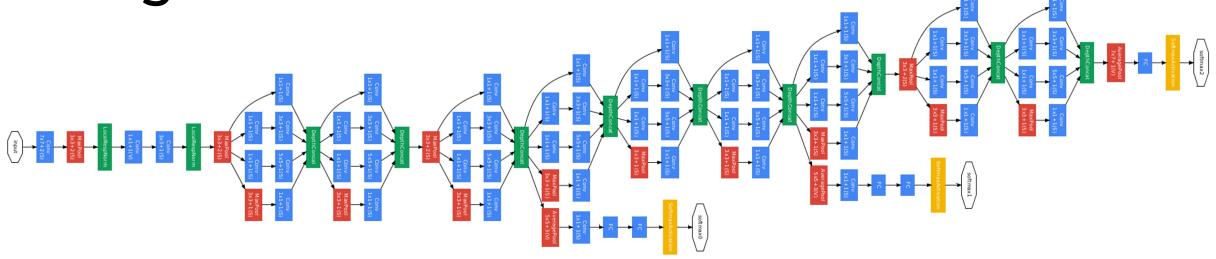




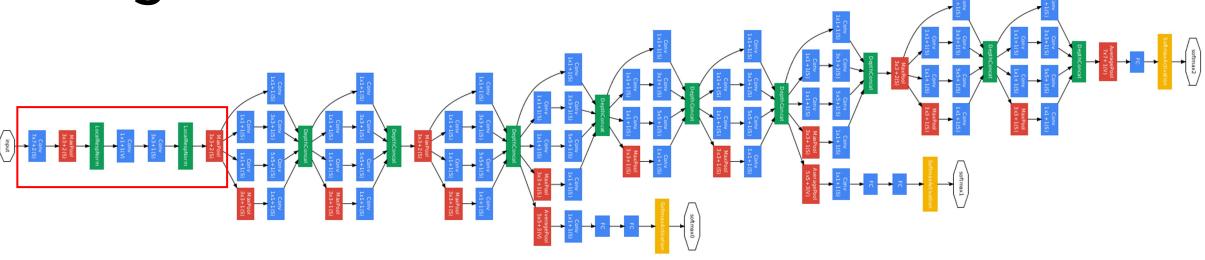
Softmax

ImageNet Classification Challenge

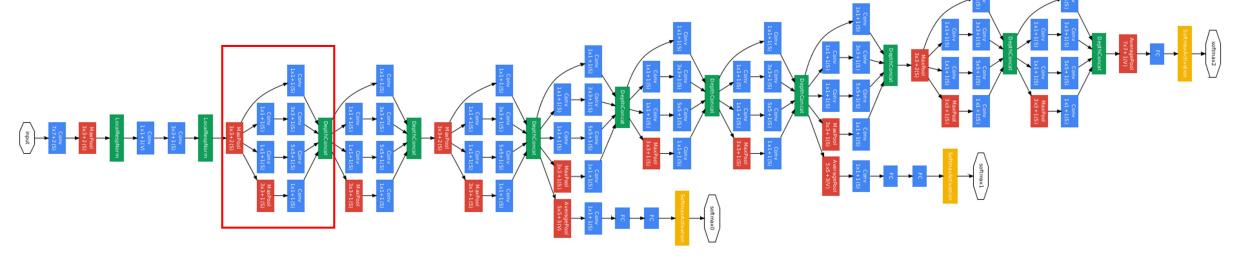


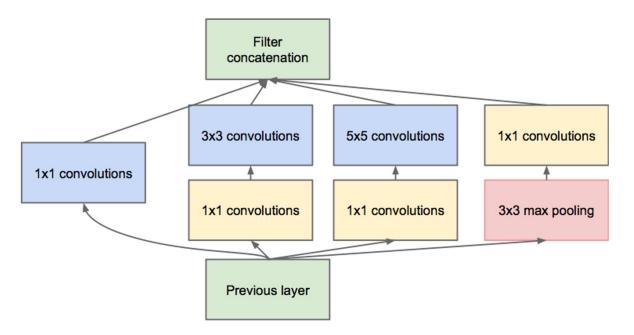


Many innovations for efficiency: reduce parameter count, memory usage, and computation



Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)





Inception module

Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv

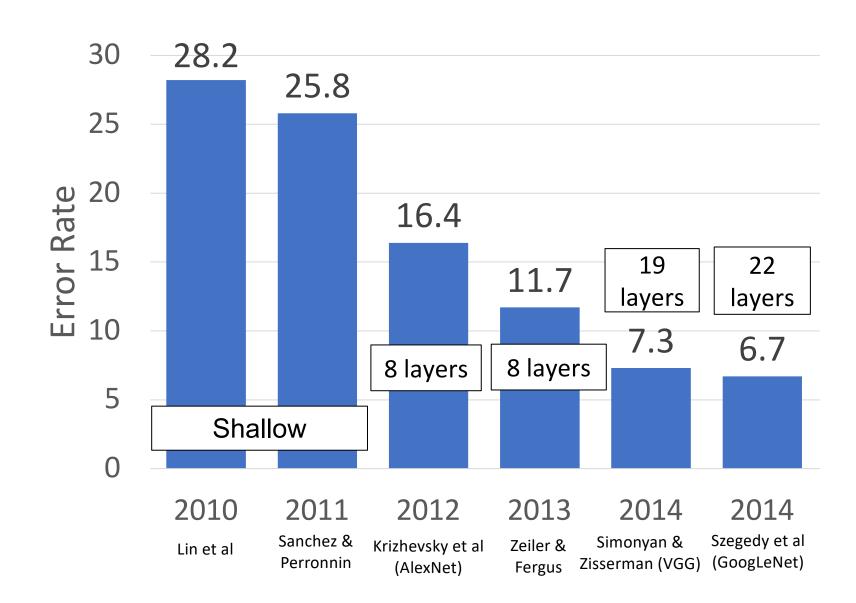
Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm no longer need to use this trick

ImageNet Classification Challenge

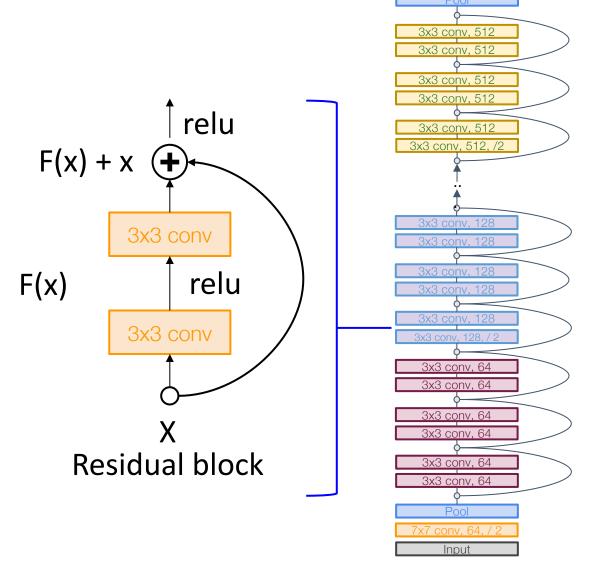


Residual Net (ResNet)

A residual network is a stack of many residual blocks

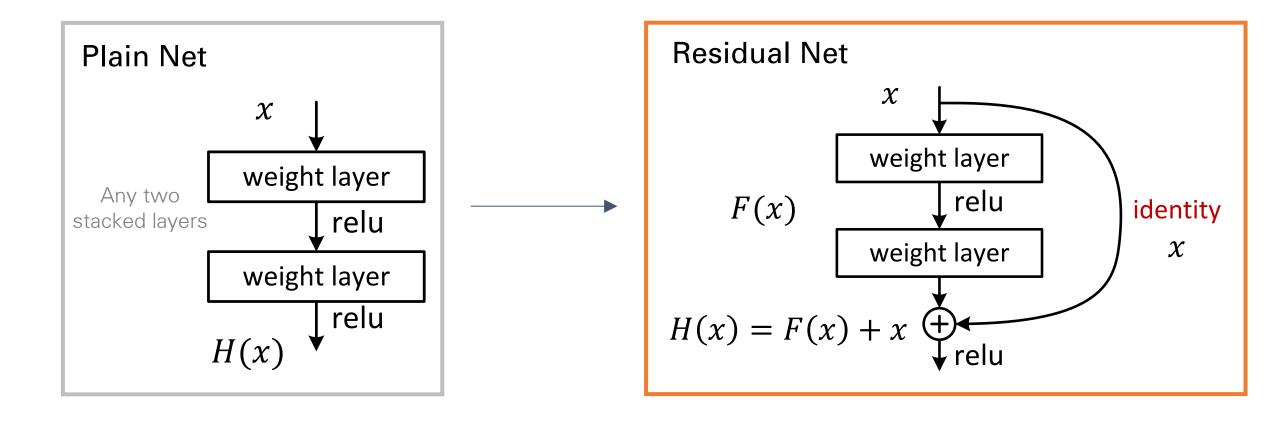
Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into stages: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels



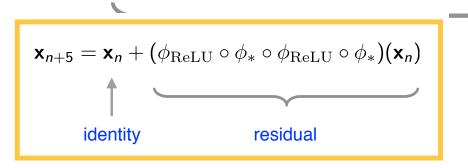
FC 1000

Residual Net (ResNet)

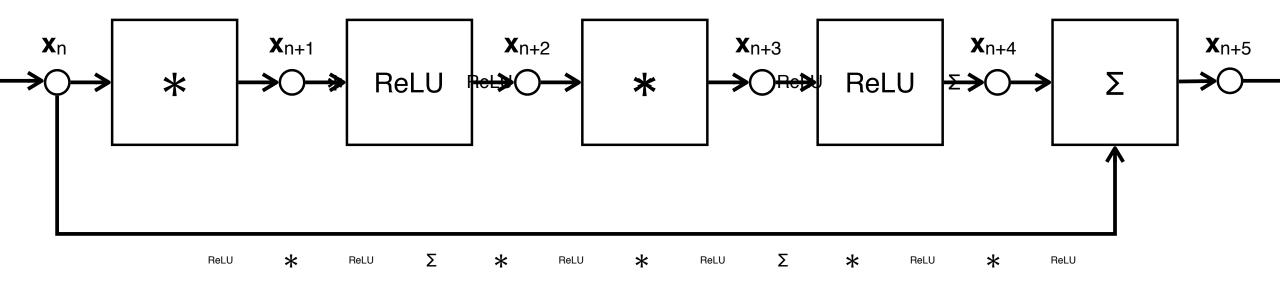


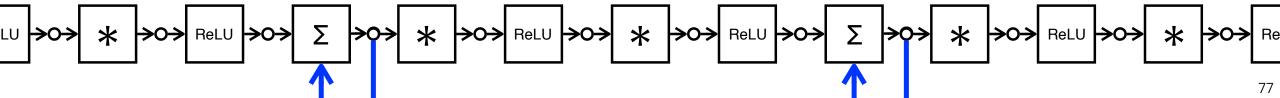
Residual Learning $\phi_{\text{ReLU}} \circ \phi_* \circ \phi_{\text{ReLU}} \circ \phi_*)(x_n)$

Fixed identity // learned residual

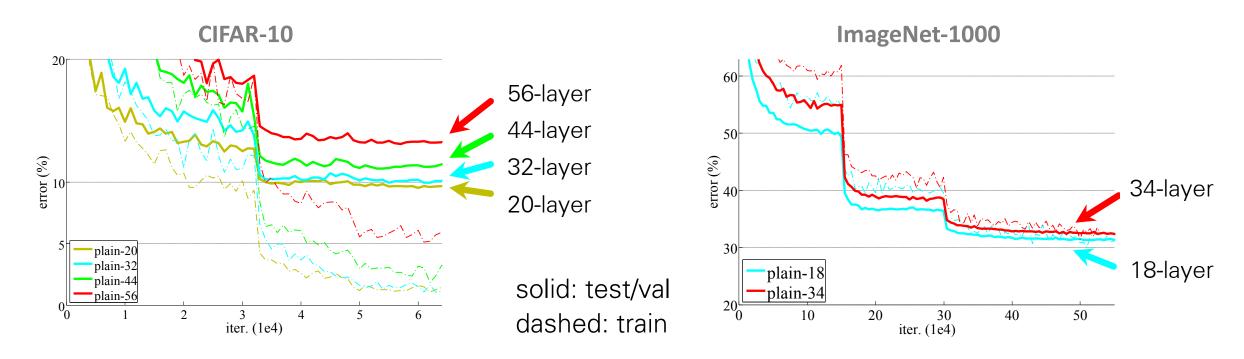


K. He, X. Zhang, S. Ren, and J. Sun. **Deep residual learning for image recognition**. In CVPR 2016.





Residual Learning

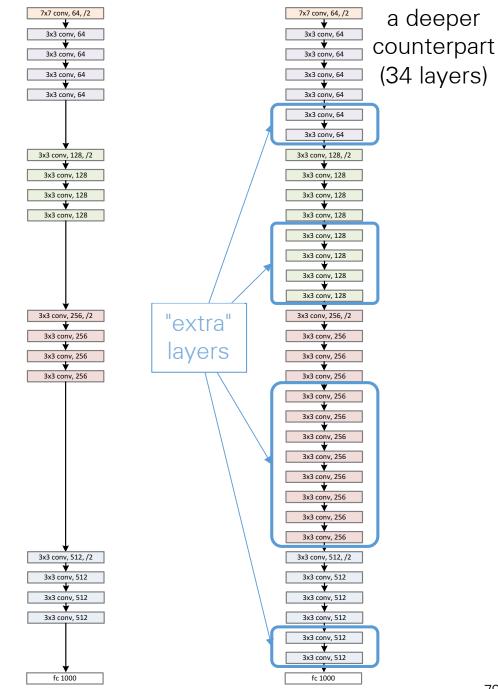


- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets
- This is optimization issue, deeper models are harder to optimize

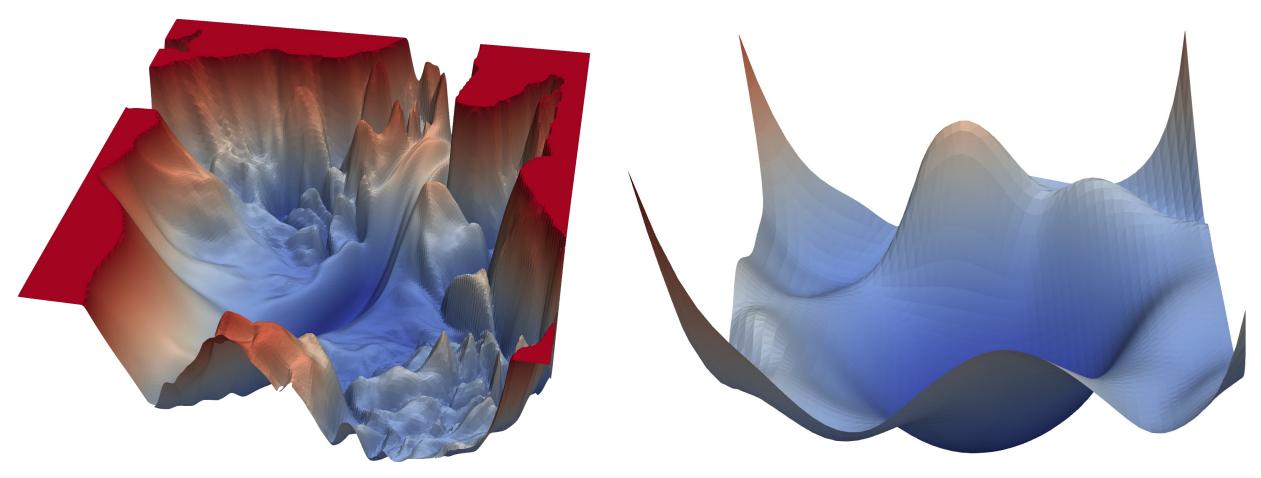
Residual Learning

a shallower model (18 layers)

- Richer solution space
- A deeper model should not have higher training error
- A solution by construction:
 - original layers: copied from a
 - learned shallower model
 - extra layers: set as identity
 - at least the same training error

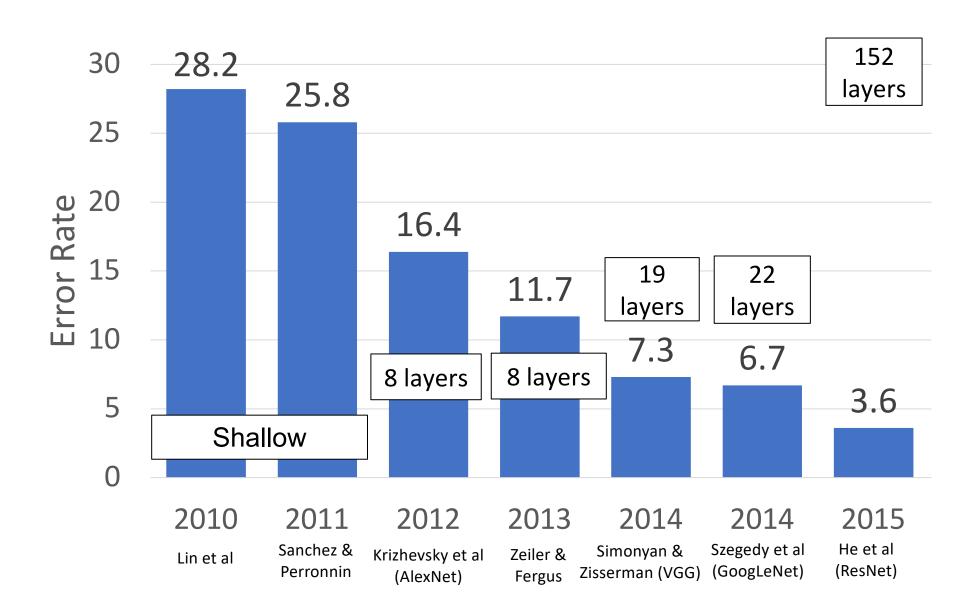


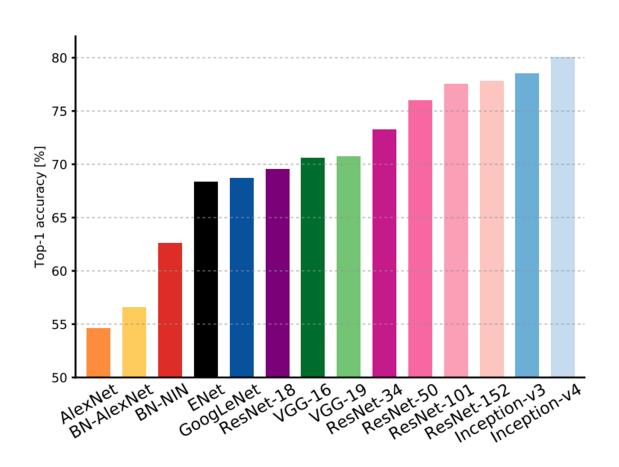
Residual Learning

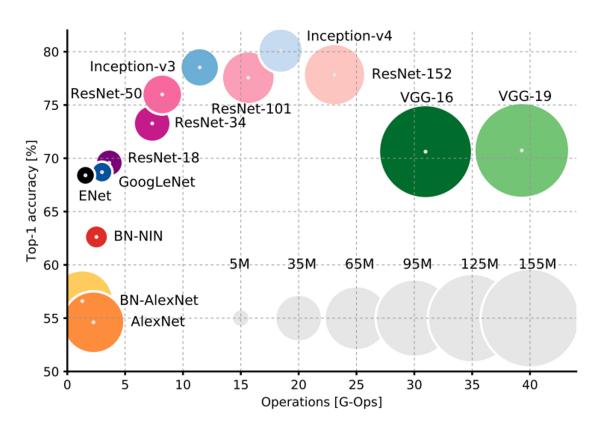


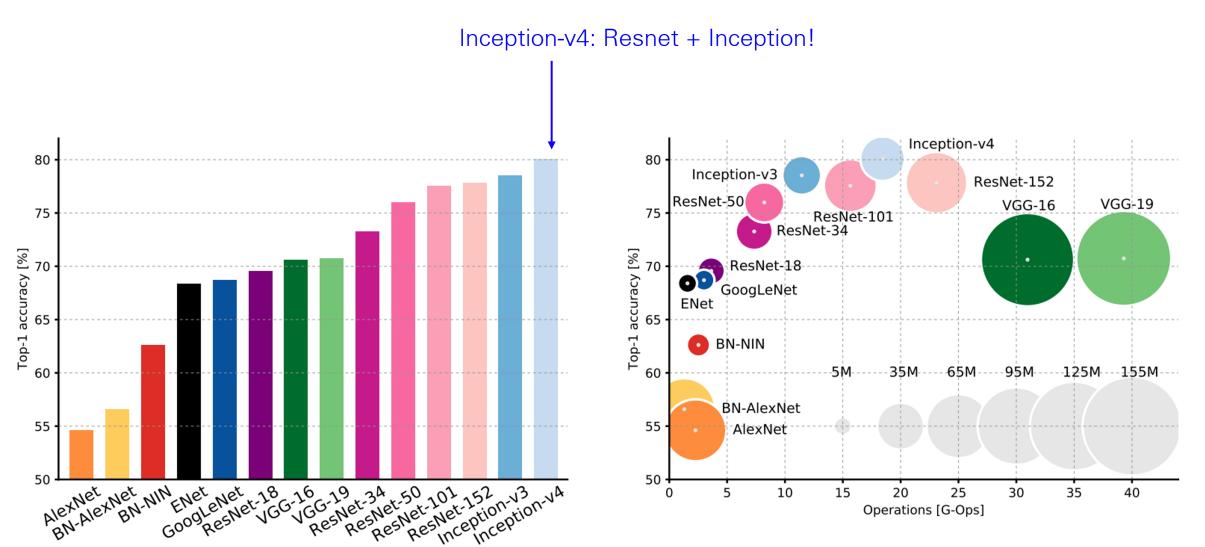
 The loss surface of a 56-layer net using the CIFAR-10 dataset, both without (left) and with (right) residual connections.

ImageNet Classification Challenge

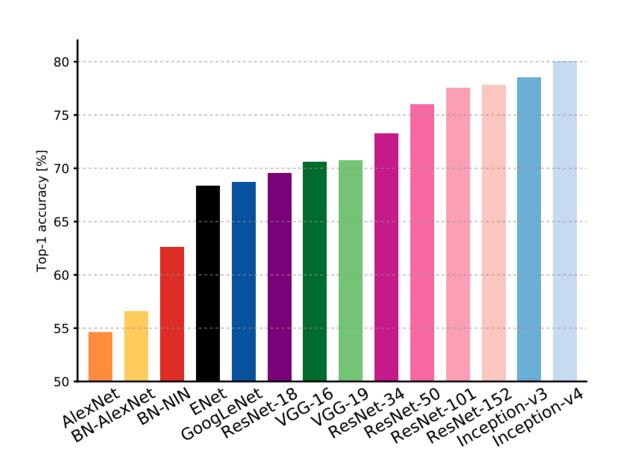


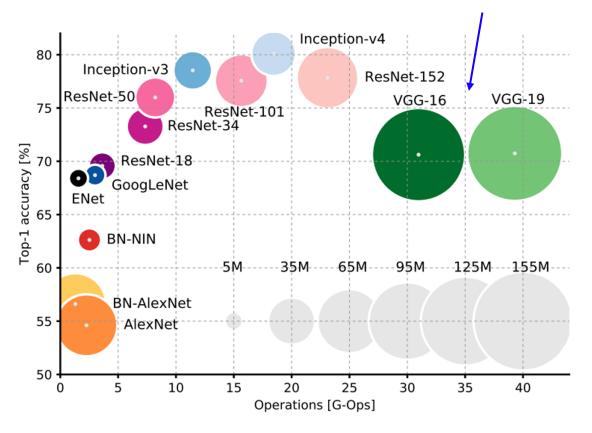


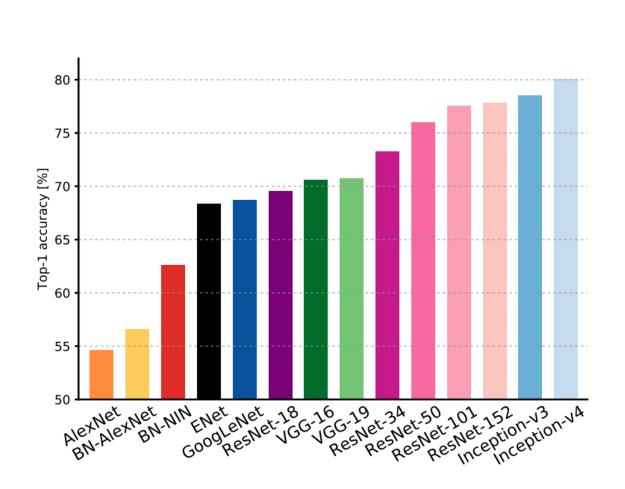


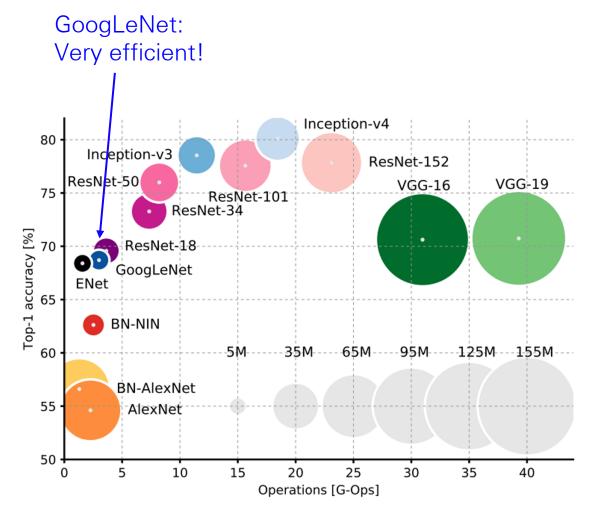


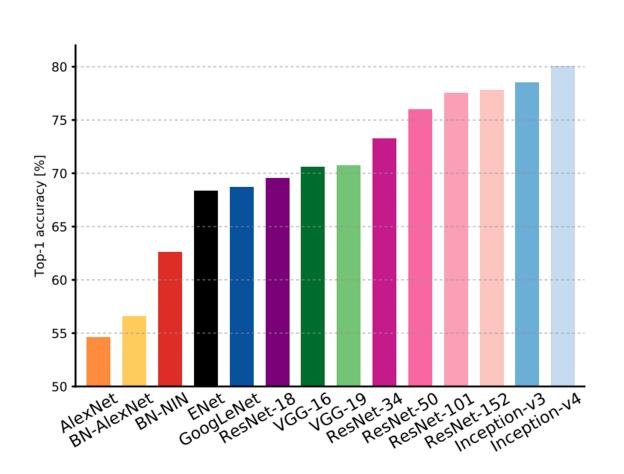
VGG: Highest memory, most operations

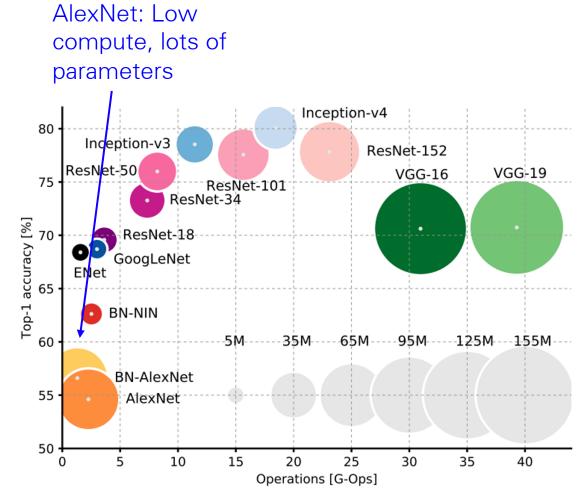




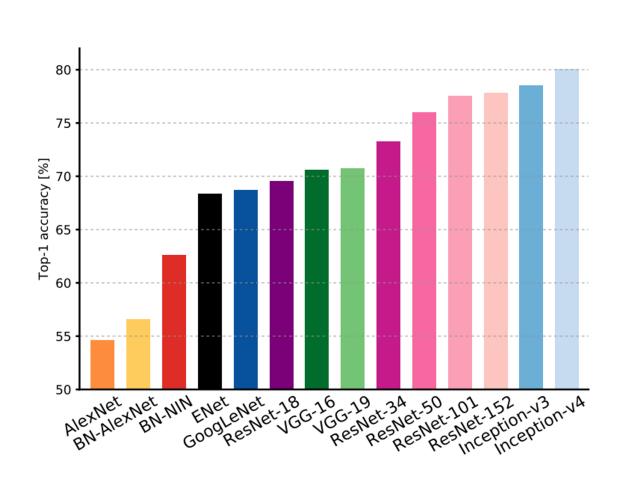


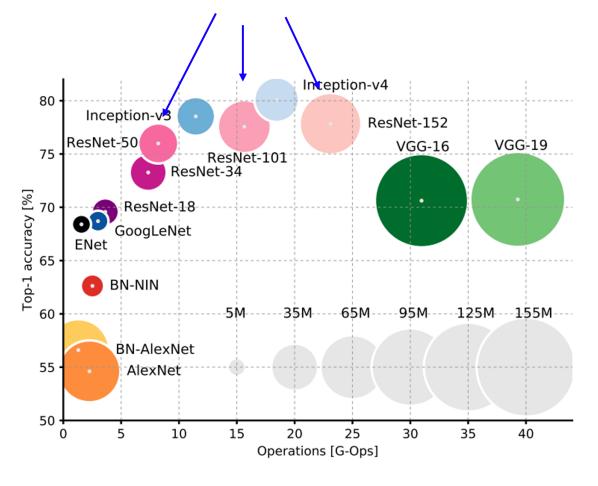




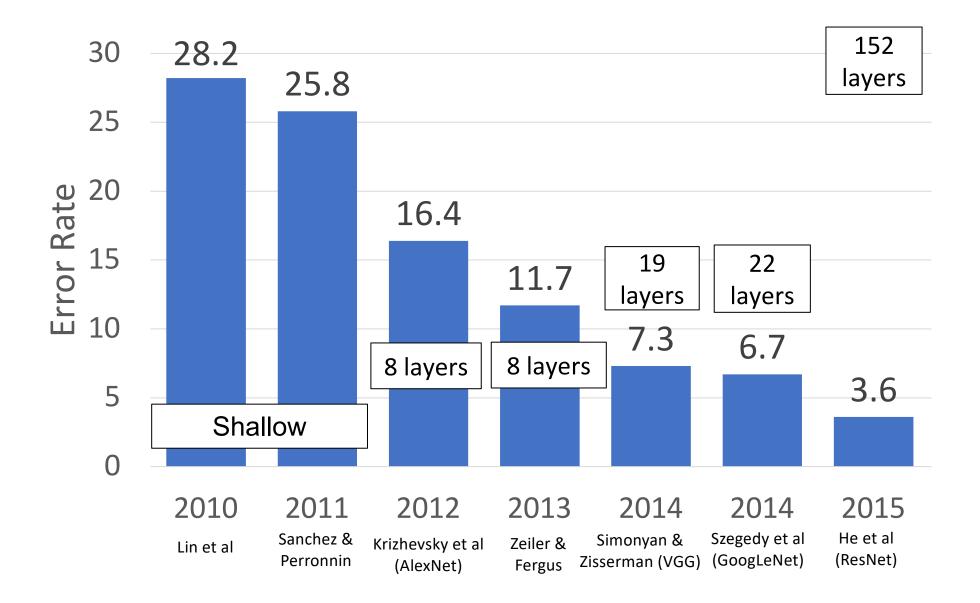


ResNet: Simple design, moderate efficiency, high accuracy





ImageNet Classification Challenge

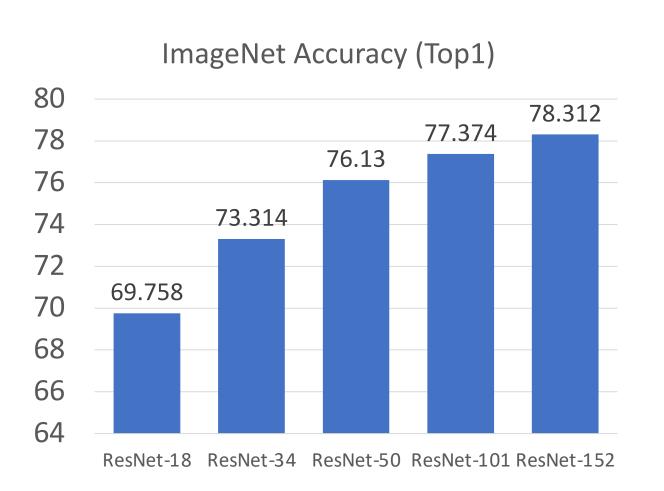


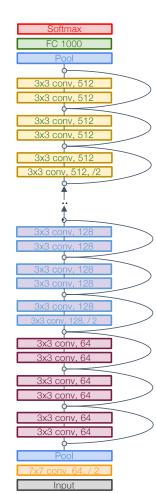
Today: More recent CNN architectures

Post-ResNet Architectures

ResNet made it possible to increase accuracy with larger, deeper models

Many followup architectures emphasize efficiency: can we improve accuracy while controlling for model "complexity"?





Measures of Model Complexity

Parameters: How many learnable parameters does the model have?

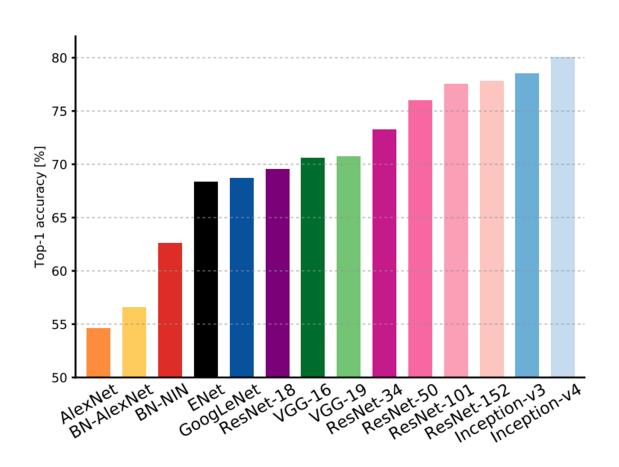
Floating Point Operations (FLOPs): How many arithmetic operations does it take to compute the forward pass of the model?

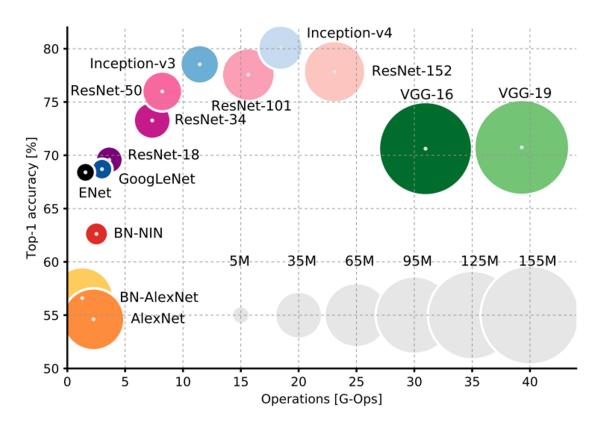
Watch out, lots of subtlety here:

- Many papers only count operations in conv layers (ignore ReLU, pooling, BatchNorm).

 Most papers use "1 FLOP" = "1 multiply and 1 addition" so dot product of two N-dim vectors takes N FLOPs; some papers say MADD or MACC instead of FLOP
- Other sources (e.g. NVIDIA marketing material) count "1 multiply and one addition" = 2 FLOPs, so dot product of two N-dim vectors takes 2N FLOPs

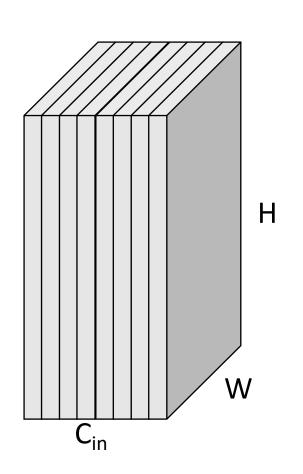
Network Runtime: How long does a forward pass of the model take on real hardware?

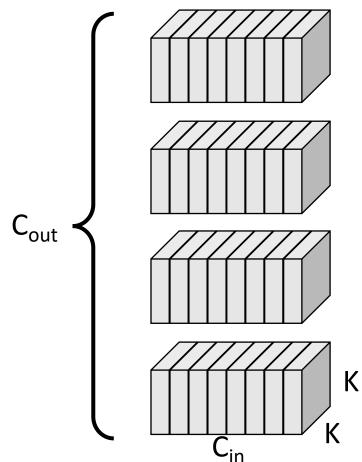


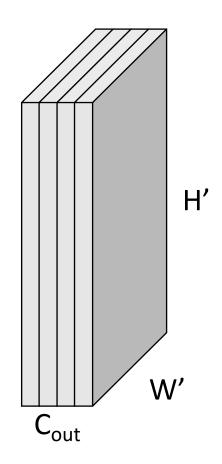


Key ingredient: Grouped / Separable convolution

Each filter has the same number of channels as the input







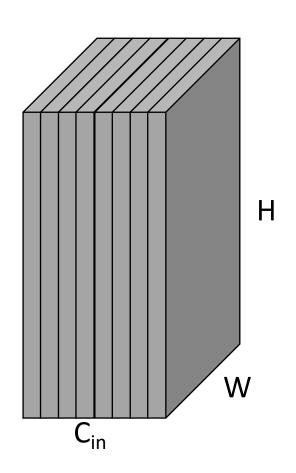
Input: $C_{in} \times H \times W$

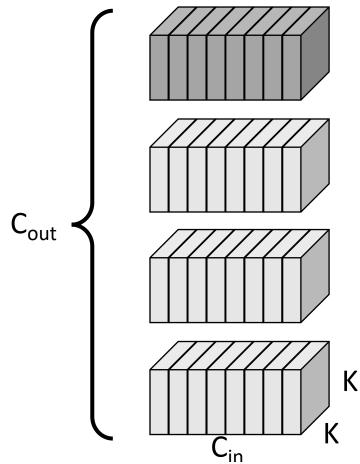
Weights: C_{out} x C_{in} x K x K

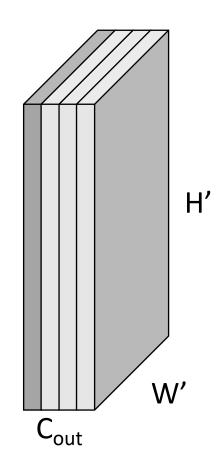
Output: C_{out} x H' x W'

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter







Input: $C_{in} \times H \times W$

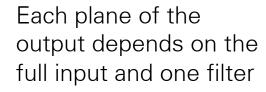
Weights: C_{out} x C_{in} x K x K

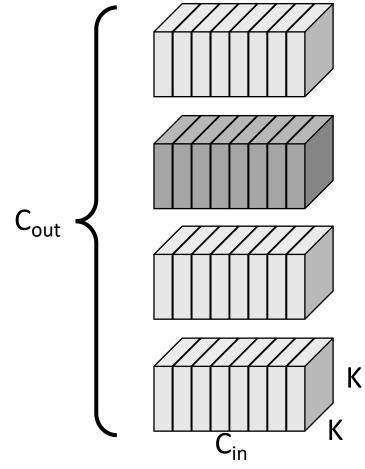
Output: C_{out} x H' x W'

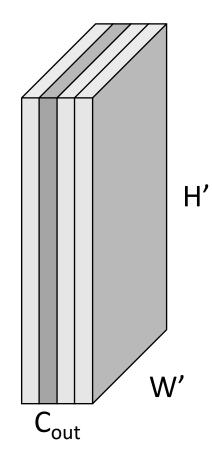
H

W

Each filter has the same number of channels as the input







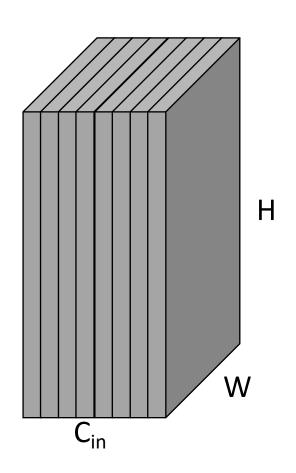
Input: $C_{in} \times H \times W$

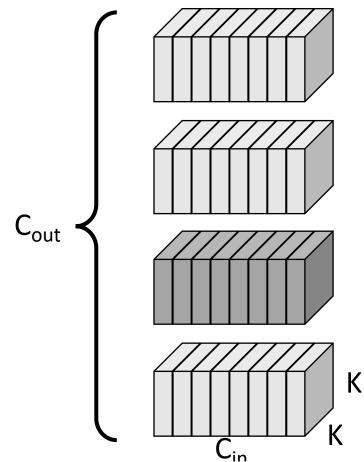
Weights: C_{out} x C_{in} x K x K

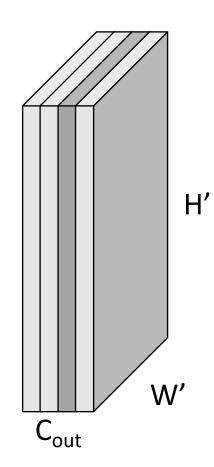
Output: C_{out} x H' x W'

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter







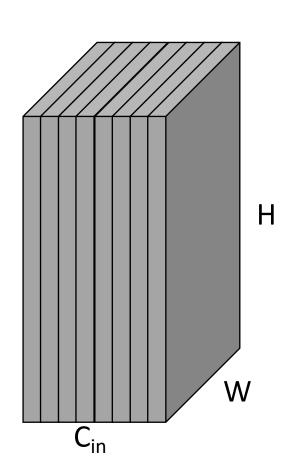
Input: $C_{in} \times H \times W$

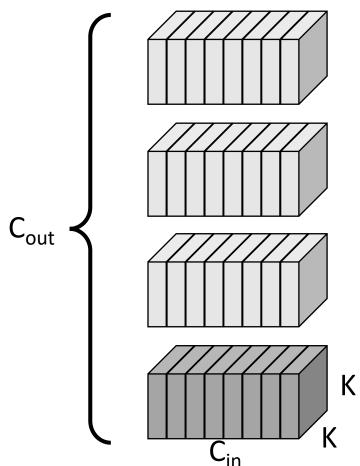
Weights: C_{out} x C_{in} x K x K

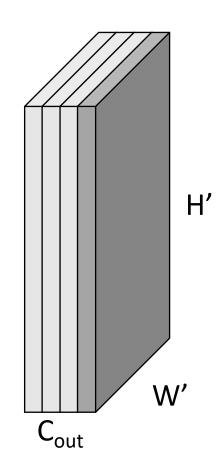
Output: C_{out} x H' x W'

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter



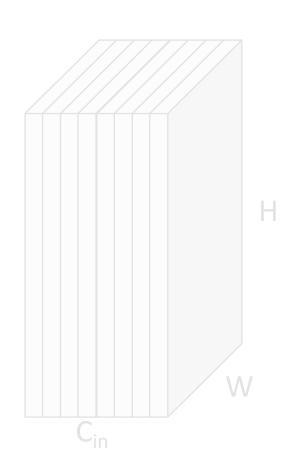


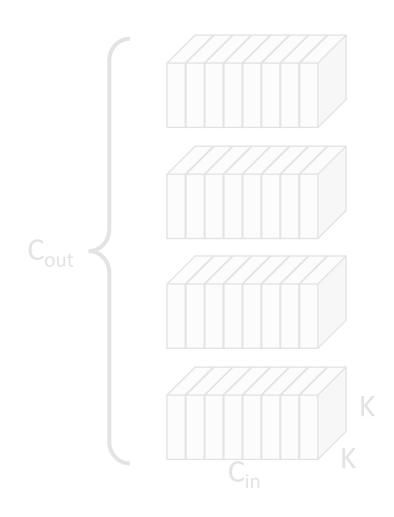


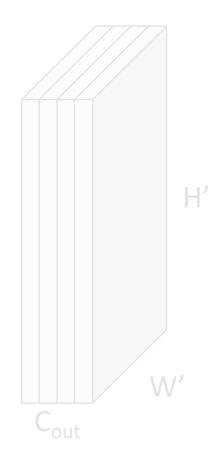
Input: $C_{in} \times H \times W$

Weights: C_{out} x C_{in} x K x K

Output: C_{out} x H' x W'





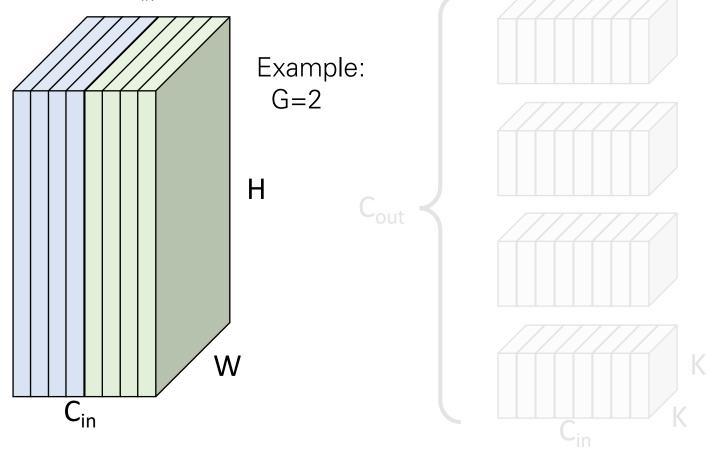


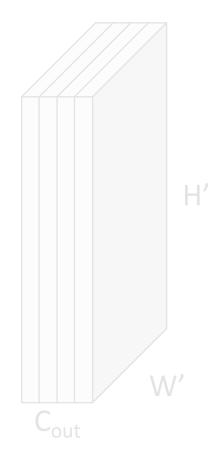
Input: $C_{in} \times H \times W$

Weights: C_{out} x C_{in} x K x K

Output: C_{out} x H' x W'

Divide channels of input into G groups with (C_{in}/G) channels each





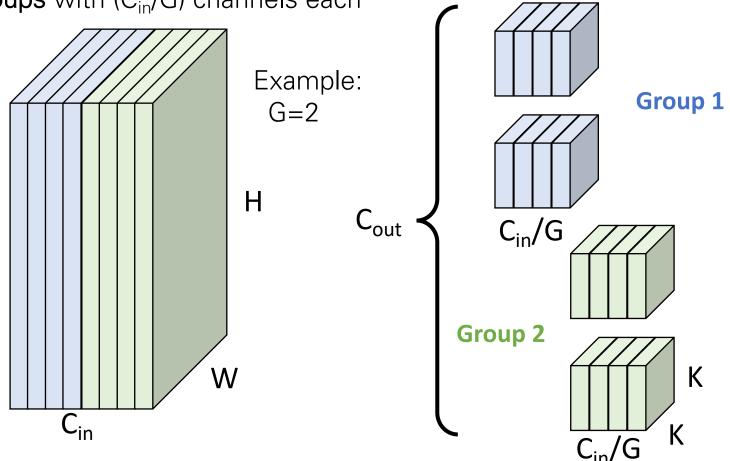
Input: $C_{in} \times H \times W$

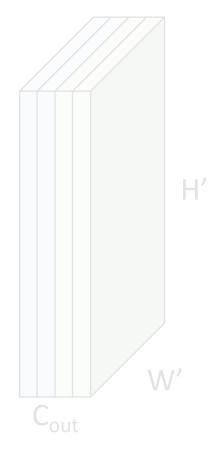
Weights: C_{out} x C_{in} x K x K

Output: $C_{out} \times H' \times W'$

Divide filters into G groups; each group looks at a subset of input channels

Divide channels of input into G groups with (C_{in}/G) channels each



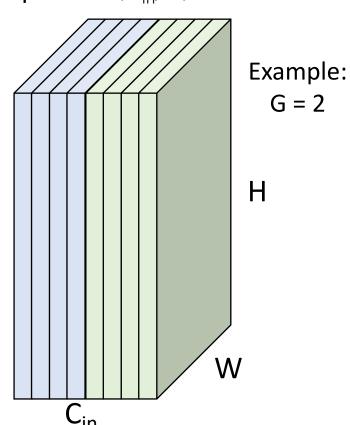


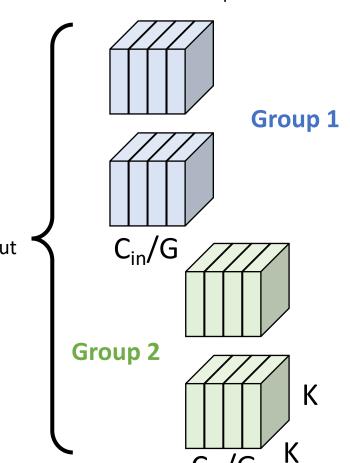
Input: $C_{in} \times H \times W$

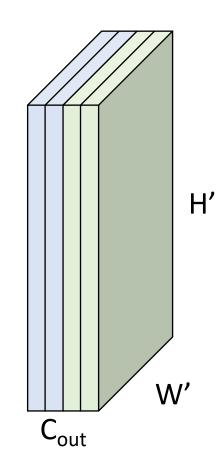
Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a subset of the input channels

Divide channels of input into G groups with (C_{in}/G) channels each

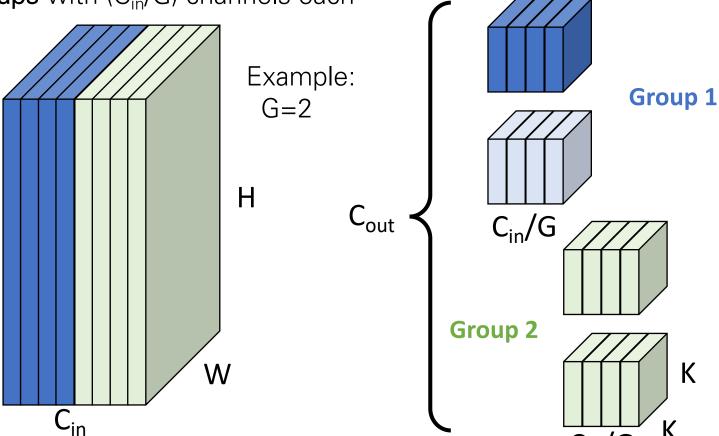






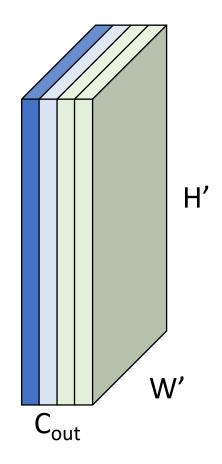
Input: $C_{in} \times H \times W$

Divide channels of input into G groups with (C_{in}/G) channels each



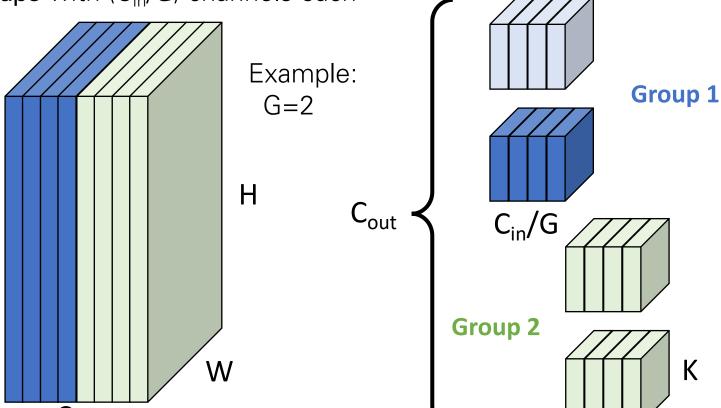
Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a **subset** of the input channels



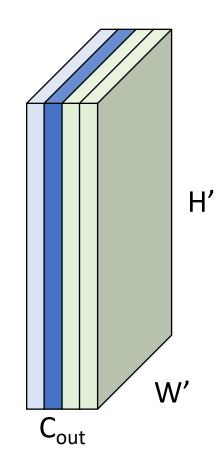
Input: $C_{in} \times H \times W$

Divide channels of input into G groups with (C_{in}/G) channels each



Divide filters into G groups; each group looks at a **subset** of input channels

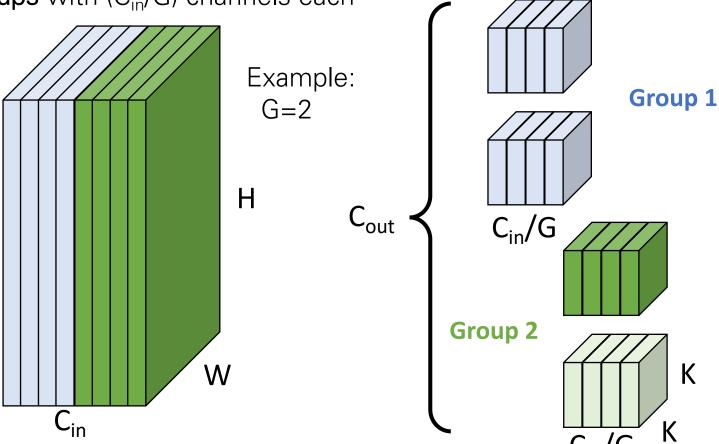
Each plane of the output depends on one filter and a **subset** of the input channels



Input: $C_{in} \times H \times W$

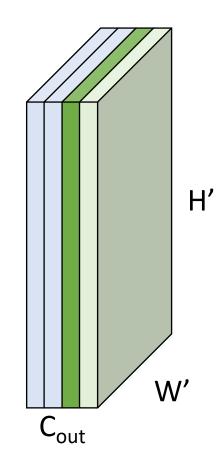
Weights: C_{out} x (C_{in}/G) x K x K Output: C_{out} x H' x W'

Divide channels of input into G groups with (C_{in}/G) channels each



Divide filters into G groups; each group looks at a **subset** of input channels

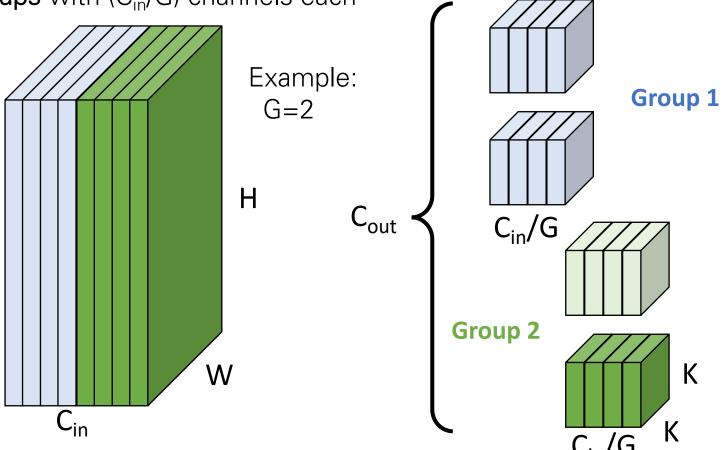
Each plane of the output depends on one filter and a **subset** of the input channels



Input: $C_{in} \times H \times W$

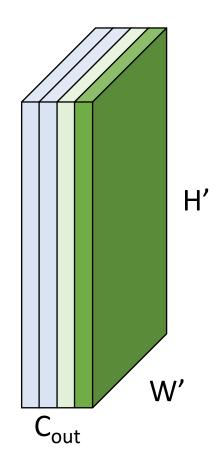
Weights: C_{out} x (C_{in}/G) x K x K Output: C_{out} x H' x W'

Divide channels of input into G groups with (C_{in}/G) channels each



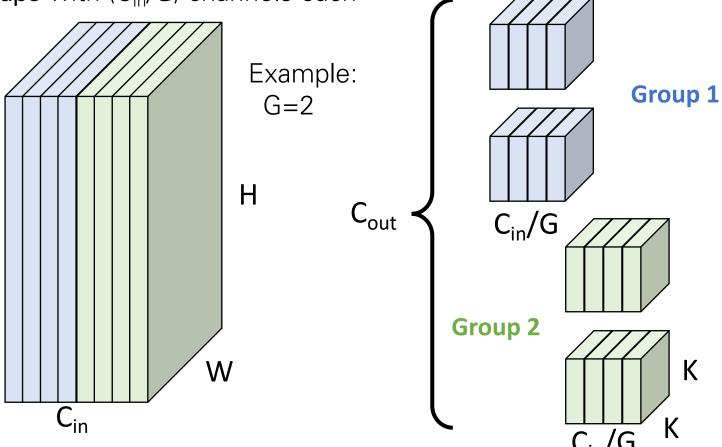
Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a **subset** of the input channels



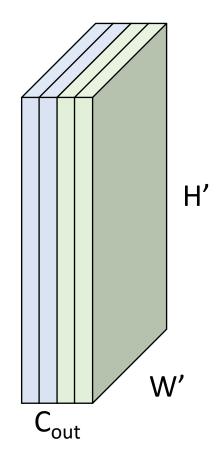
Input: $C_{in} \times H \times W$

Divide channels of input into G groups with (C_{in}/G) channels each



Divide filters into G groups; each group looks at a **subset** of input channels

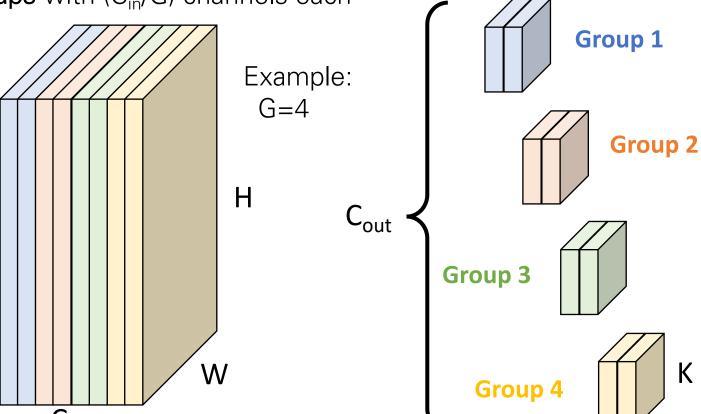
Each plane of the output depends on one filter and a **subset** of the input channels



Input: $C_{in} \times H \times W$

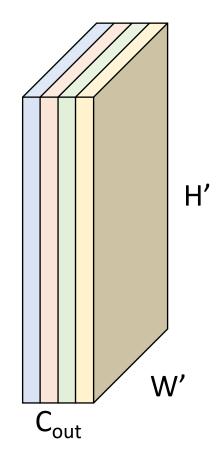
Weights: C_{out} x (C_{in}/G) x K x K Output: C_{out} x H' x W'

Divide channels of input into G groups with (C_{in}/G) channels each



Divide filters into G groups; each group looks at a **subset** of input channels

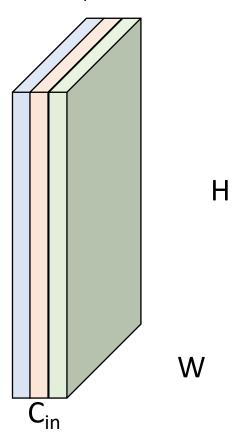
Each plane of the output depends on one filter and a **subset** of the input channels



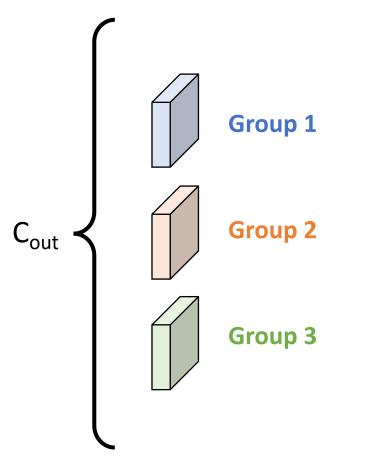
Input: $C_{in} \times H \times W$

Special Case: Depthwise Convolution

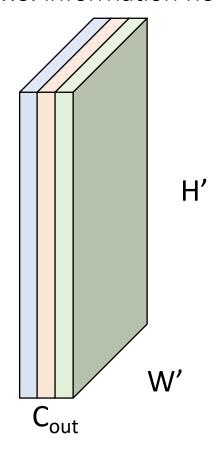
Number of groups equals number of input channels



Common to also set $C_{out} = G$



Output only mixes **spatial** information from input; **channel** information not mixed



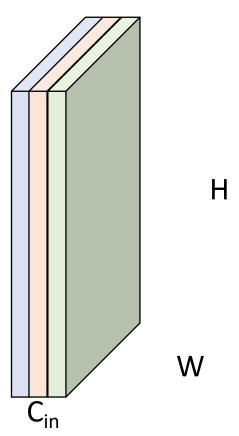
Input: $C_{in} \times H \times W$

Weights: C_{out} x 1 x K x K

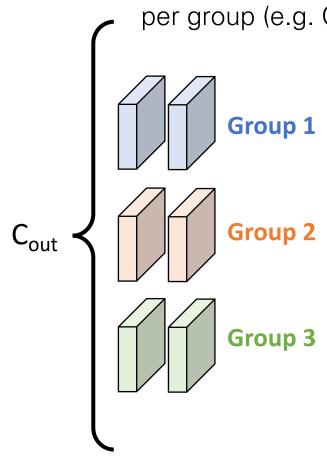
Output: C_{out} x H' x W'

Special Case: Depthwise Convolution

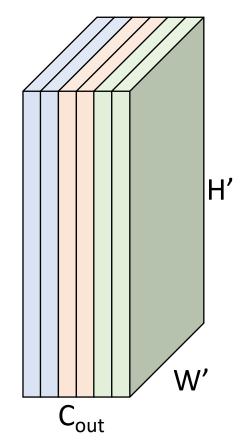
Number of groups equals number of input channels



Can still have multiple filters per group (e.g. $C_{out} = 2C_{in}$)



Output only mixes **spatial** information from input; **channel** information not mixed



Input: $C_{in} \times H \times W$

Weights: C_{out} x 1 x K x K

Output: C_{out} x H' x W'

Grouped Convolution vs Standard Convolution

Grouped Convolution (G groups):

G parallel conv layers; each "sees" C_{in}/G input channels and produces C_{out}/G output channels

Input: $C_{in} \times H \times W$

Split to G x [(C_{in} / G) x H x W] Weight:G x (C_{out} / G) x (C_{in} / G) x K x K G parallel convolutions

Output: $G \times [(C_{out} / G) \times H' \times W']$ Concat to $C_{out} \times H' \times W'$

FLOPs: CoutCinK2HW/G

Standard Convolution (groups=1)

Input: $C_{in} \times H \times W$

Weight: C_{out} x C_{in} x K x K

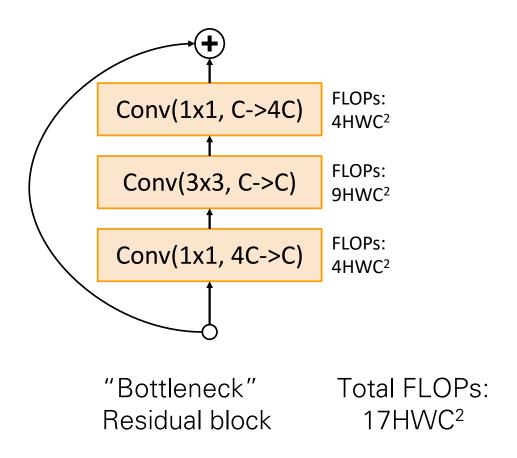
Output: C_{out} x H' x W'

FLOPs: CoutCinK2HW

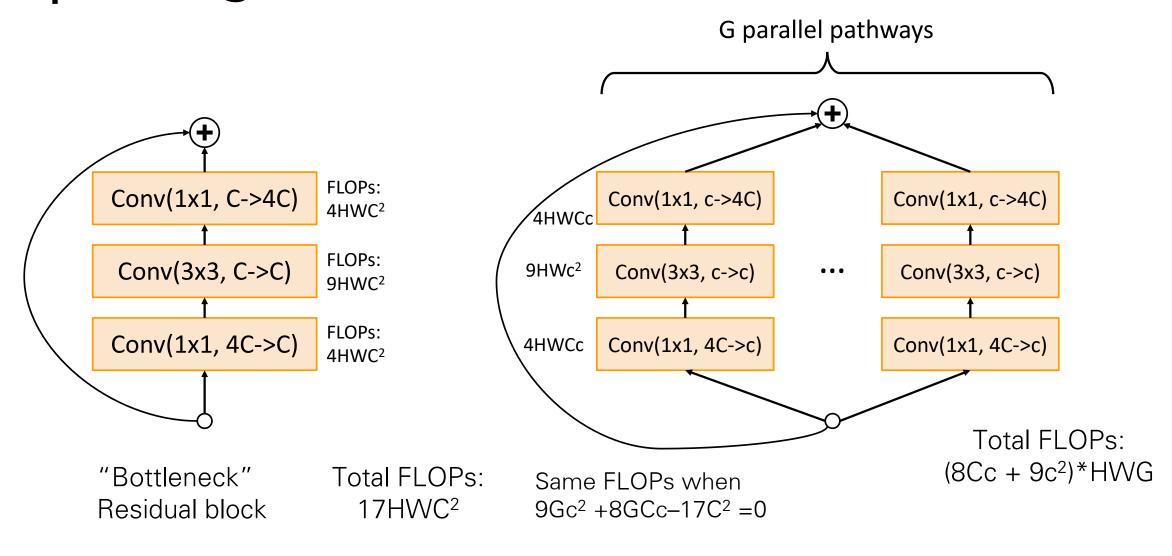
All convolutional kernels touch all C_{in} channels of the input

Using G groups reduces FLOPs by a factor of G!

Improving ResNets

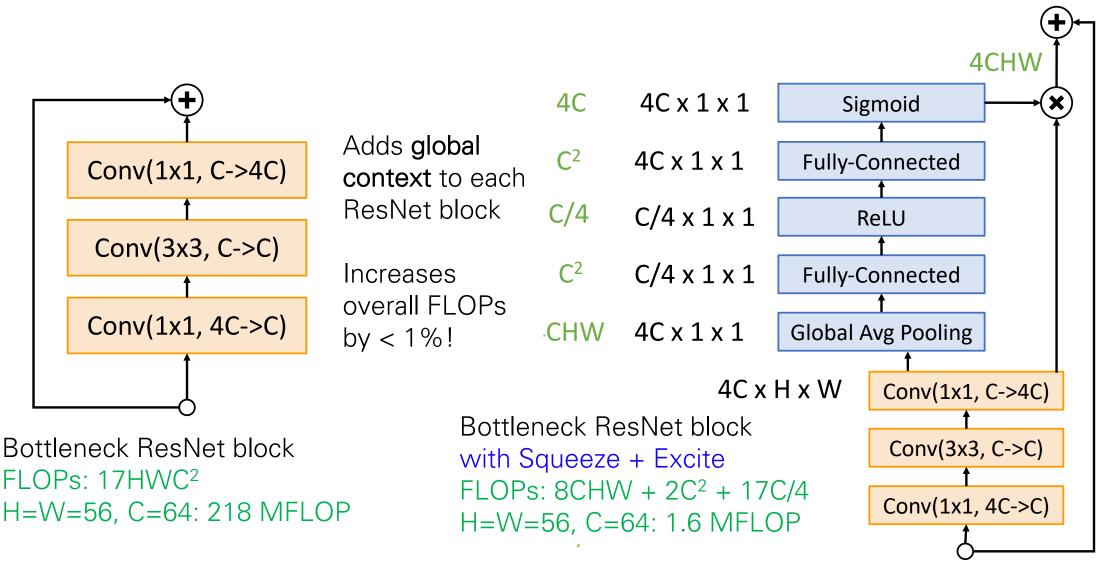


Improving ResNets: ResNeXt

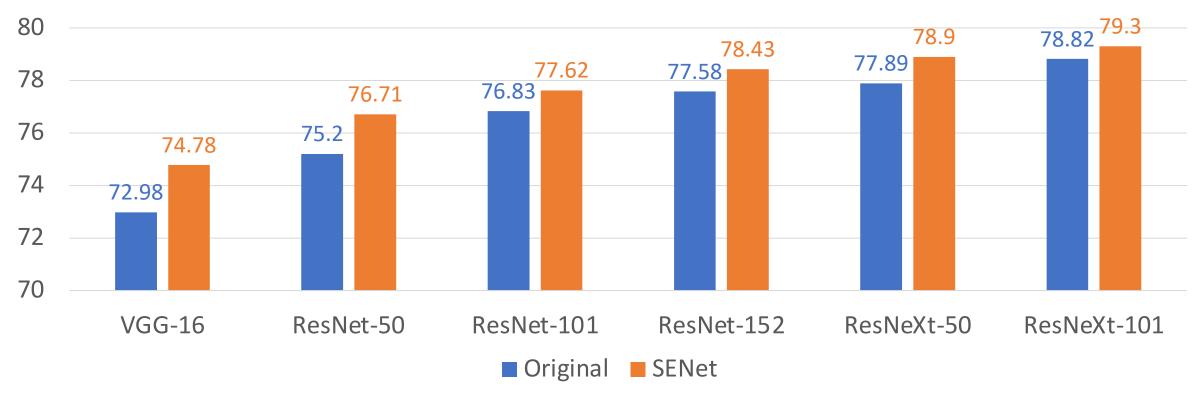


Example: C=64, G=4, c=24; C=64, G=32, c=4

Squeeze-and-Excitation Networks (SENet)



Squeeze-and-Excitation Networks (SENet)



Add SE to any architecture, enjoy 1-2% boost in accuracy

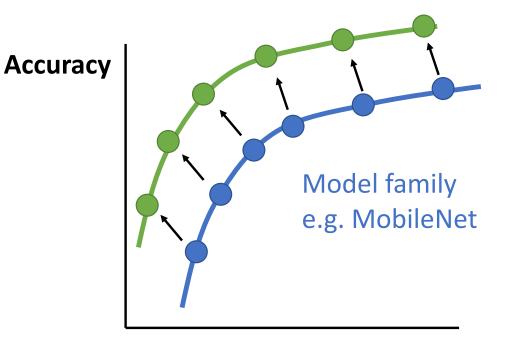
Recall: Convolution Layer

New model family e.g. MobileNetV2

Instead of pushing for the largest network with biggest accuracy, consider tiny networks and accuracy / complexity tradeoff

Compare families of models:

One family is better than another if it moves the whole curve up and to the left

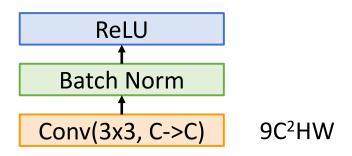


Model Complexity
(FLOPs, #params, runtime speed)

MobileNets: Tiny Networks (For Mobile Devices)

Standard Convolution Block

Total cost: 9C²HW

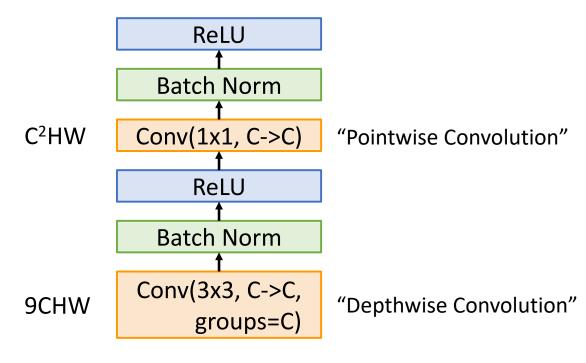


Speedup =
$$9C2/(9C+C^2)$$

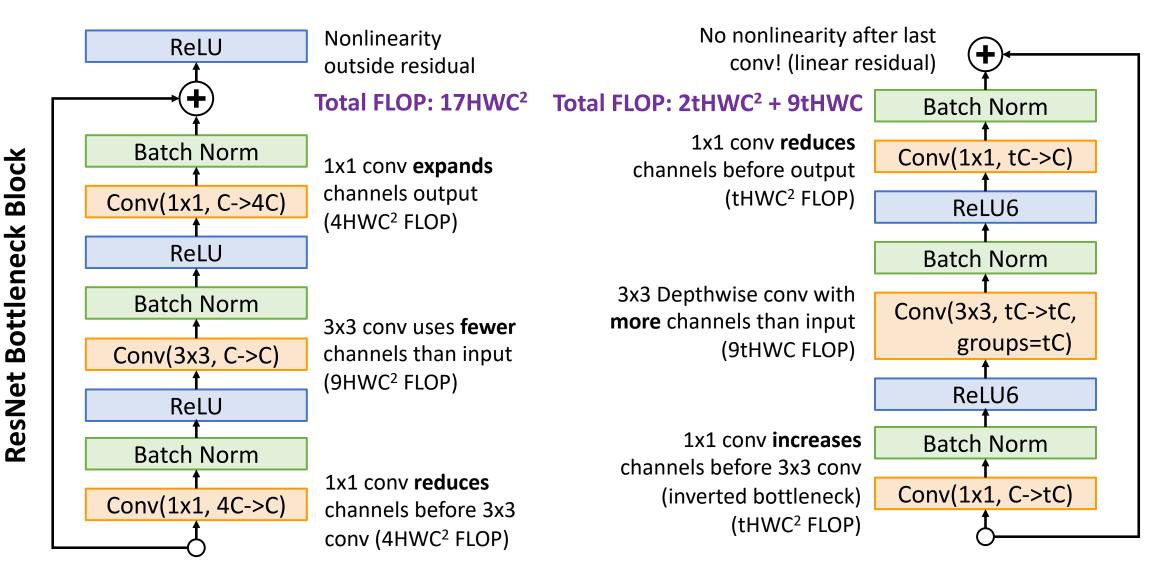
= $9C/(9+C)$
=> 9 (as C->inf)

Depthwise Separable Convolution

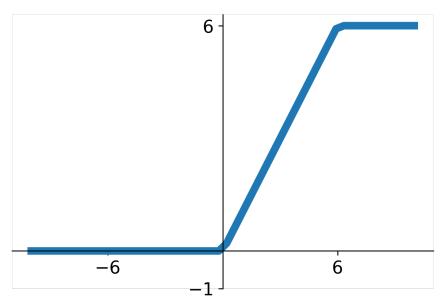
Total cost: $(9C + C^2)HW$



MobileNetV2: Inverted Bottleneck, Linear Residual

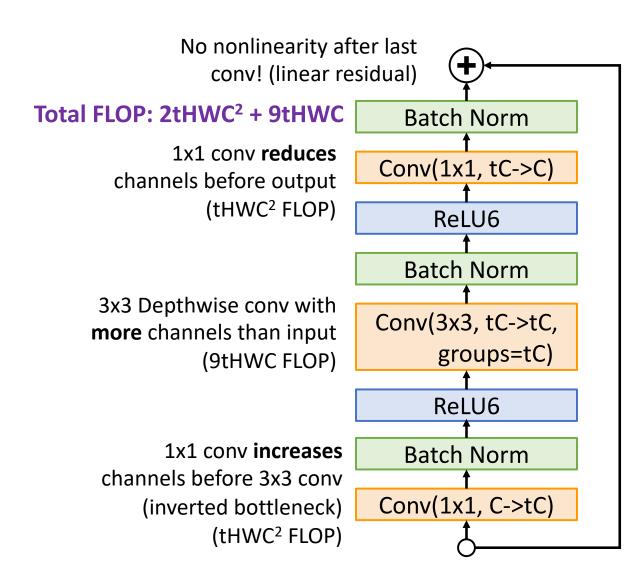


MobileNetV2: Inverted Bottleneck, Linear Residual

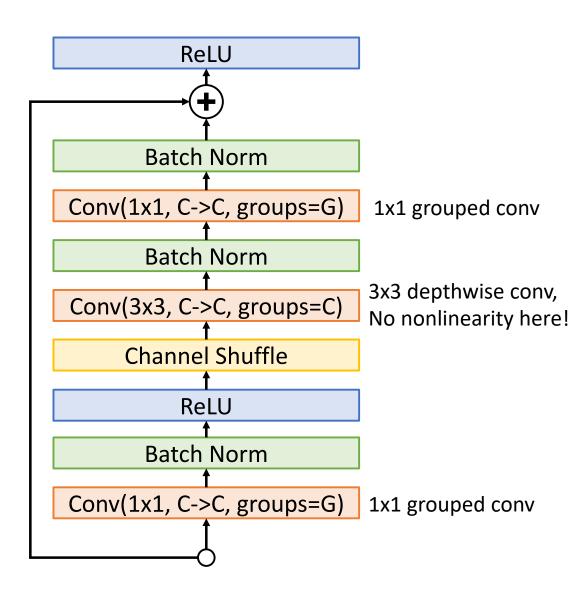


$$ReLU6(x) = \begin{cases} 0 & if \ x \le 0 \\ x & if \ 0 < x < 6 \\ 6 & if \ x \ge 6 \end{cases}$$

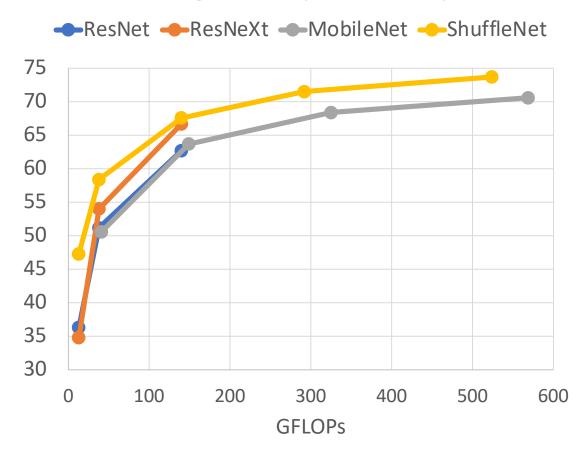
Keeps activations in reasonable range when running inference in low precision



ShuffleNet



ImageNet Top1 Accuracy



CNN Architectures Summary

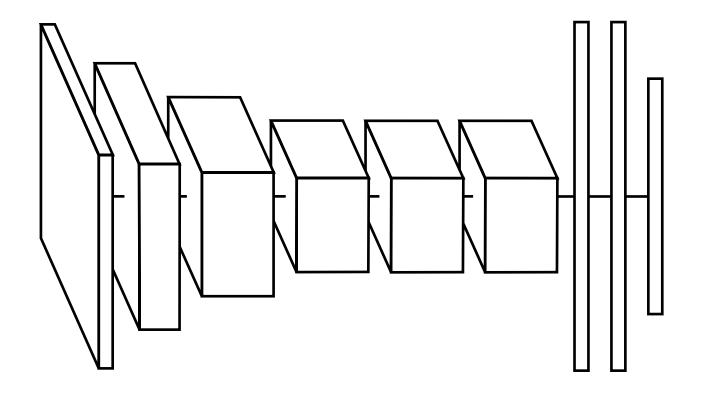
- Early work (AlexNet->VGG->ResNet):bigger networks work better
- New focus on efficiency: Improve accuracy, control for network complexity
- Grouped and Depthwise Convolution appear in many modern architectures
- Squeeze-and-Excite adds accuracy boost to just about any architecture while only adding a tiny amount of FLOPs and runtime
- Tiny networks for mobile devices (MobileNet, ShuffleNet)
- Neural Architecture Search(NAS) promised to automate architecture design
- More recent work has moved towards careful improvements to ResNet-like architectures
- ResNet and ResNeXt are still surprisingly strong and popular architectures!

Transfer Learning with Convolutional Neural Networks

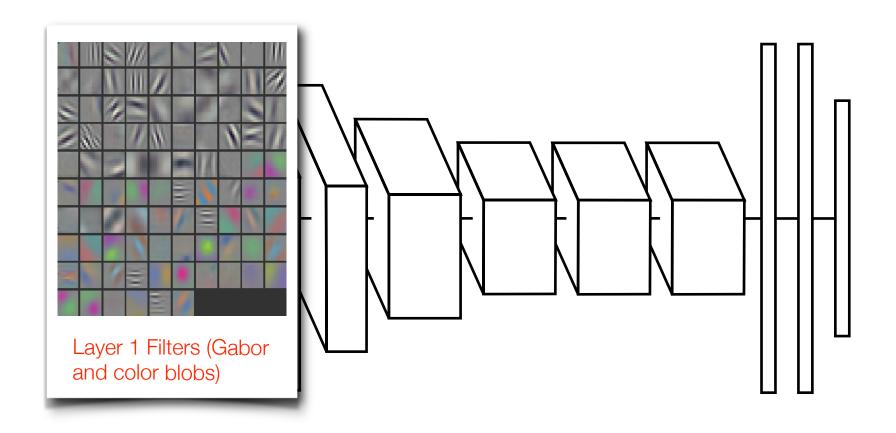
Beyond CNNs

- Do features extracted from the CNN generalize other tasks and datasets?
 - Donahue et al. (2013), Chatfield et al. (2014), Razavian et al. (2014), Yosinski et al. (2014), etc.
- CNN activations as deep features
- Finetuning CNNs

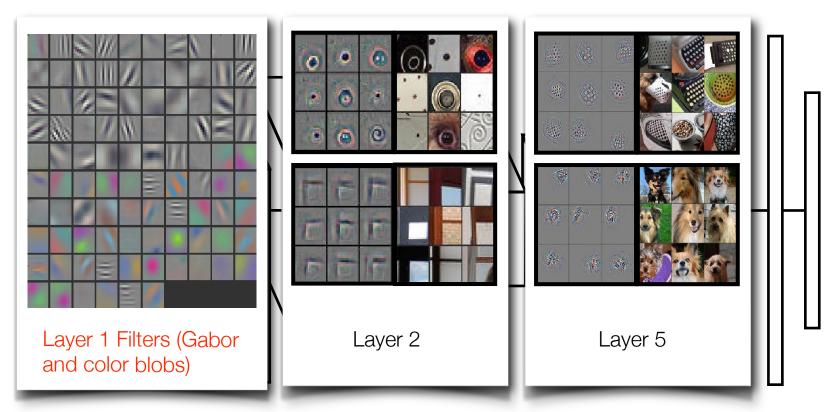
• CNNs discover effective representations. Why not to use them?



CNNs discover effective representations. Why not to use them?

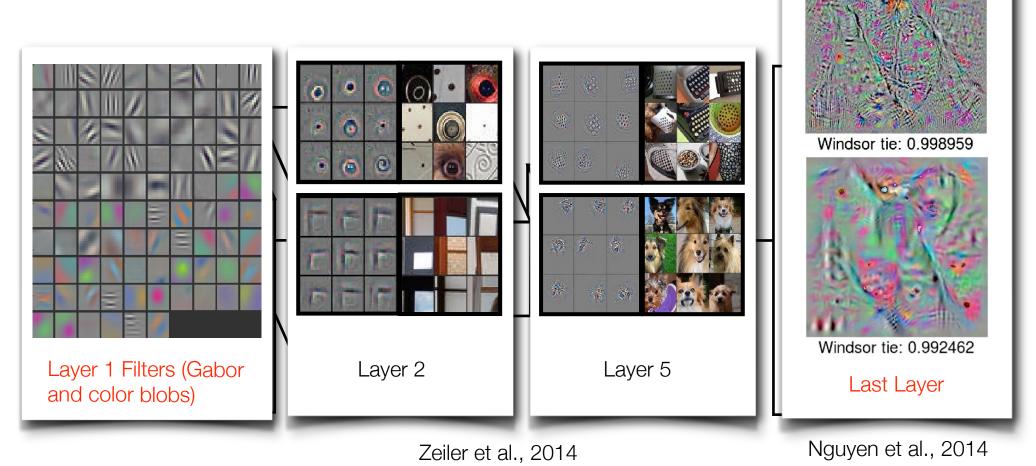


CNNs discover effective representations. Why not to use them?



Zeiler et al., 2014

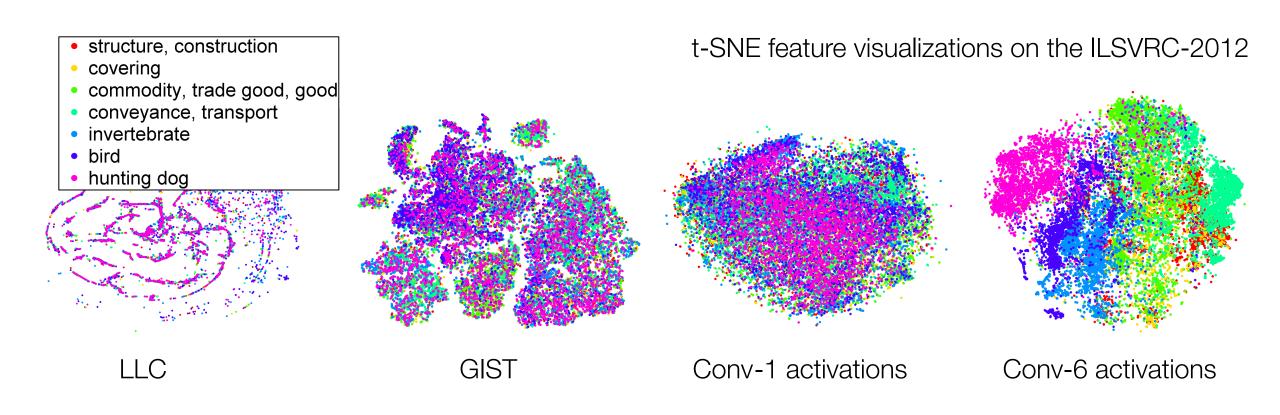
• CNNs discover effective representations. Why not



Slide credit: Jason Yosinski 126

CNNs as deep features

CNNs discover effective representations. Why not to use them?



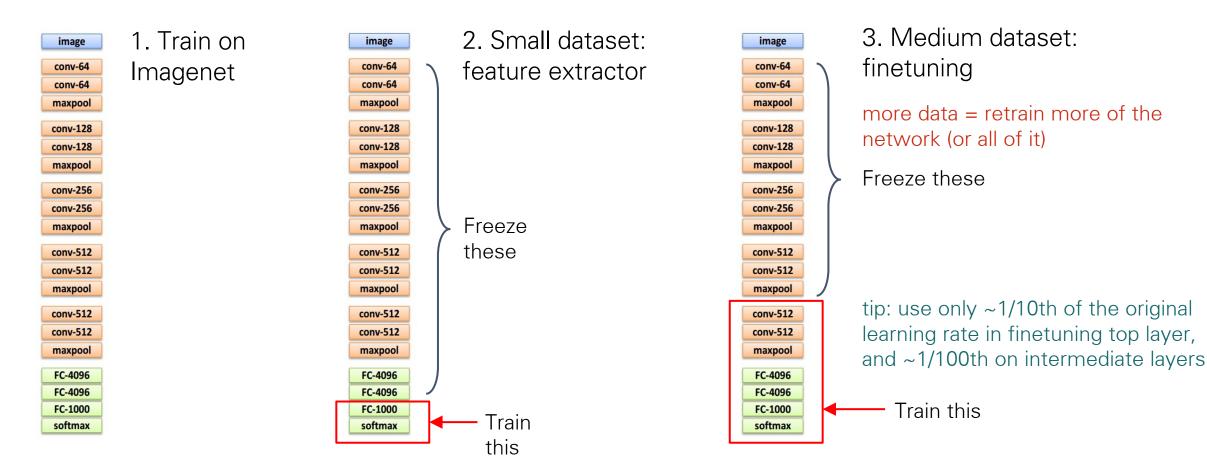
Transfer Learning with CNNs

 A CNN trained on a (large enough) dataset generalizes to other visual tasks

A. Joulin, L.J.P. van der Maaten, A. Jabri, and N. Vasilache Learning visual features from Large Weakly supervised Data. ECCV 2016

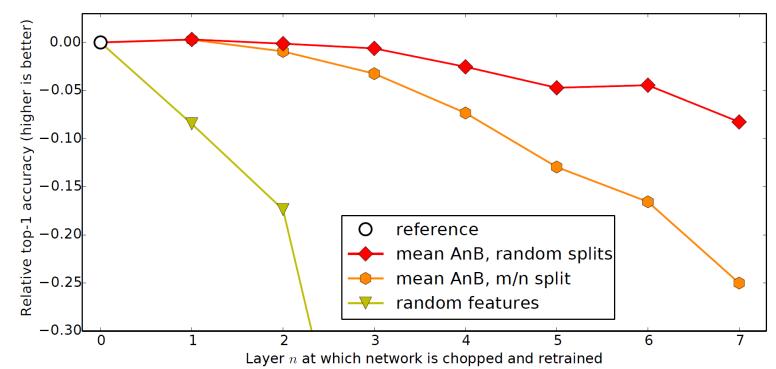
Transfer Learning with CNNs

- Keep layers 1-7 of our ImageNet-trained model fixed
- Train a new softmax classifier on top using the training images of the new dataset.



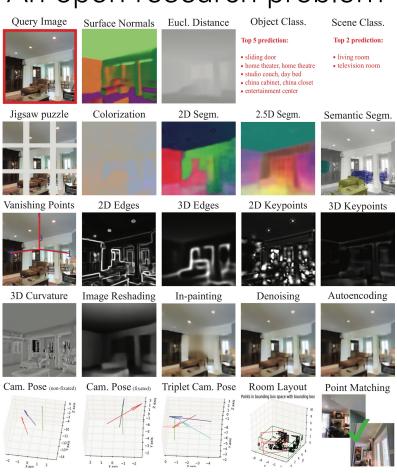
How transferable are features in CNN networks?

- Divide ImageNet into man-made objects A (449 classes) and natural objects B (551 classes)
- The transferability of features decreases as the distance between the base task and target task increases



How transferable are features in CNN networks?

An open research problem

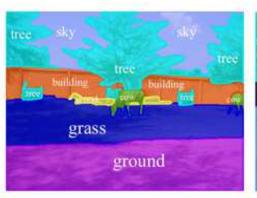


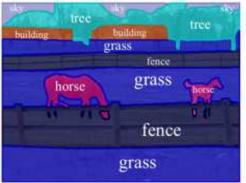


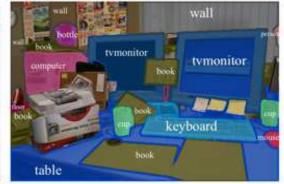
Semantic Segmentation

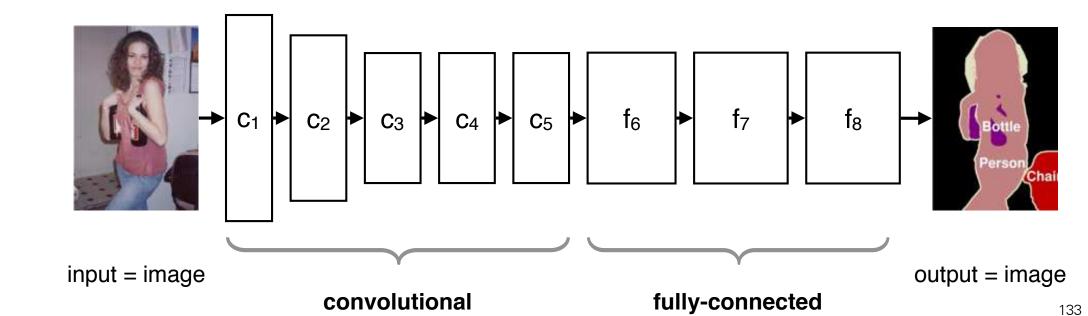
Semantic Image Segmentation

Label individual pixels



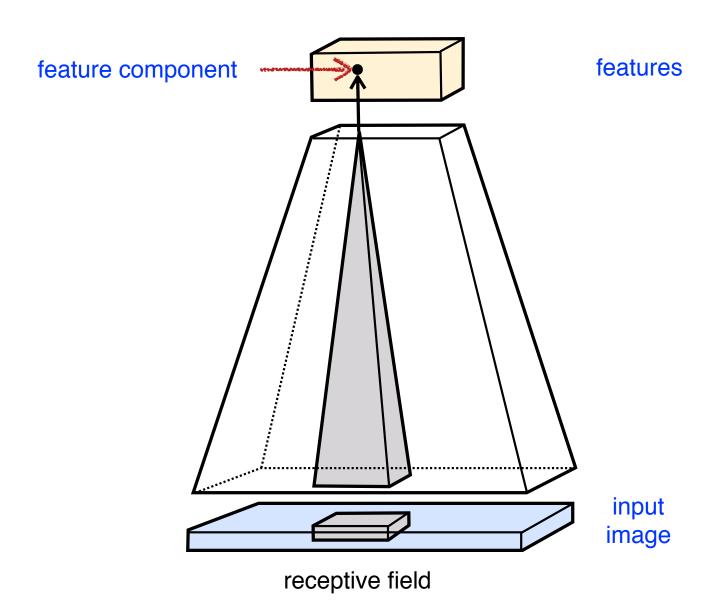






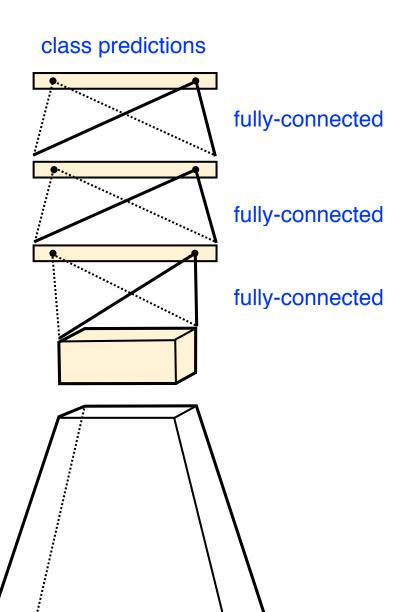
Convolutional Layers

Local receptive field



Fully Connected Layers

Global receptive field



Convolutional vs. Fully Connected

 Comparing the receptive fields

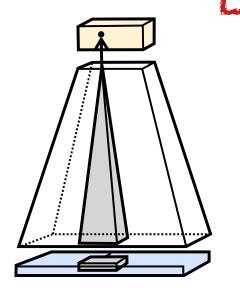
Downsampling filters

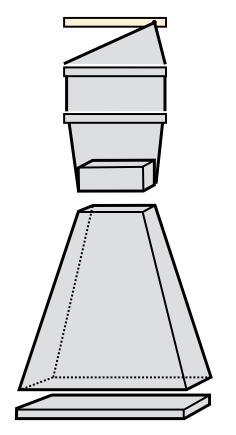
Responses are spatially selective, can be used to localize things.

Upsampling filters

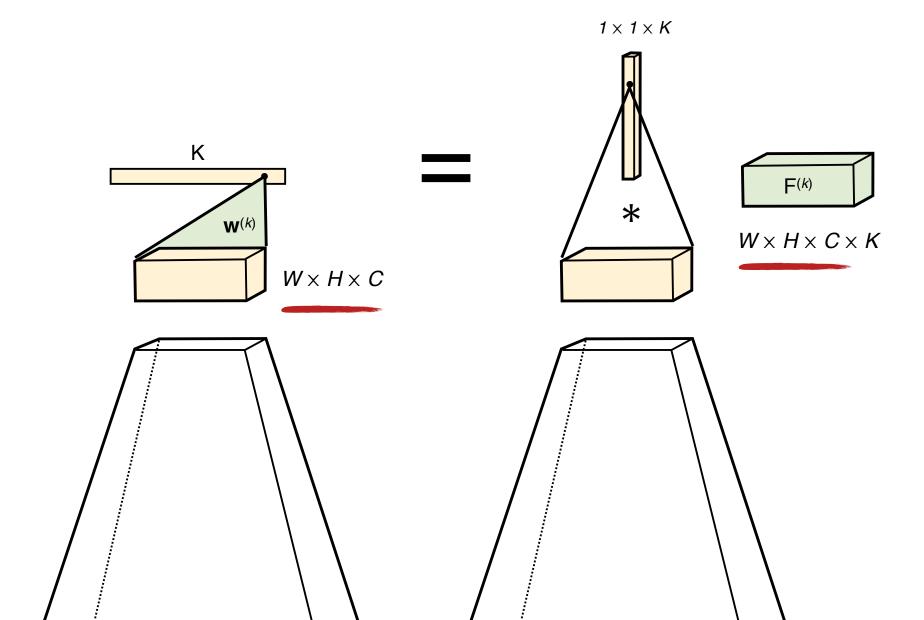
Responses are global, do not characterize well position

Which one is more useful for pixel level labelling?

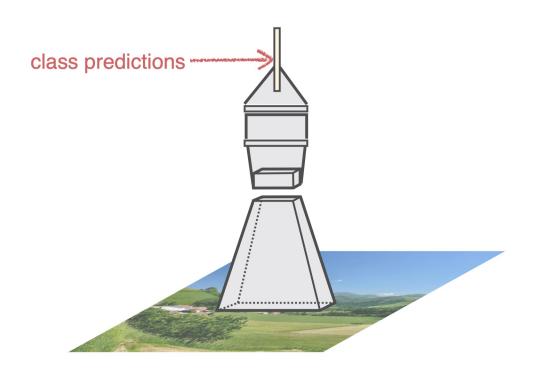




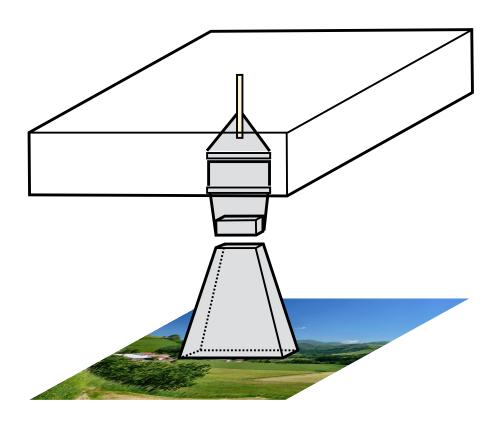
Fully-Connected Layer = Large Filter



Fully-Convolutional Neural Networks



Fully-Convolutional Neural Networks



Dense evaluation

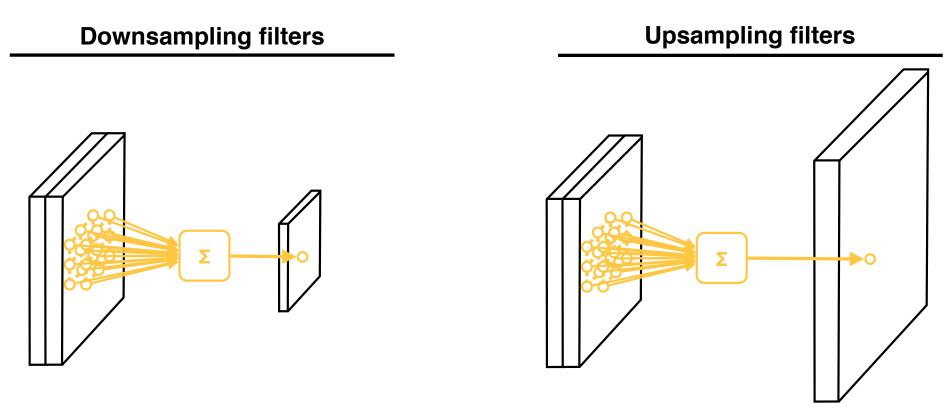
- Apply the whole network convolutional
- Estimates a vector of class probabilities at each pixel

Downsampling

- In practice most network downsample the data fast
- The output is very low resolution (e.g. 1/32 of original)

Upsampling The Resolution

Interpolating filter

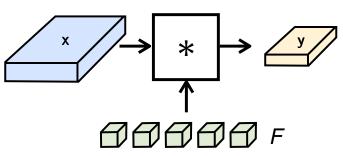


Upsampling filters allow to increase the resolution of the output Very useful to get full-resolution segmentation results

Deconvolution Layer

Or convolution transpose

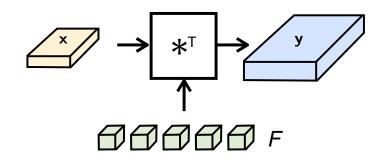
Convolution



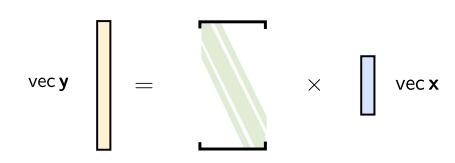
As matrix multiplication

Banded matrix equivalent to F

Convolution transpose



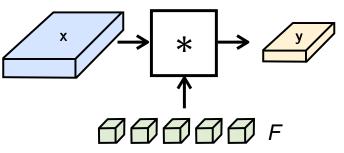
Transposed



Transposed matrix

Deconvolution Layer

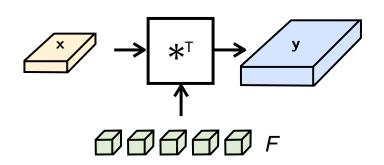
Or convolution transpose



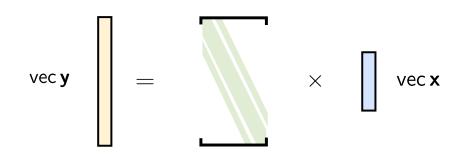
As matrix multiplication

Banded matrix equivalent to F

Convolution transpose



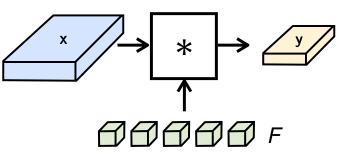
Transposed



Deconvolution Layer

Or convolution transpose

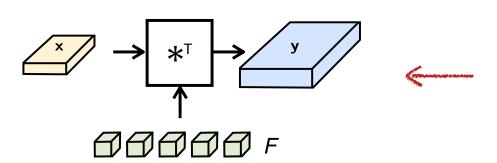
Convolution



As matrix multiplication

Banded matrix equivalent to F

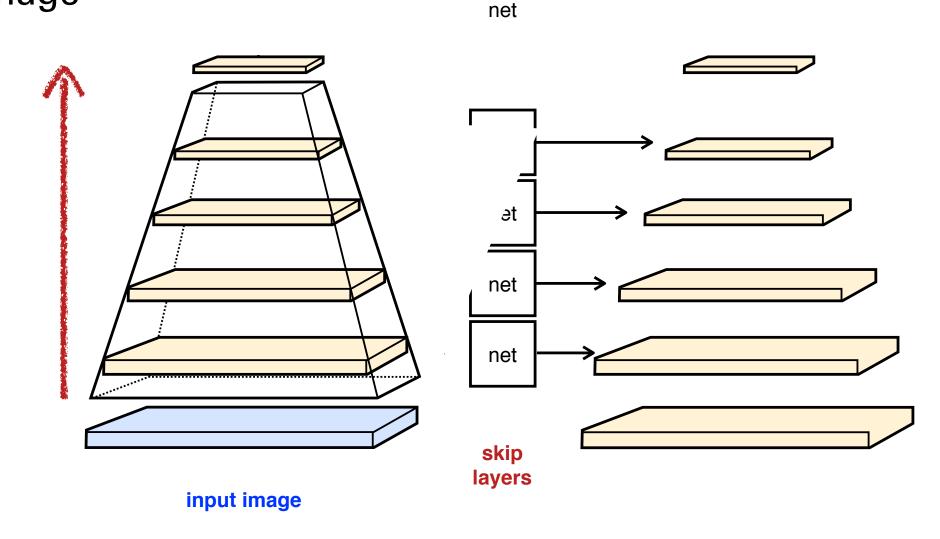
Convolution transpose



Transposed

U-Architectures

Image to image



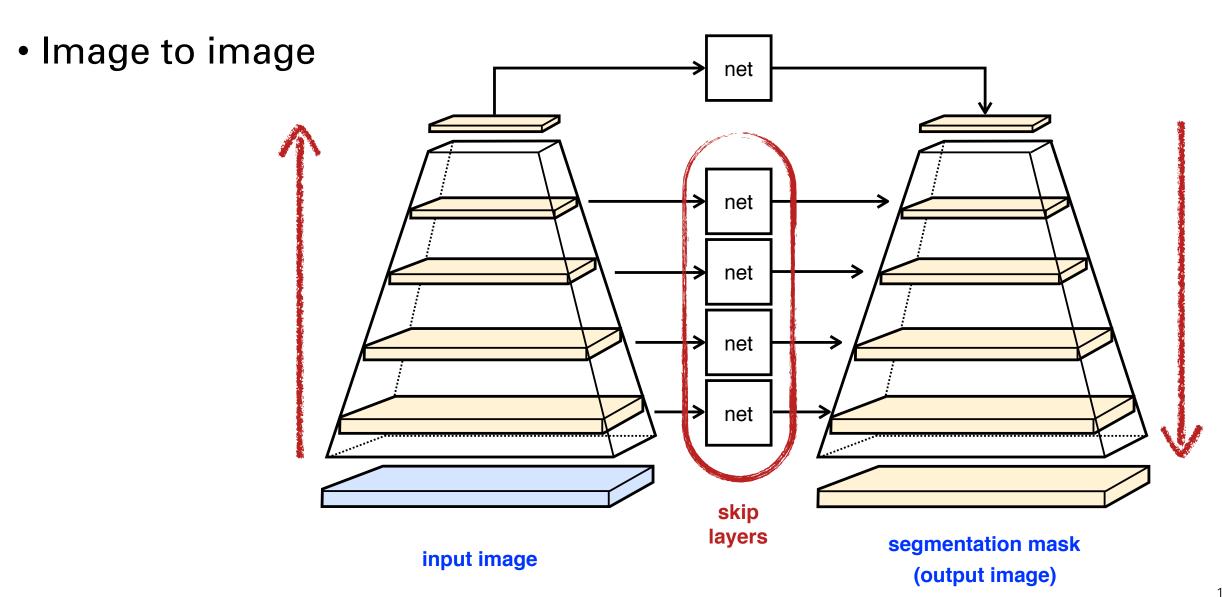
U-Architectures

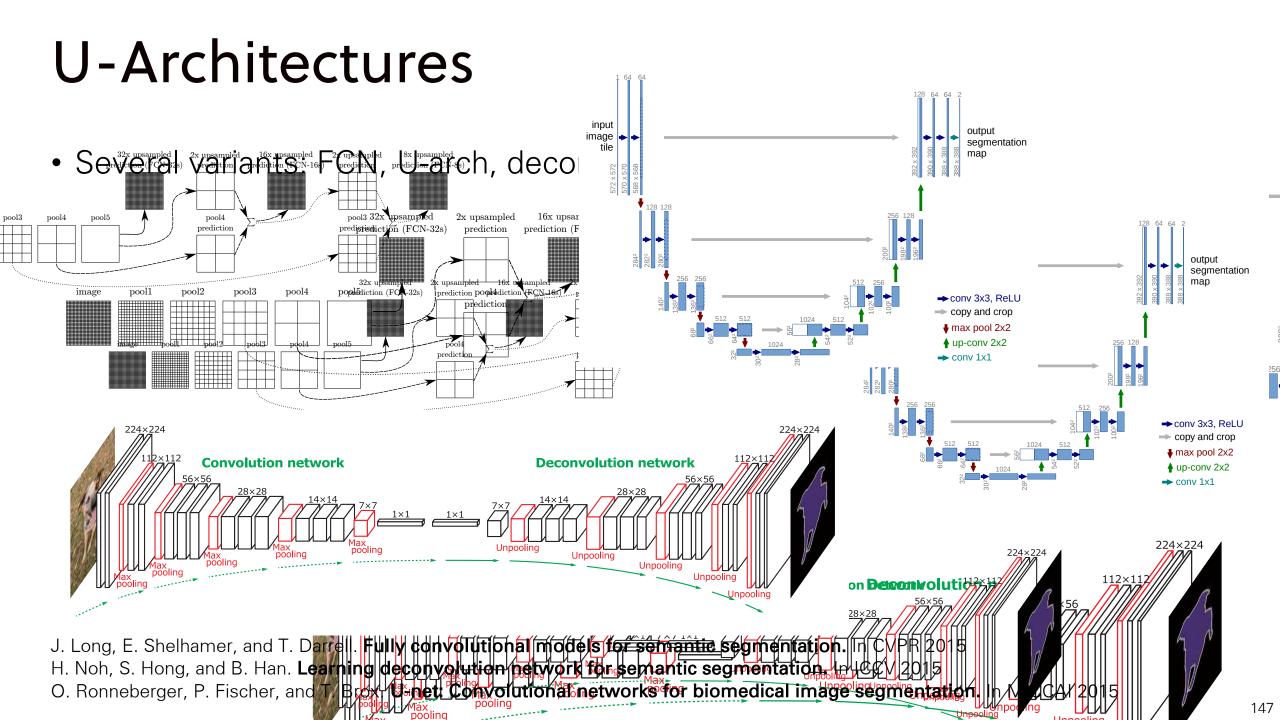
 Image to image net segmentation mask

input image

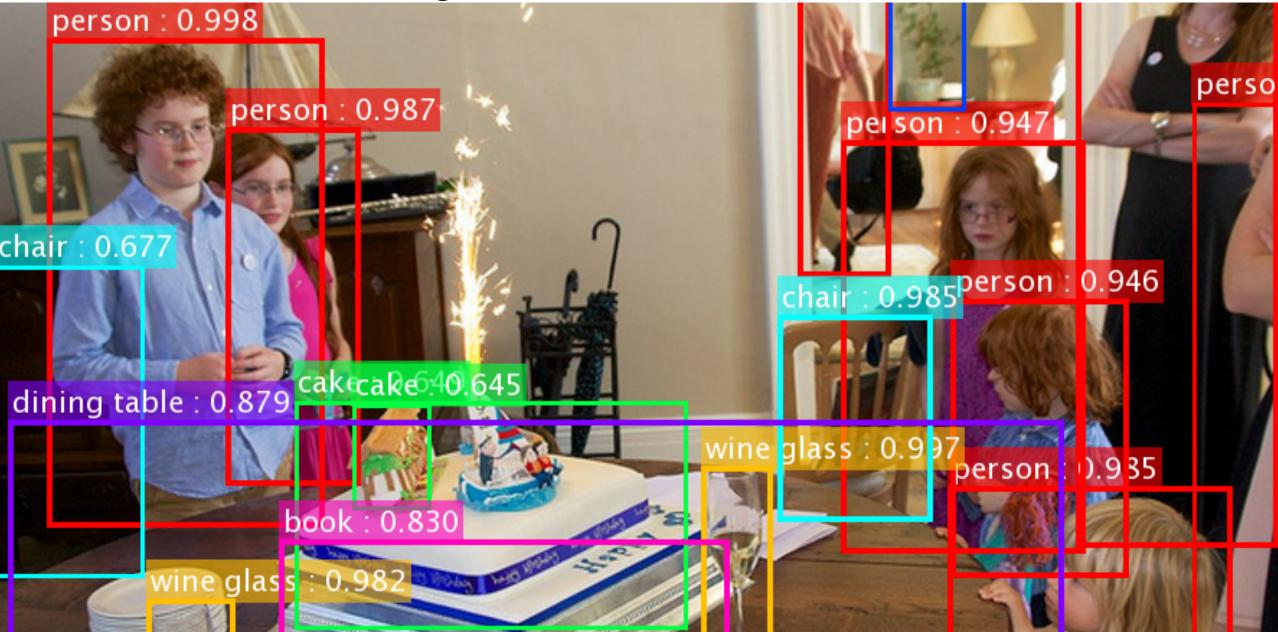
(output image)

U-Architectures





Object Detection



MS COCO Dataset Images

MS COCO Annotations

• 80 different categories

MS COCO

Dataset Images +

Annotations

- Area under a detector's precision-recall curve, averaged over...
 - Object categories
 - -True positive overlap requirement (IoU from 0.5 to 0.95; see below)

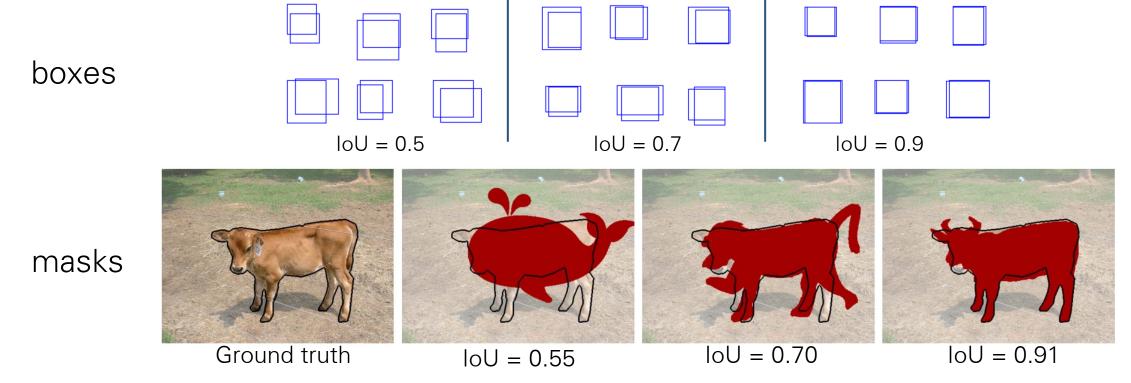
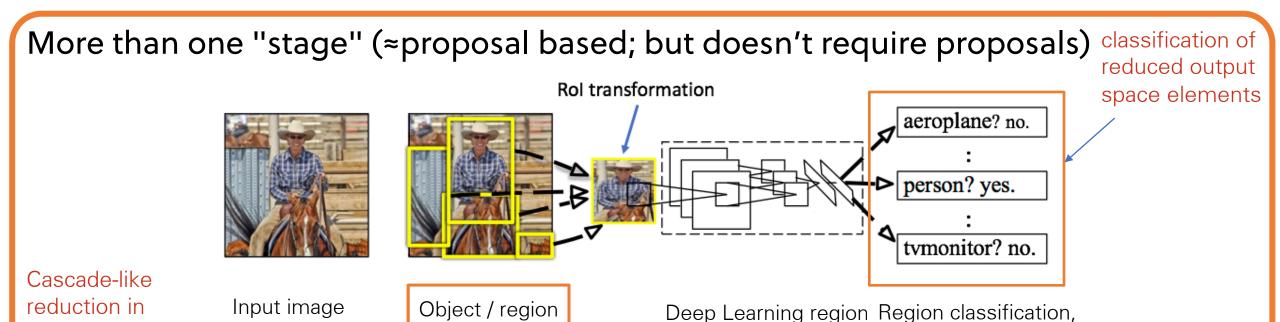


Figure credits: Dollár and Zitnick (top), Krähenbühl and Kulton (bottom)

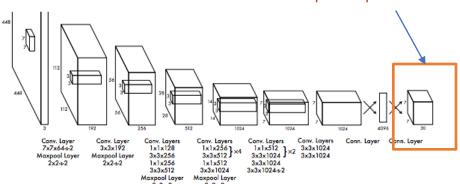


One stage

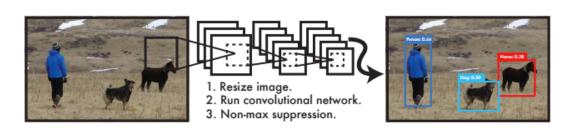
output space

Direct classification
Of all output space elements

proposals



Redmond et al. You Only Look Once:
Unified Real-time Object Detection. In CVPR 2016



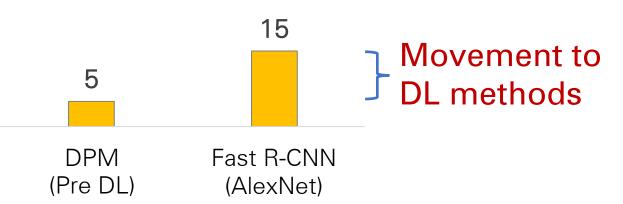
box regression

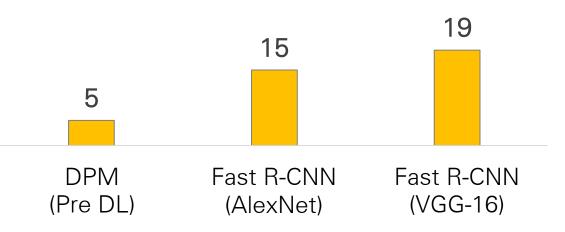
"You only look once»
"Single shot"

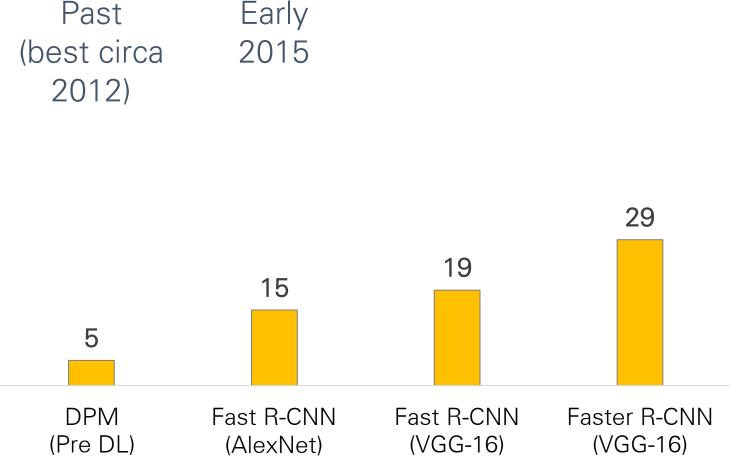
classifier

Past (best circa 2012)

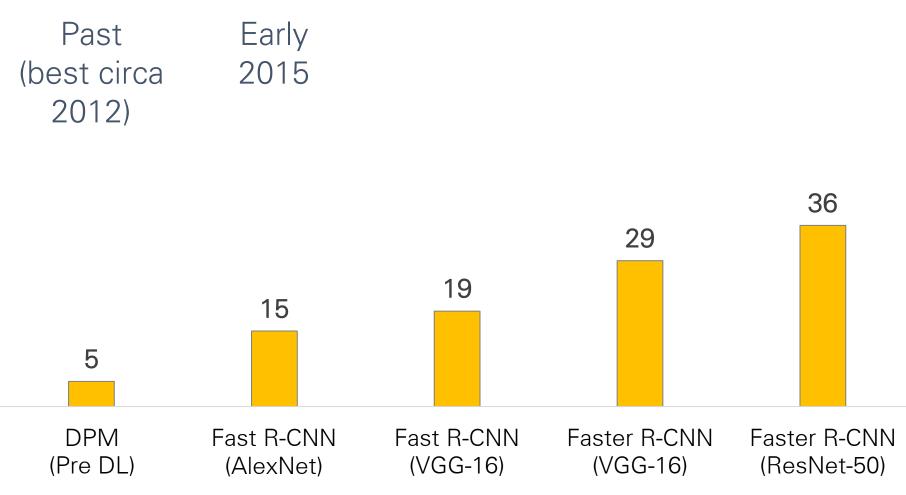
DPM (Pre DL)



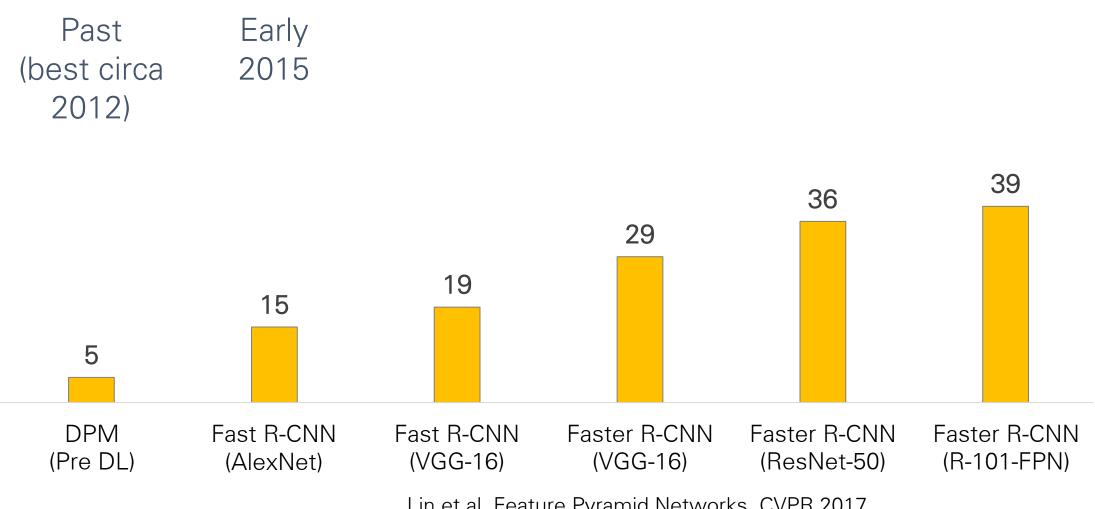




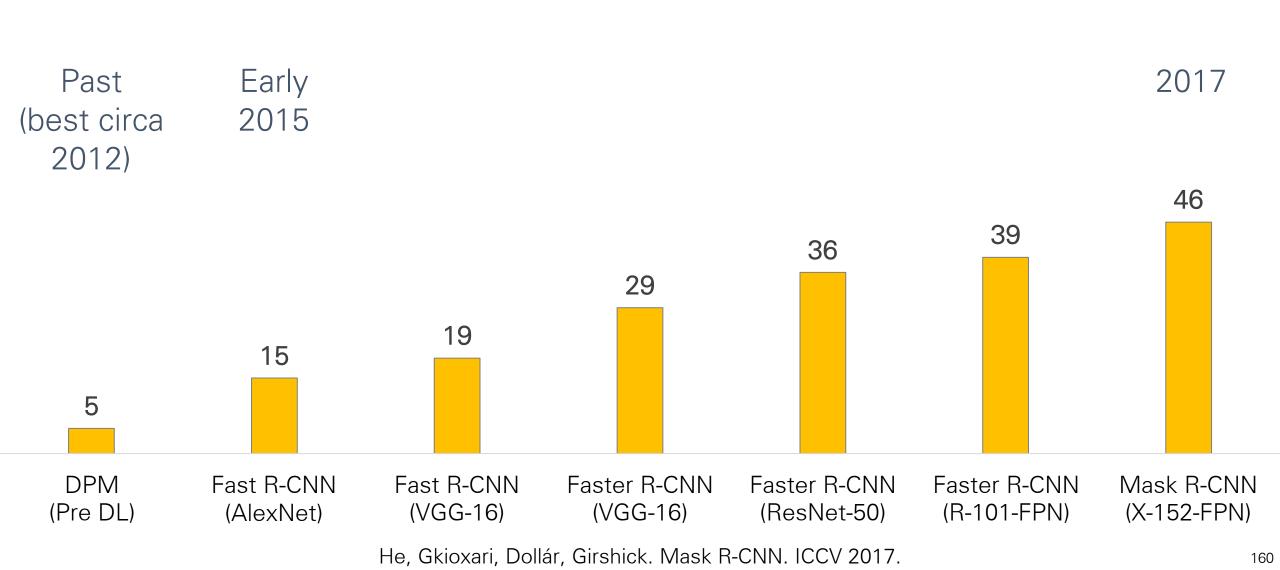
Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

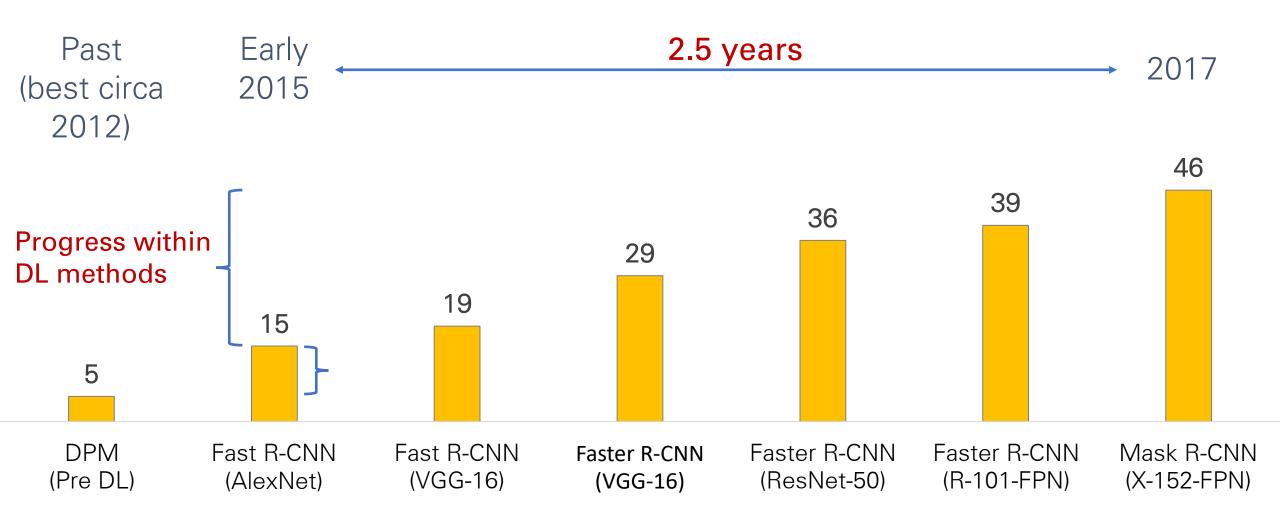


Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

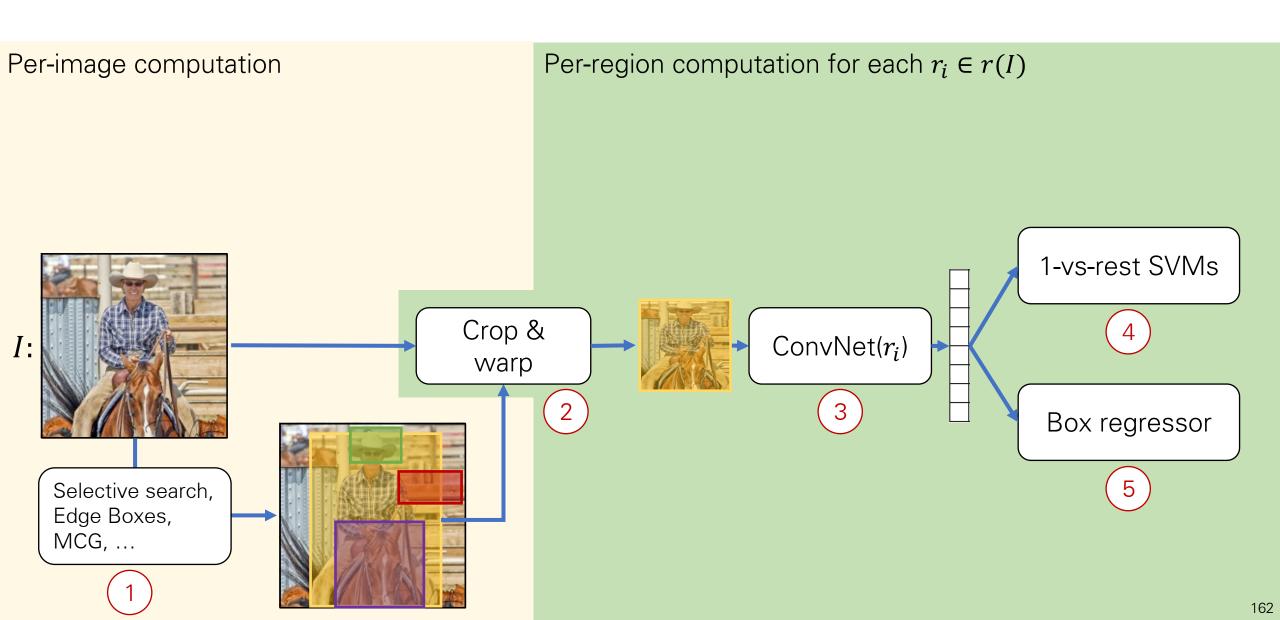


Lin et al. Feature Pyramid Networks. CVPR 2017.

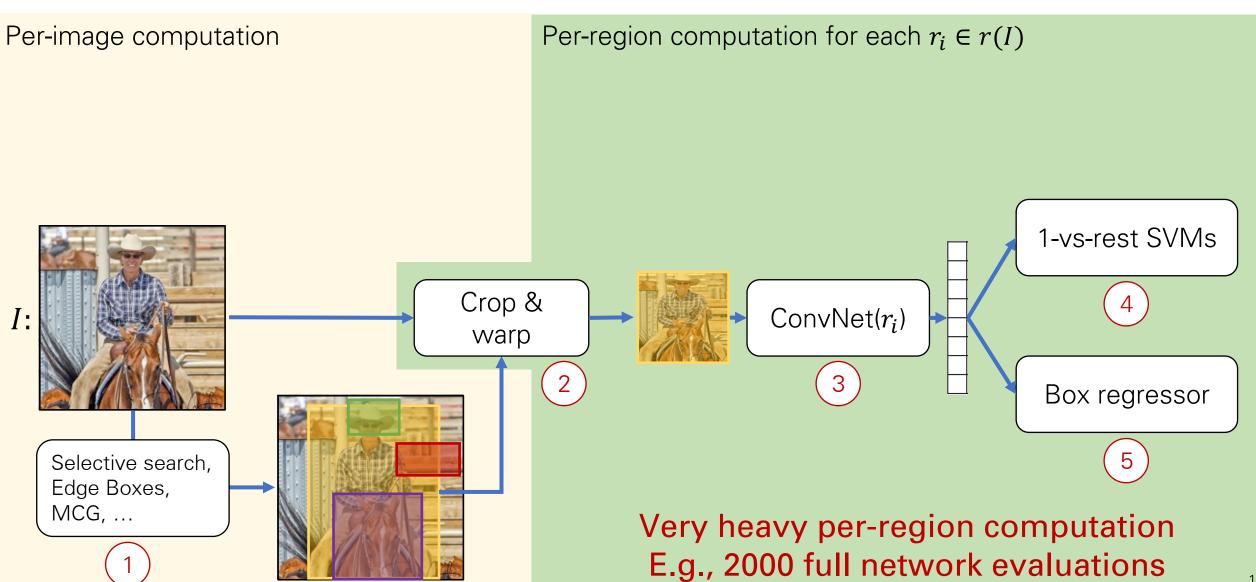




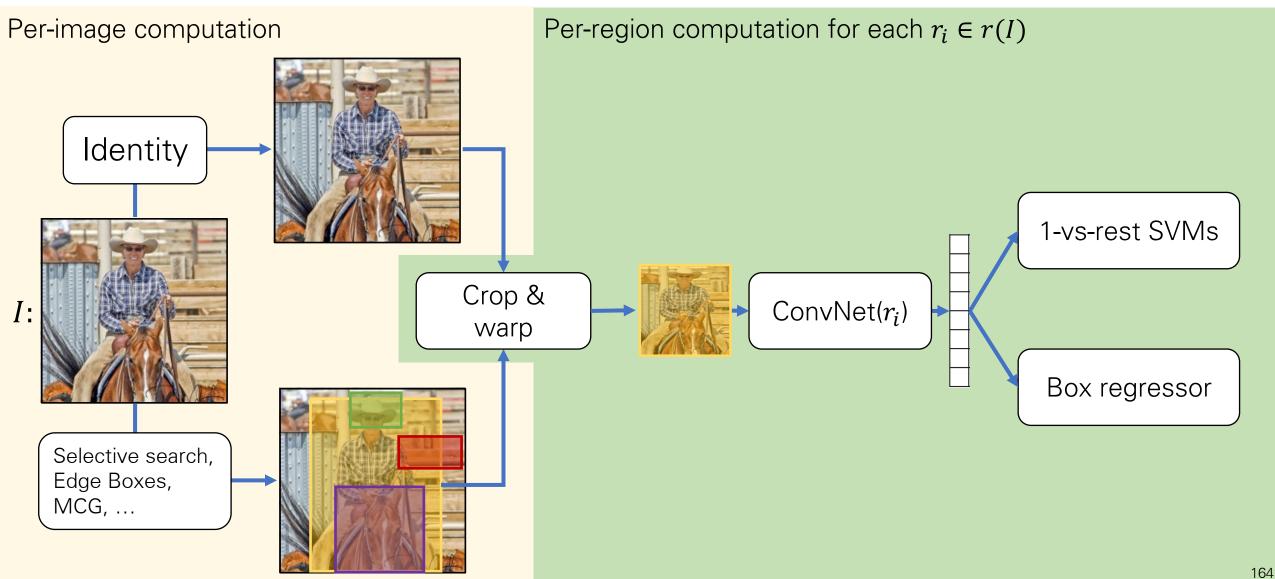
"Slow" R-CNN



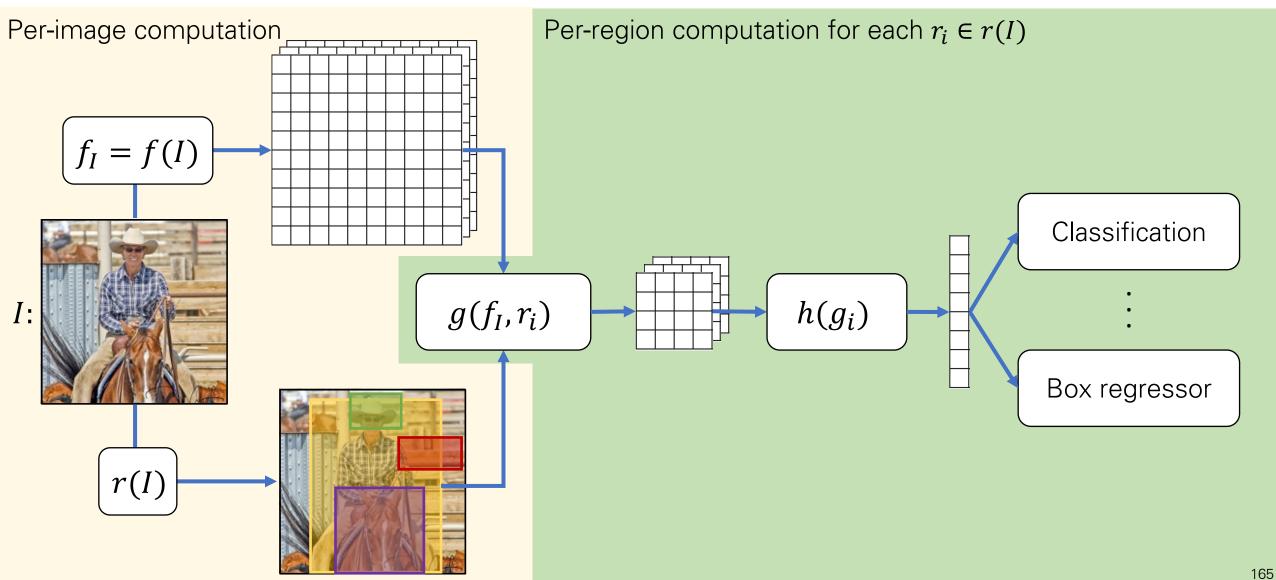
"Slow" R-CNN



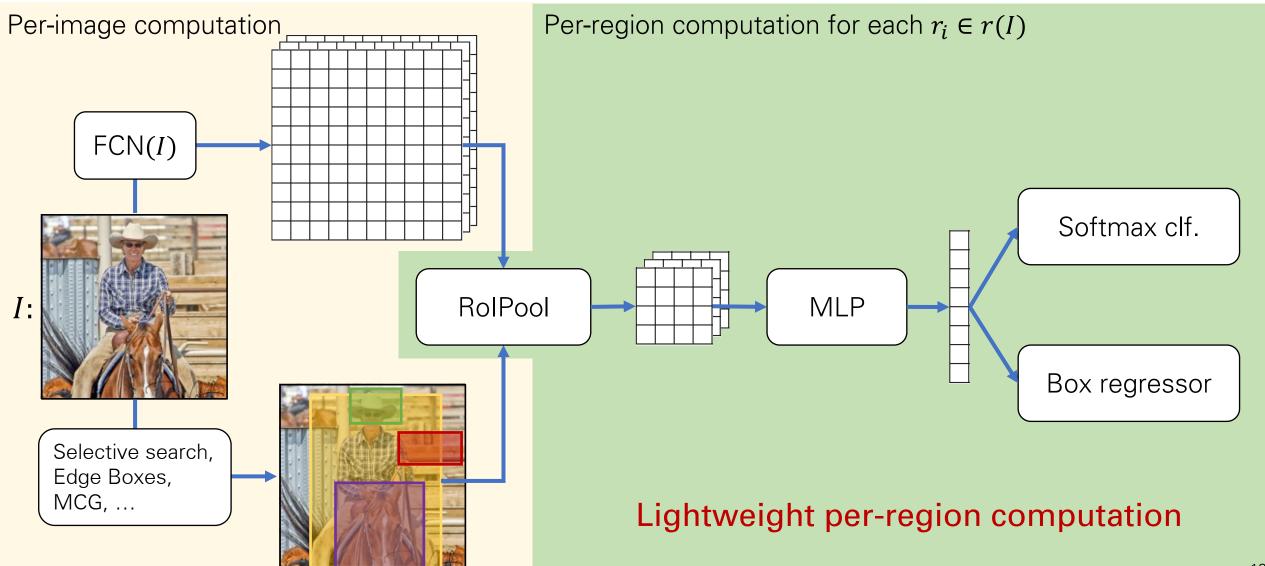
"Slow" R-CNN



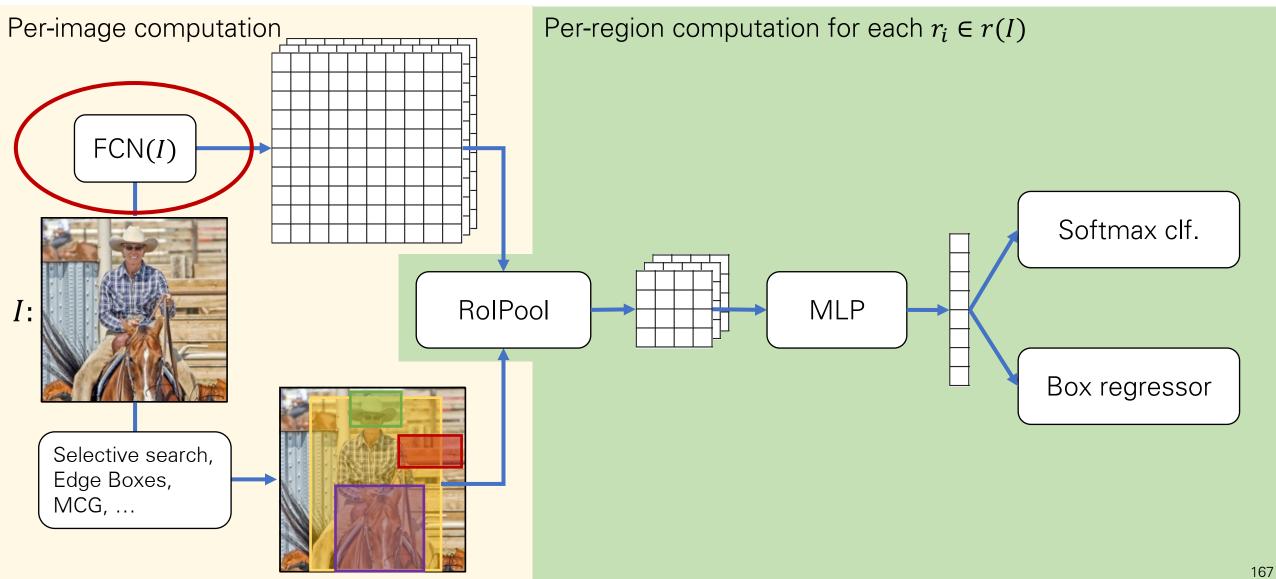
Generalized R-CNN Approach to Detection



Fast R-CNN

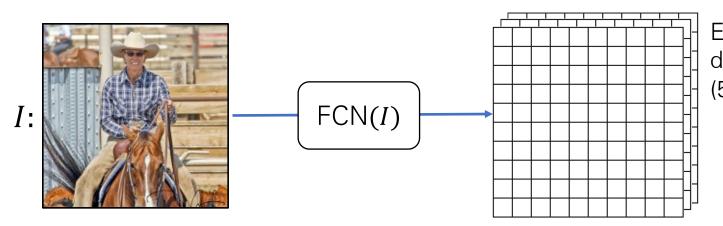


Fast R-CNN



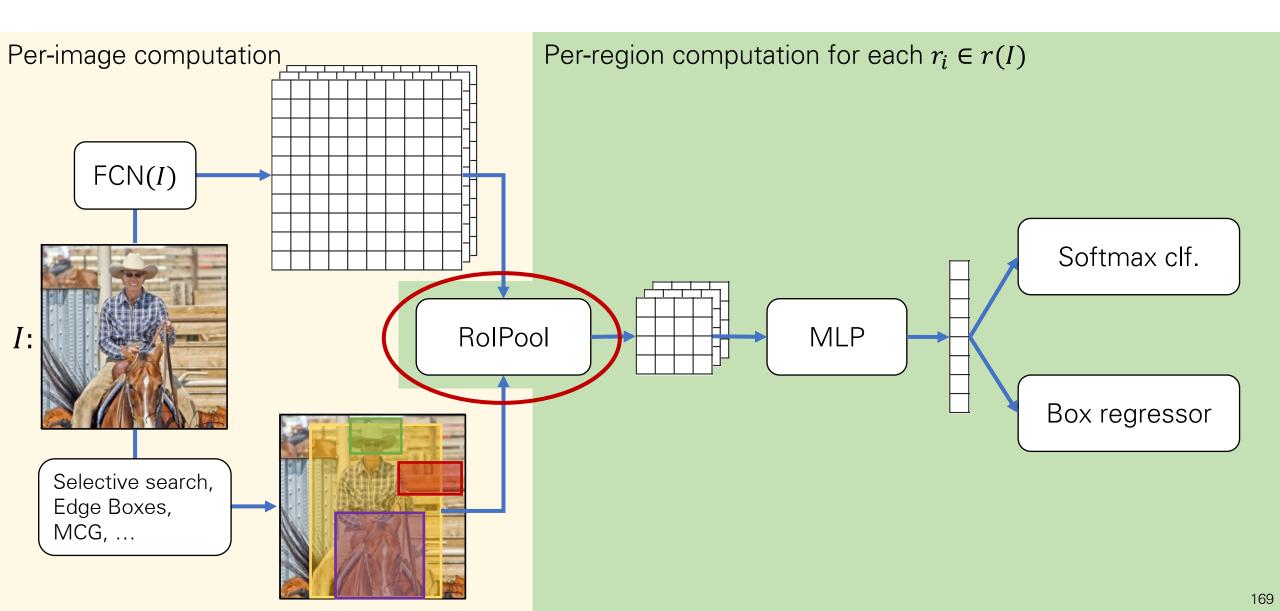
Whole-image FCN

- Example: ResNet-34
- Use any standard ConvNet as the "backbone architecture"
 - AlexNet, VGG, ResNet, Inception, Inception-ResNet, ResNeXt, DenseNet, ...
 - Use the first N layers with spatial extent (e.g., up to "conv5")

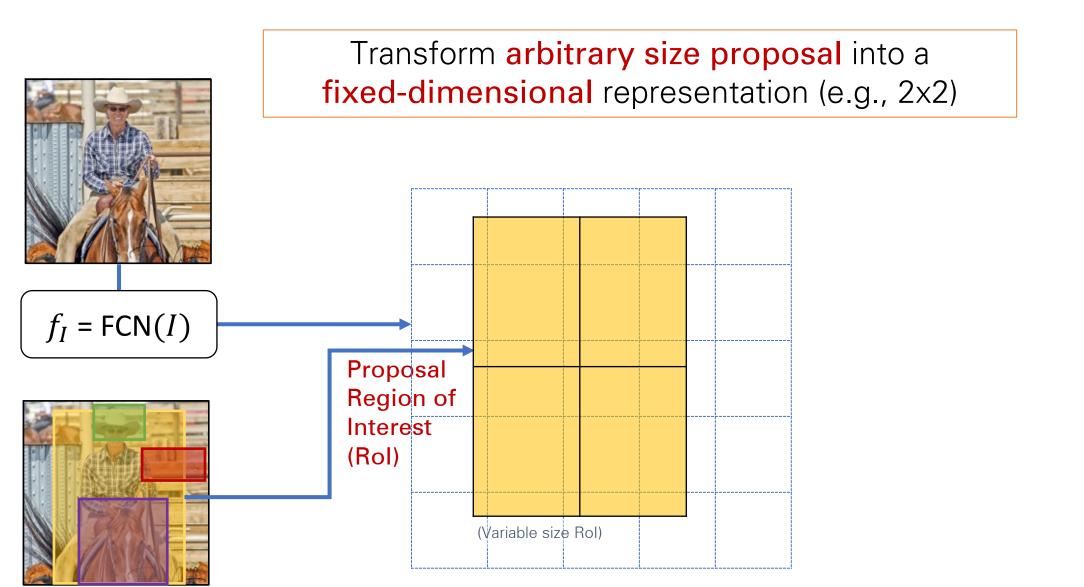


Example feature map dimensions: (512, H/16, W/16)

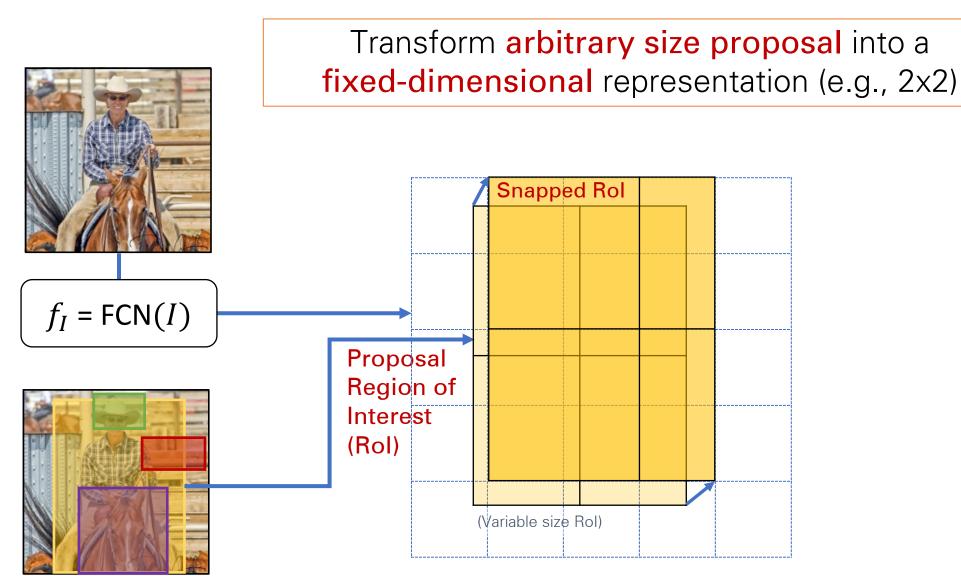
Fast R-CNN



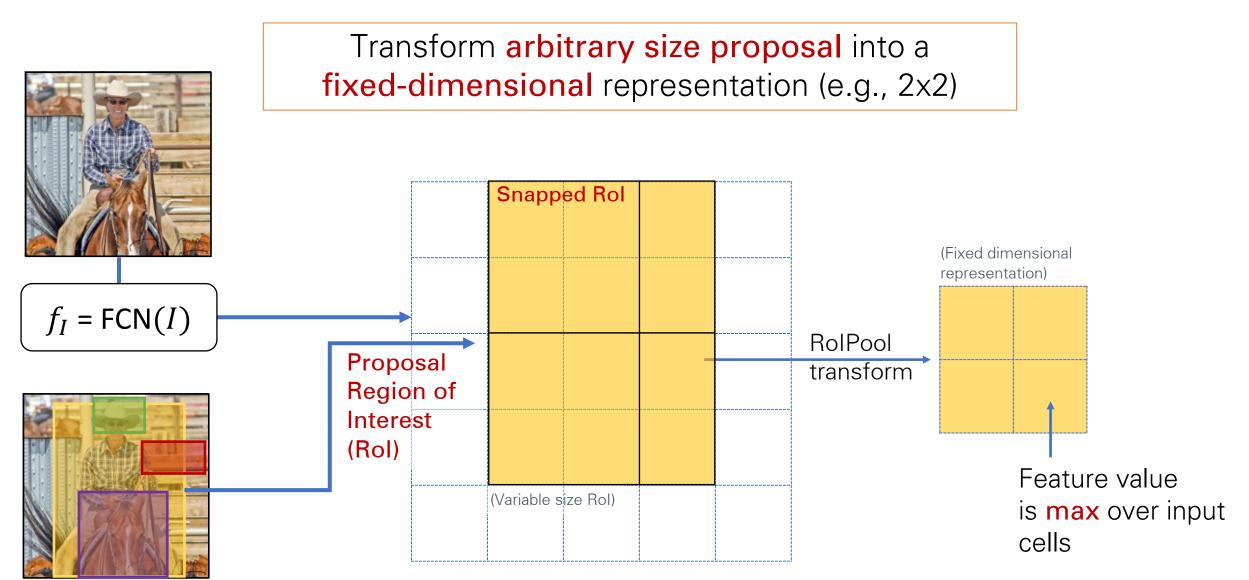
RolPool (on each Proposal)



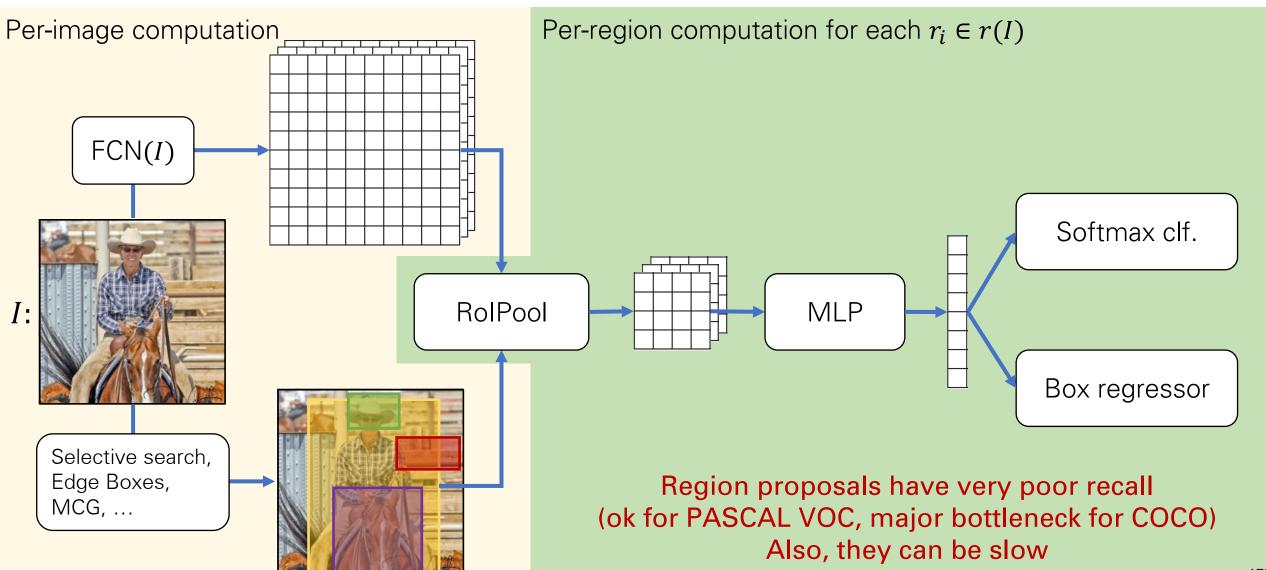
RolPool (on each Proposal)



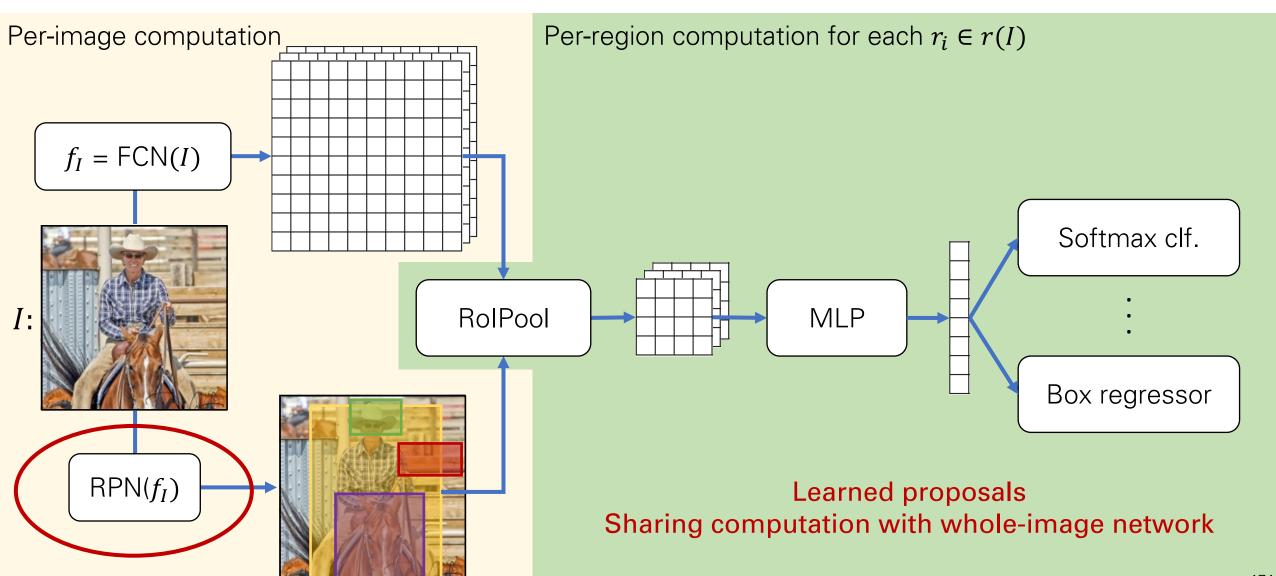
RolPool (on each Proposal)



Fast R-CNN

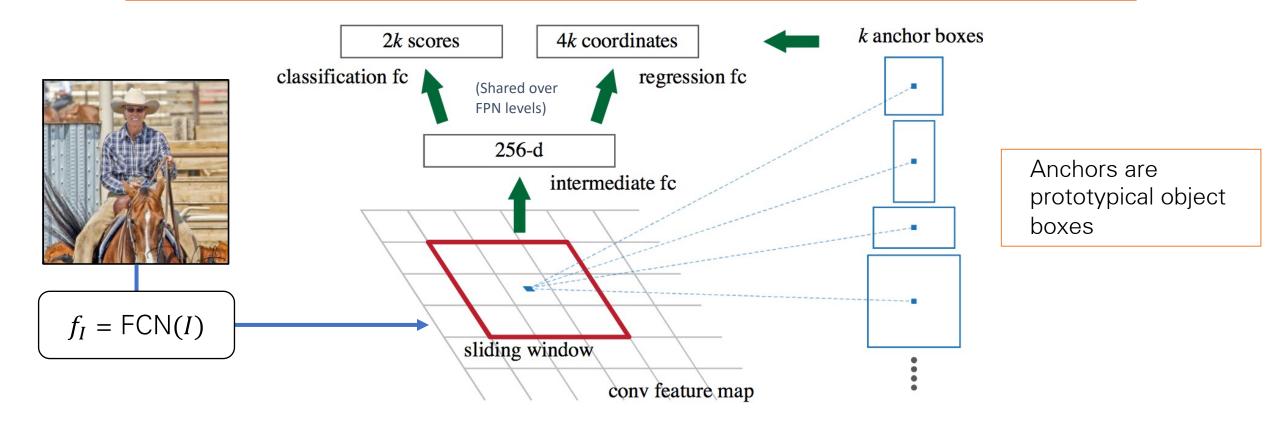


Faster R-CNN

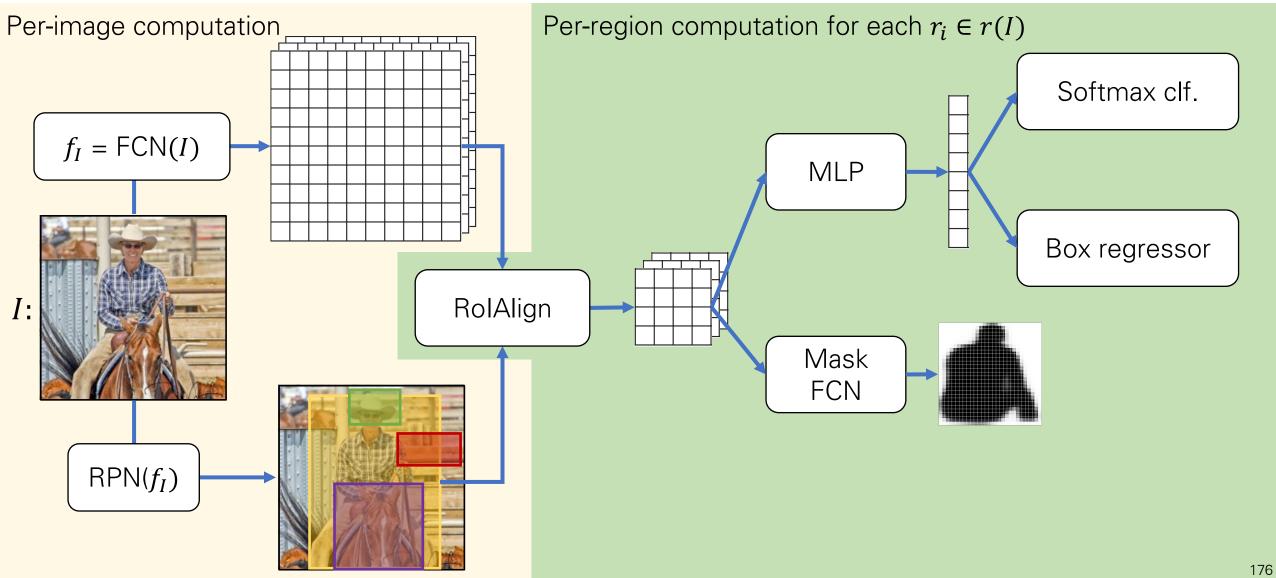


Region Proposal Network (RPN)

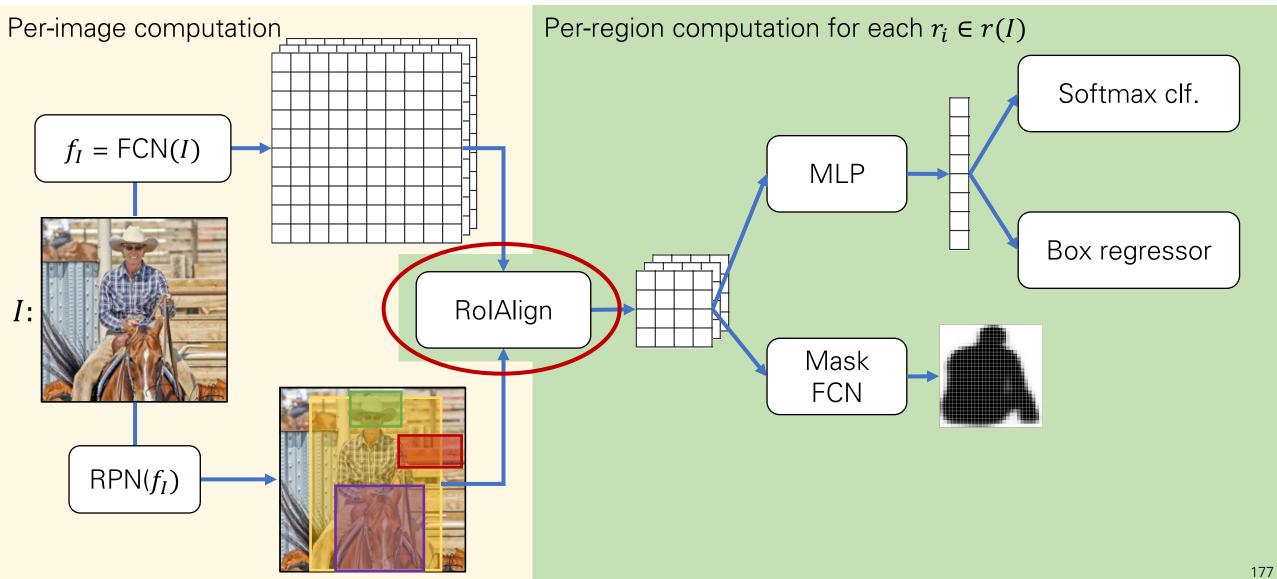
Proposals = sliding window object/not-object classifier + box regression inside the same network



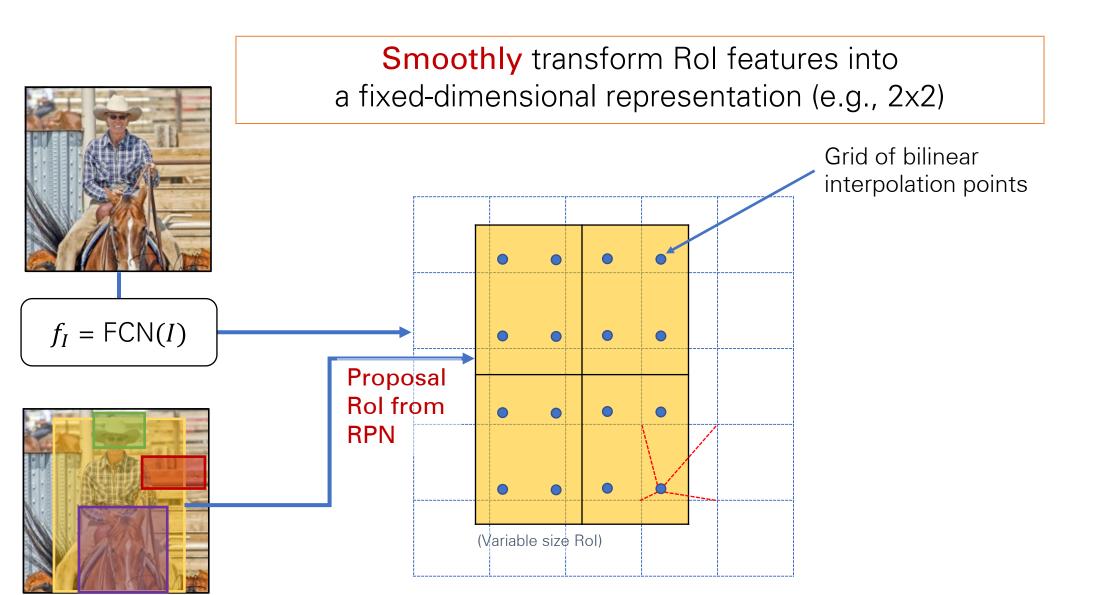
Mask R-CNN



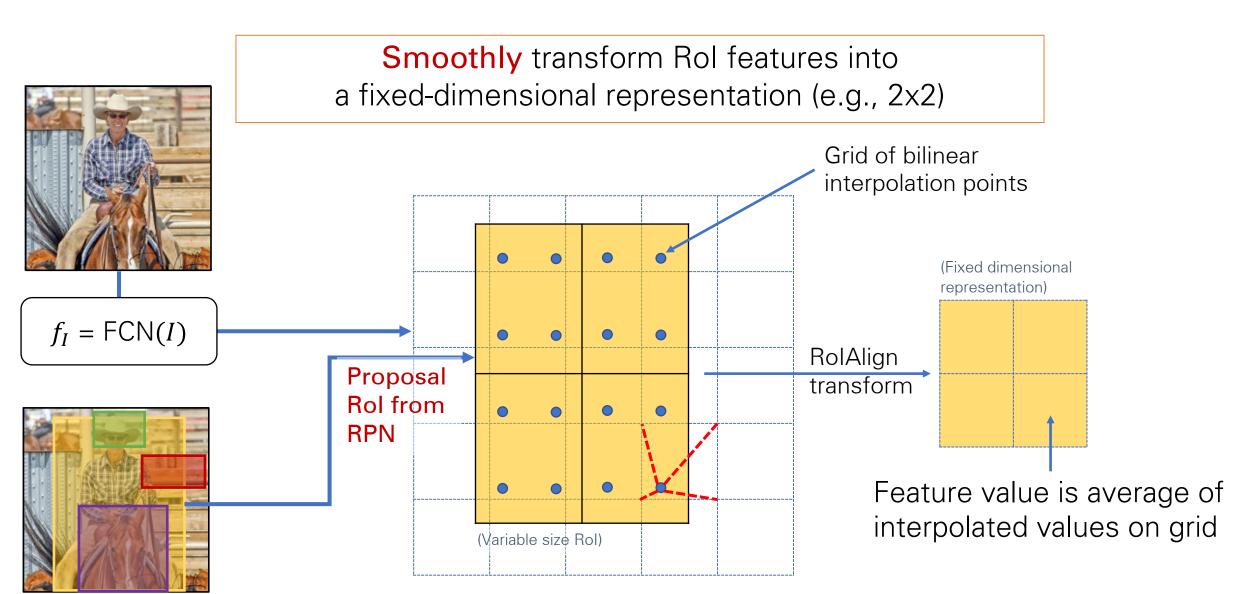
Mask R-CNN



RolAlign (on each Proposal)



RolAlign (on each Proposal)



Compare to RolPool

Preserve alignment or not?

	align?	bilinear?	agg.	AP	AP_{50}	AP ₇₅
RoIPool [12]			max	26.9	48.8	26.4
RoIWarp [10]		√	max	27.2	49.2	27.1
		✓	ave	27.1	48.9	27.1
RoIAlign	√	√	max	30.2	51.0	31.8
	✓	✓	ave	30.3	51.2	31.5

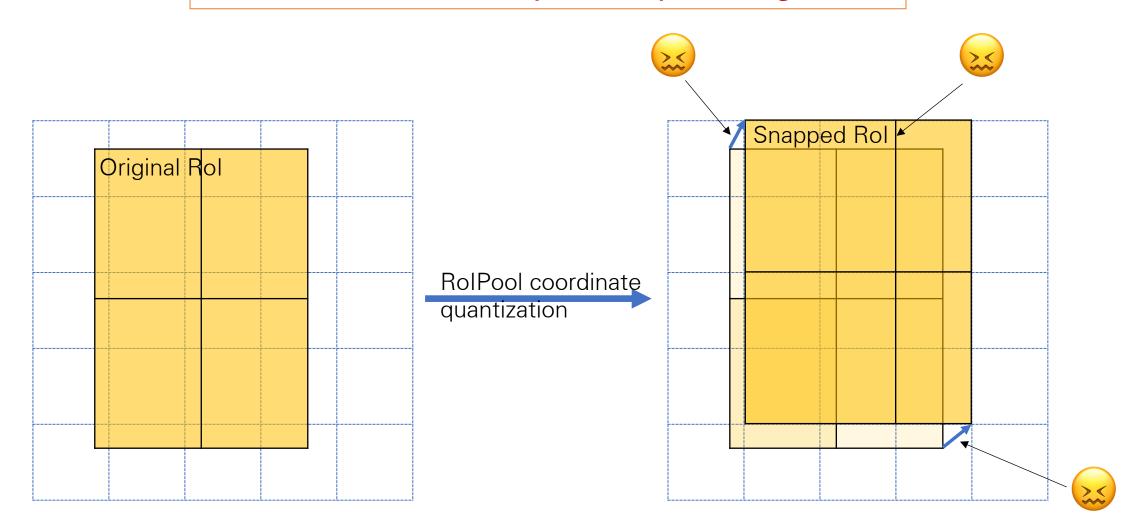
(c) **RoIAlign** (ResNet-50-C4): Mask results with various RoI layers. Our RoIAlign layer improves AP by \sim 3 points and AP₇₅ by \sim 5 points. Using proper alignment is the only factor that contributes to the large gap between RoI layers.

+20% relative

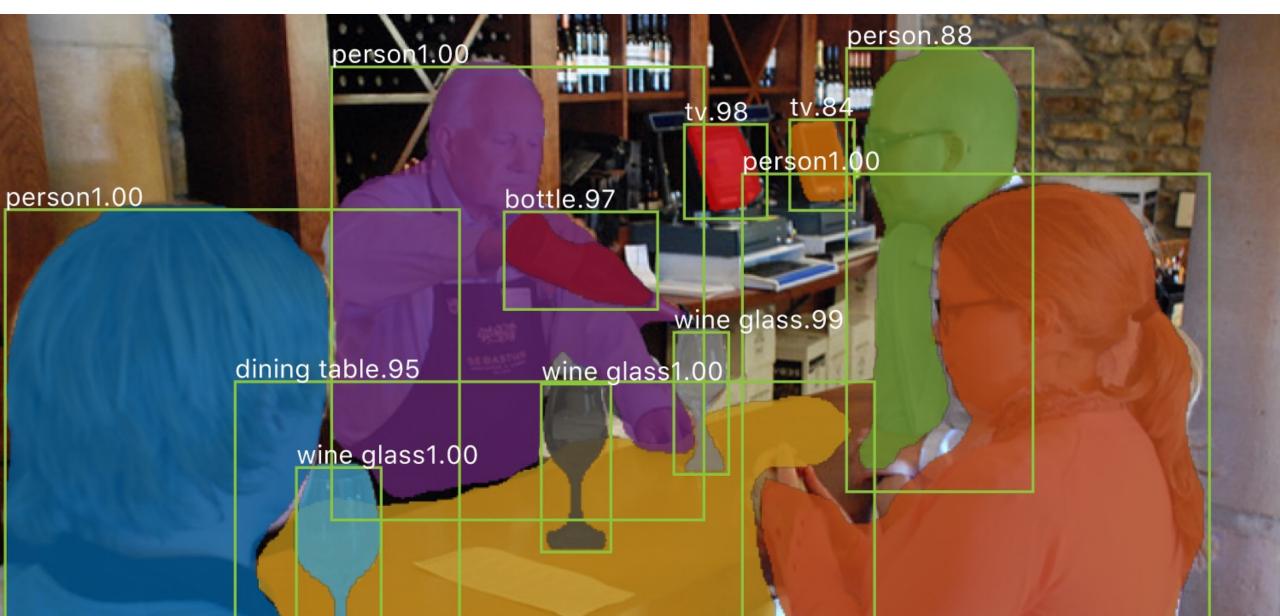
at high loU

Compare to RolPool

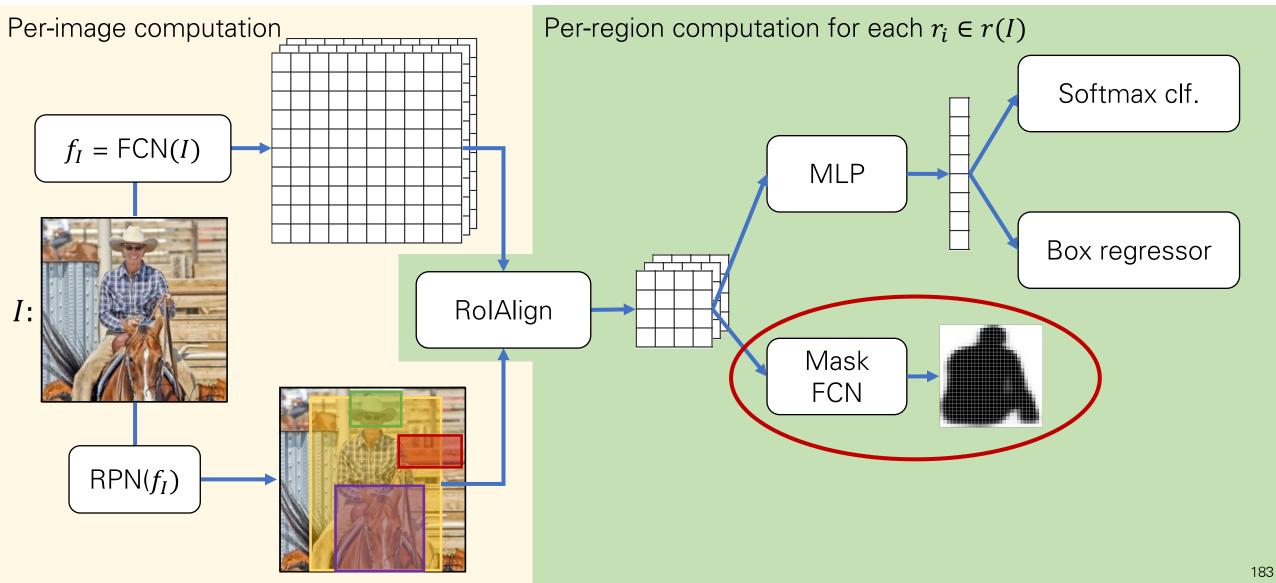
Quantization breaks pixel-to-pixel alignment



Instance Segmentation



Mask R-CNN



Mask Head (on each Proposal)

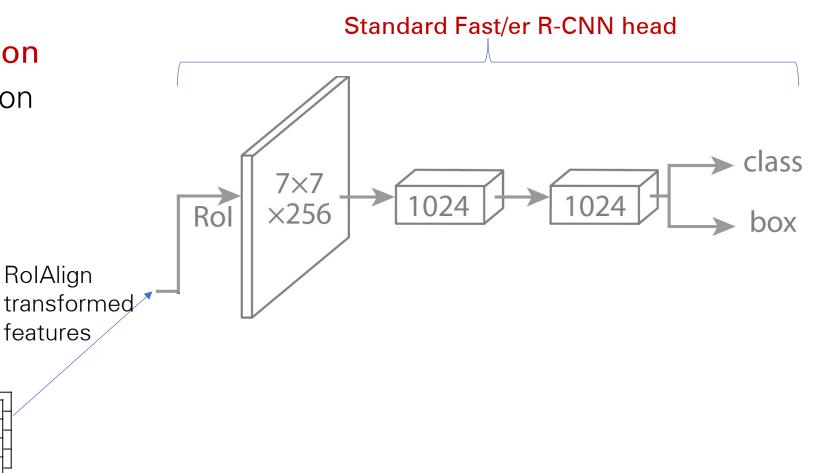
RolAlign

features

- Task specific heads for ...
 - Object classification

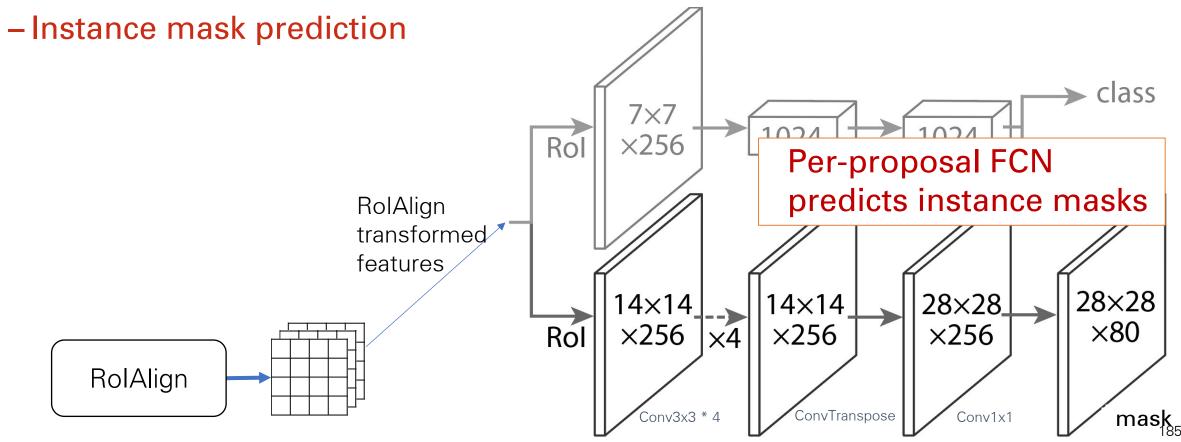
RolAlign

- Bounding box detection
- Instance mask prediction

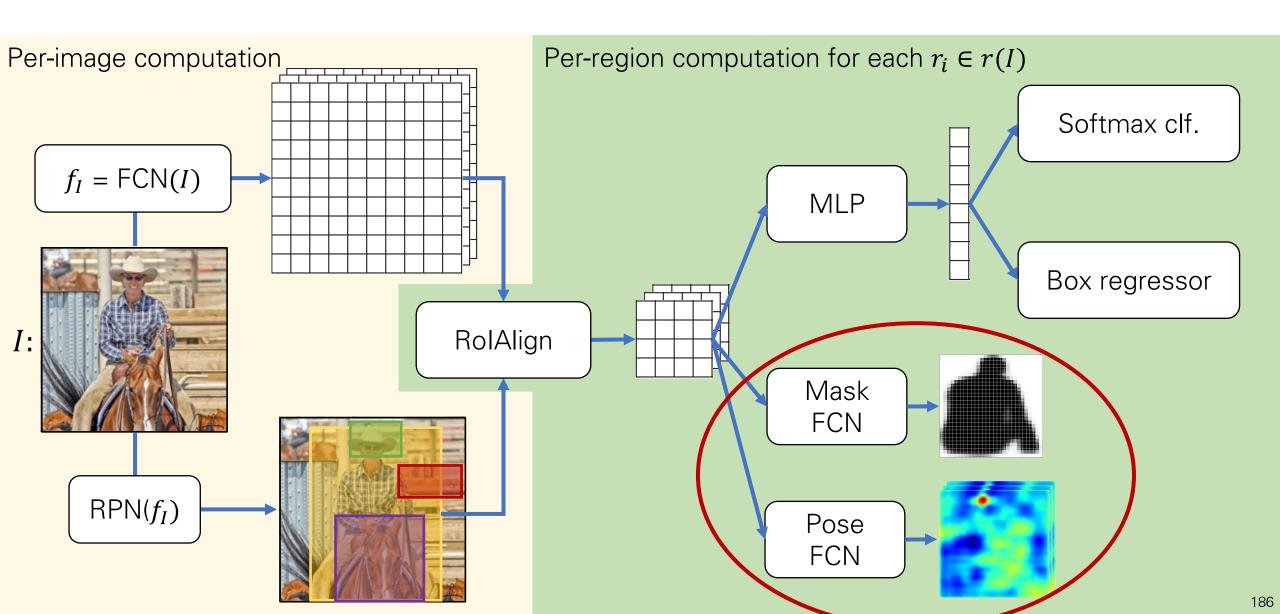


Mask Head (on each Proposal)

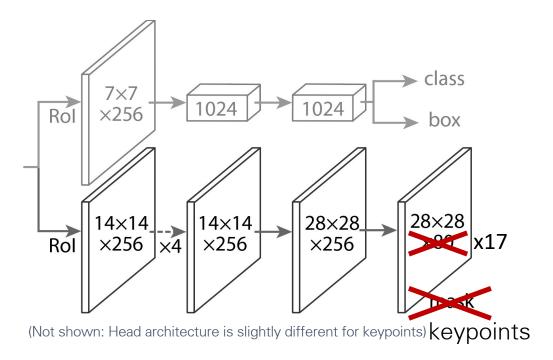
- Task specific heads for ...
 - Object classification
 - Bounding box detection



Mask R-CNN: Extension to 2D Human Pose

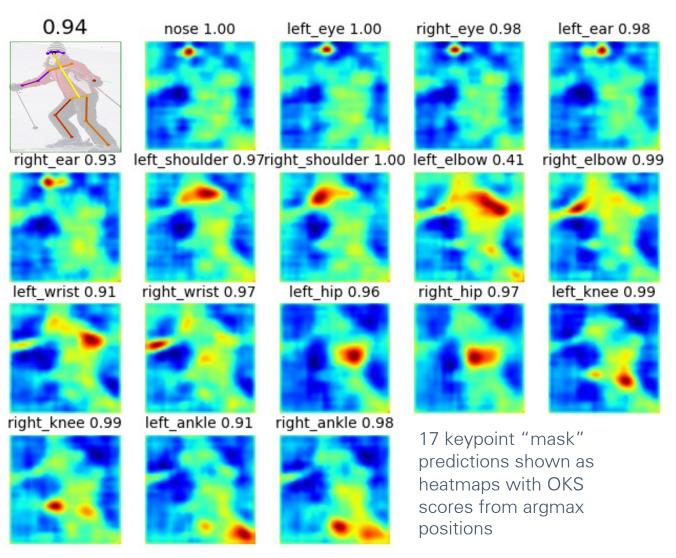


Pose Head



Add keypoint head (28x28x17)

- Predict one "mask" for each keypoint
- Softmax over spatial locations (encodes one keypoint per mask "prior")



Mask R-CNN: Training

- Same as "image centric" Fast/er R-CNN training
- But with training targets for masks

Example Mask Training Targets

Image with training proposal

28x28 mask target

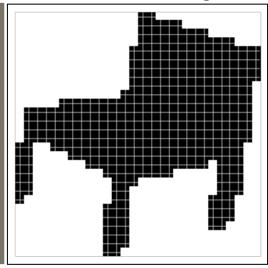
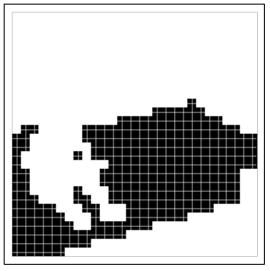
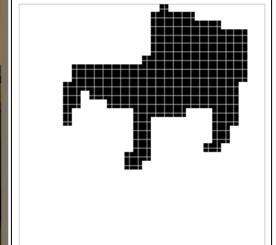
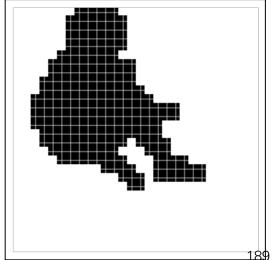


Image with training proposal

28x28 mask target







Mask R-CNN: Inference

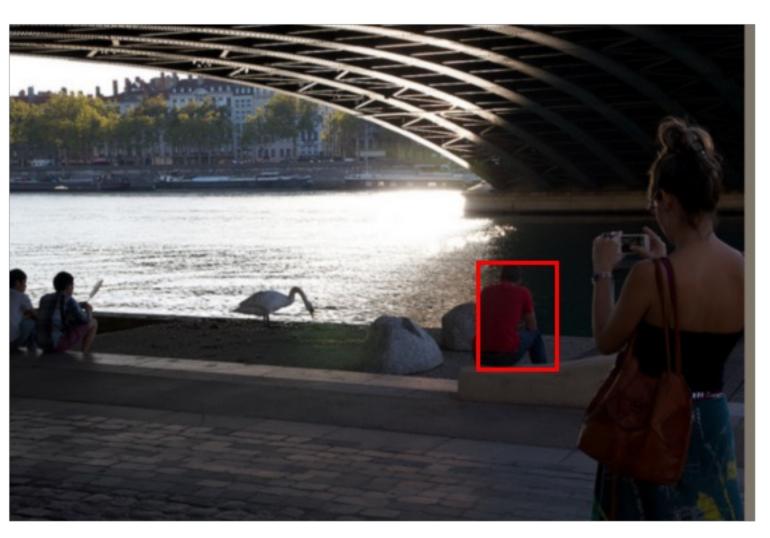
1. Perform Faster R-CNN inference

- Run backbone FCN
- Generate proposals with RPN
- Score the proposals with clf. head
- Refine proposals with box regressor
- -Apply NMS and take the top K (= 100, e.g.)

2. Run RolAlign and mask head on top-K refined, post-NMS boxes

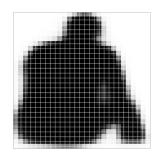
- Fast (only compute masks for top-K detections)
- Improves accuracy (uses refined detection boxes, not proposals)

Mask Prediction



Validation image with box detection shown in red

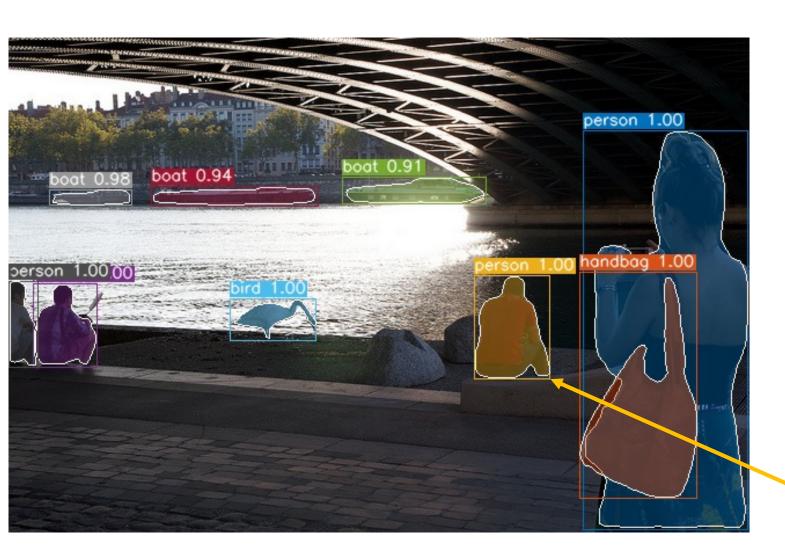
28x28 soft prediction from Mask R-CNN (enlarged)



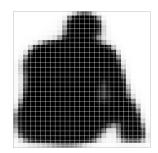
Soft prediction resampled to image coordinates (bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Mask Prediction



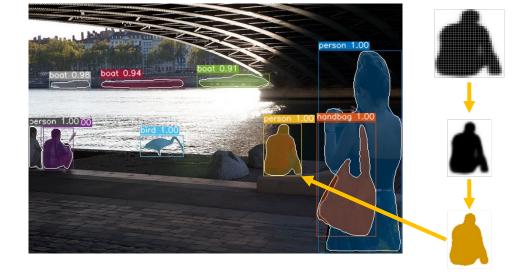
28x28 soft prediction from Mask R-CNN (enlarged)



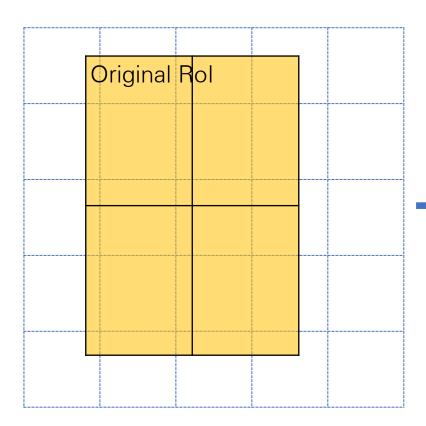
Soft prediction resampled to image coordinates (bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

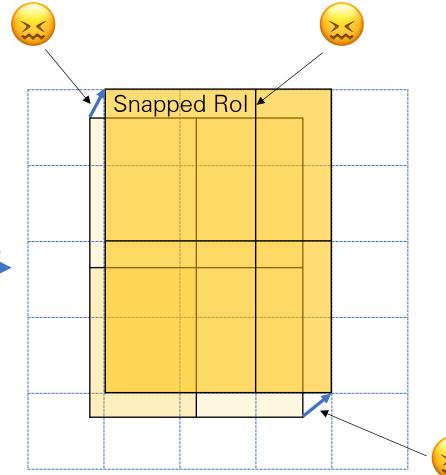
Validation image with box detection shown in red



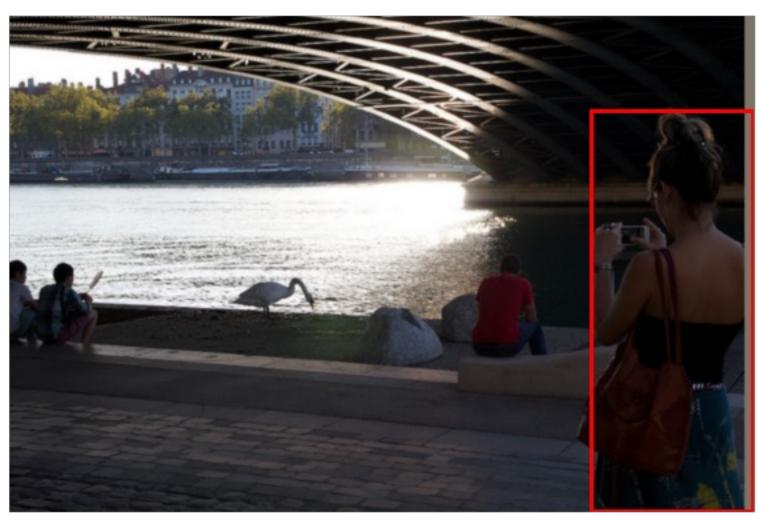
Quantization breaks pixel-to-pixel alignment



RolPool coordinate quantization

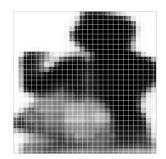


Mask Prediction



Validation image with box detection shown in red

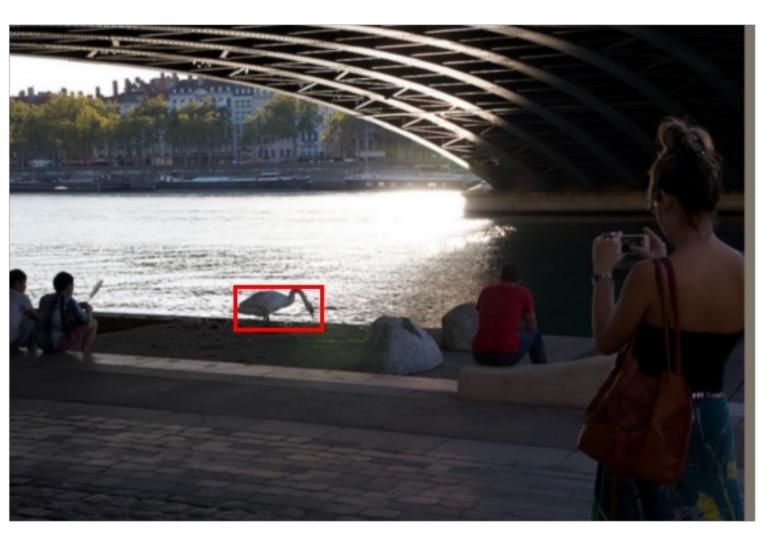
28x28 soft prediction



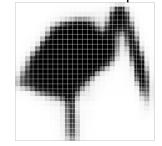
Resized soft prediction

Final mask

Mask Prediction



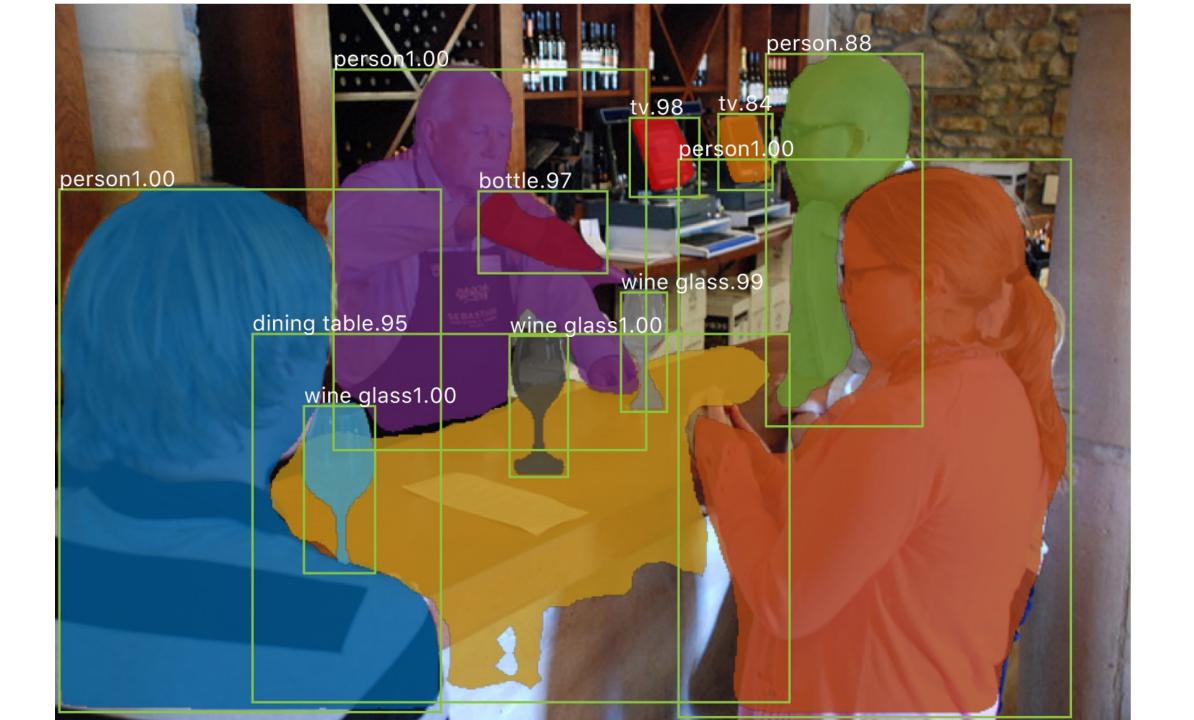
28x28 soft prediction

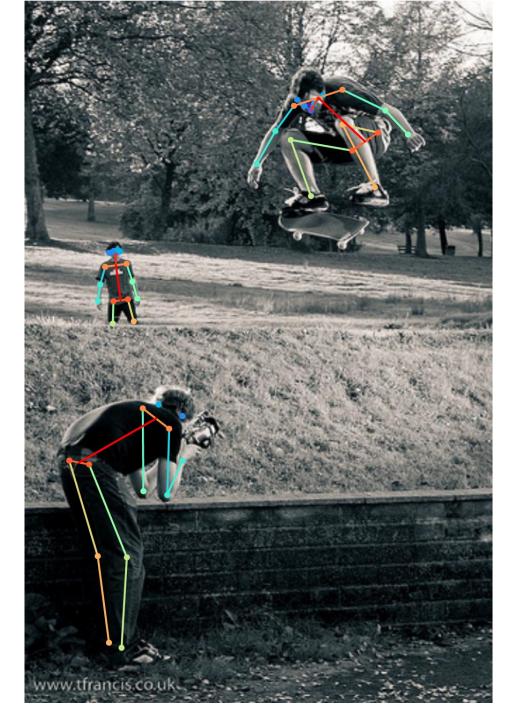


Resized Soft prediction

Final mask

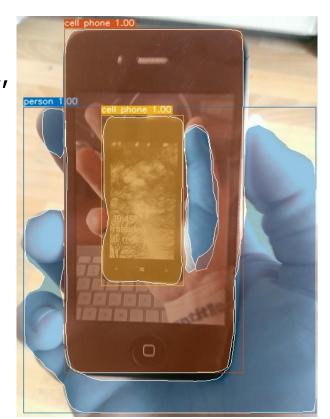
Validation image with box detection shown in red

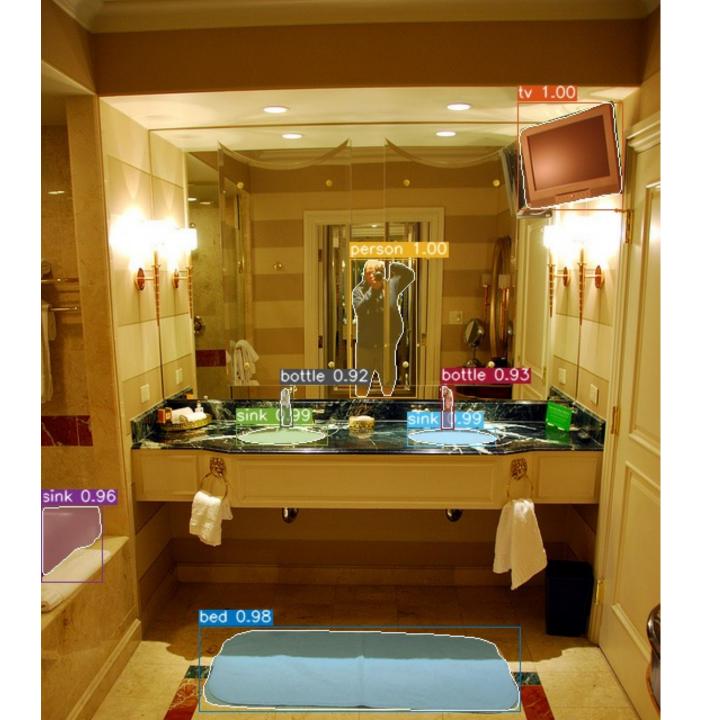


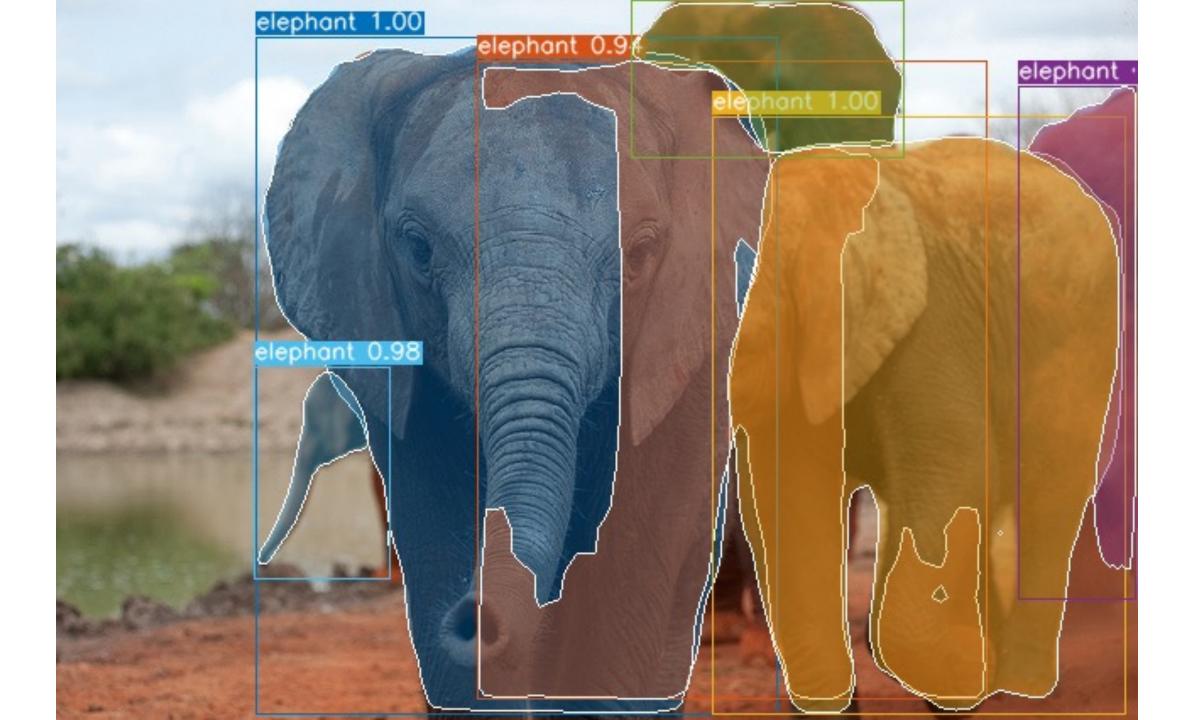


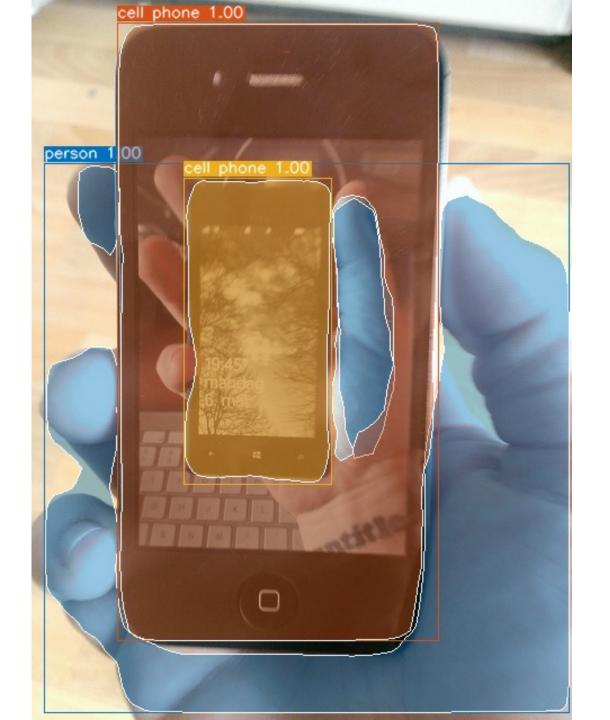
Is Object Detection Solved?

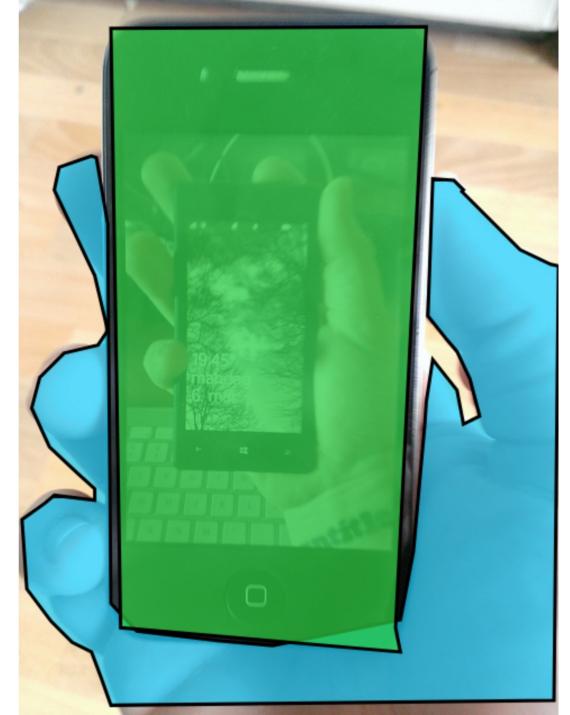
- Obviously no; there are frequently silly errors
- But it is getting frustratingly good
- The errors are often reasonable
- The bottlenecks are raw recognition and "reasoning"

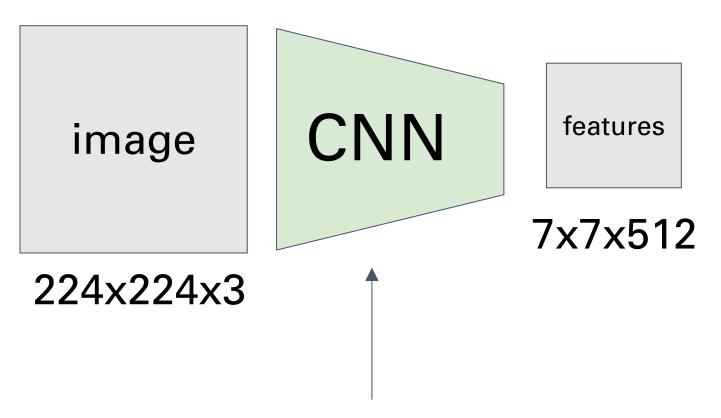




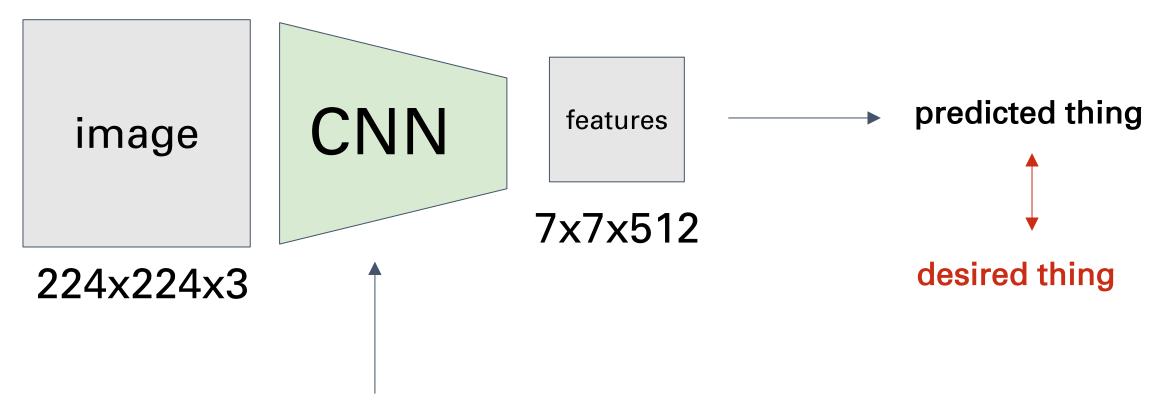








A block of compute with a few million parameters.



A block of compute with a few million parameters.

predicted thing CNN features image 7x7x512 desired thing 224x224x3

A block of compute with a

few million parameters.

210

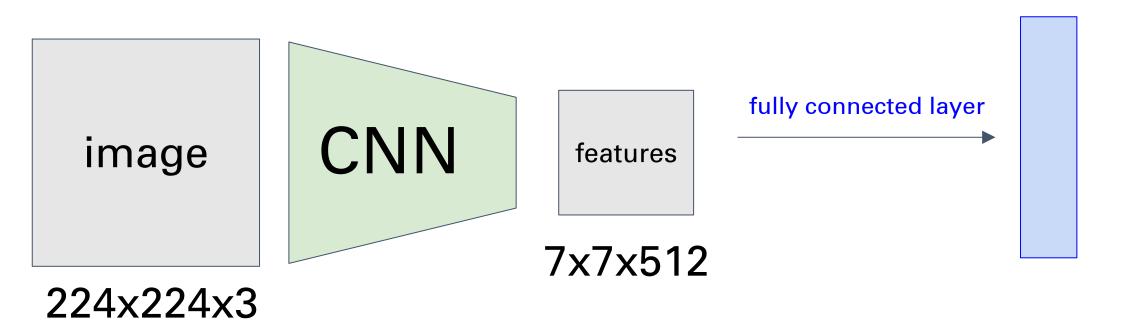
this part

changes from

task to task

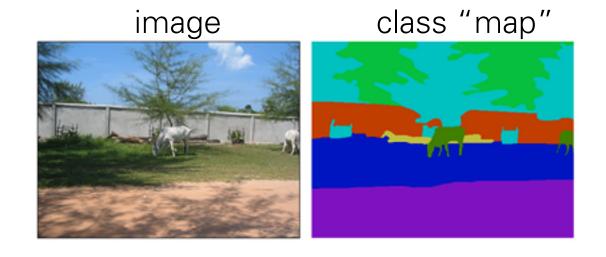
Image Classification

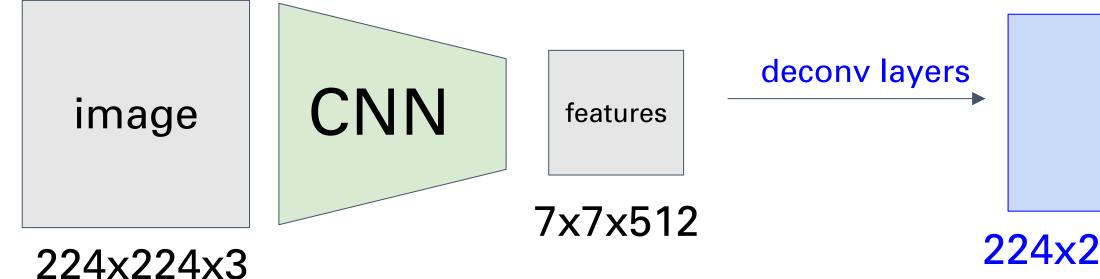
thing = a vector of probabilities for different classes



e.g. vector of 1000 numbers giving probabilities for different classes.

Segmentation



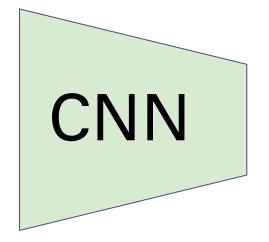


224x224x20 array of class probabilities at each pixel.

Localization

image

224x224x3



features

7x7x512

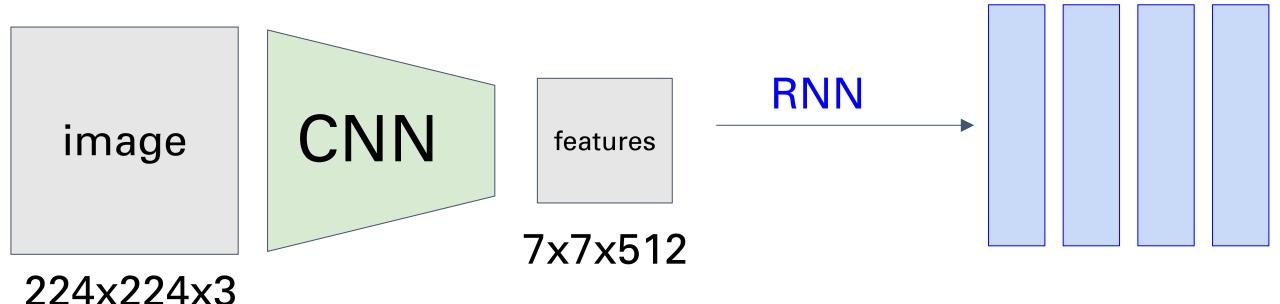
fully connected layer

Class probabilities (as before)

4 numbers:

- X coord
- Y coord
- Width
- Height

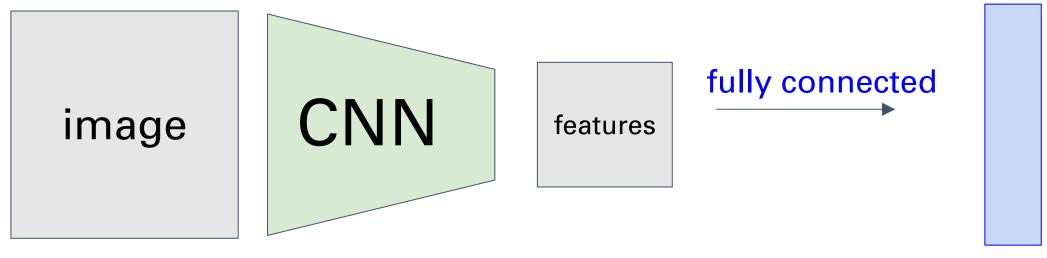
Image Captioning



A sequence of 10,000-dimensional vectors giving probabilities of different words in the caption.

Reinforcement Learning

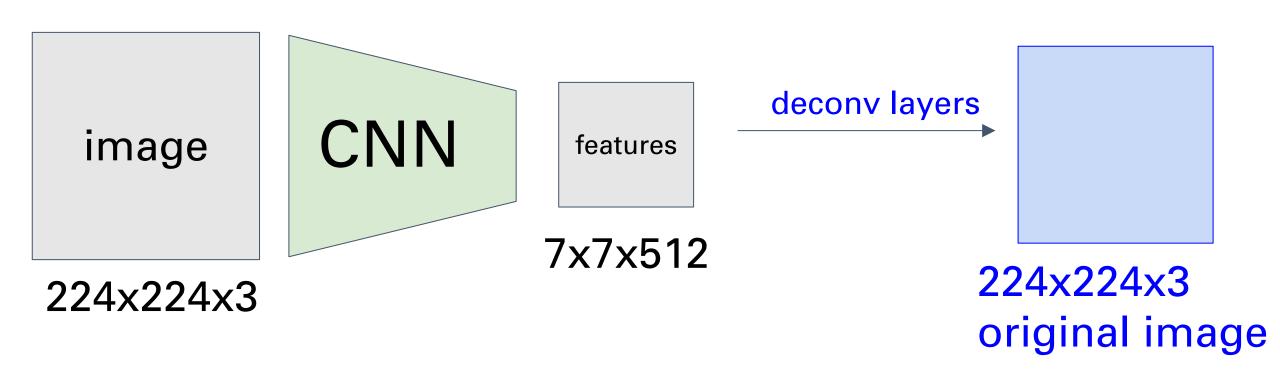
Mnih et al. 2015



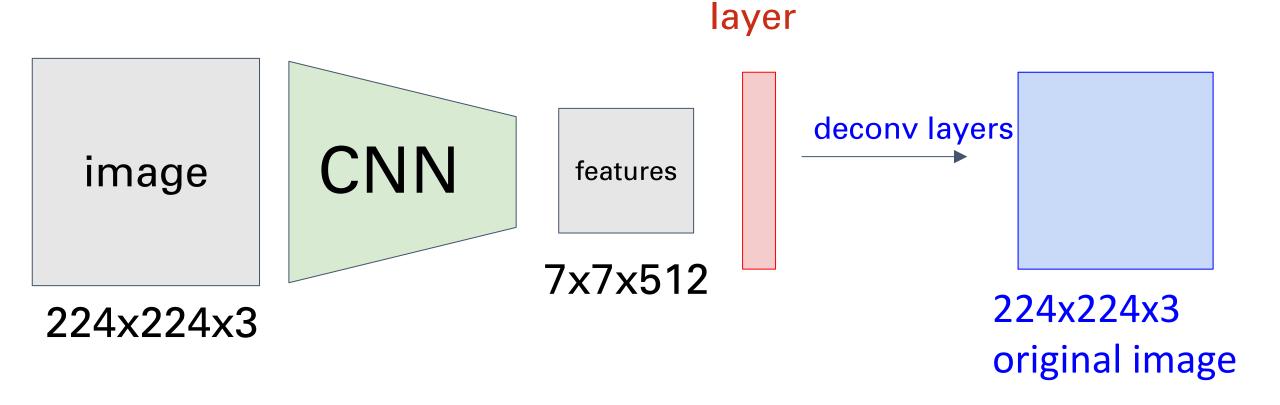
160x210x3

e.g. vector of 8 numbers giving probability of wanting to take any of the 8 possible ATARI actions.

Autoencoders

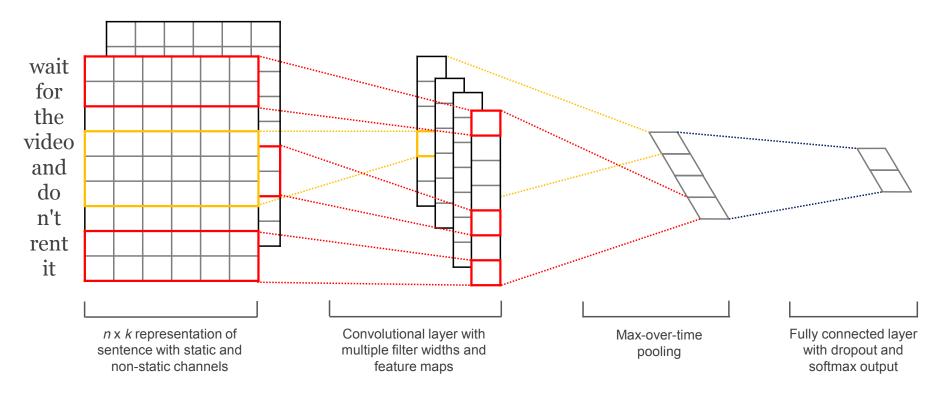


Variational Autoencoders

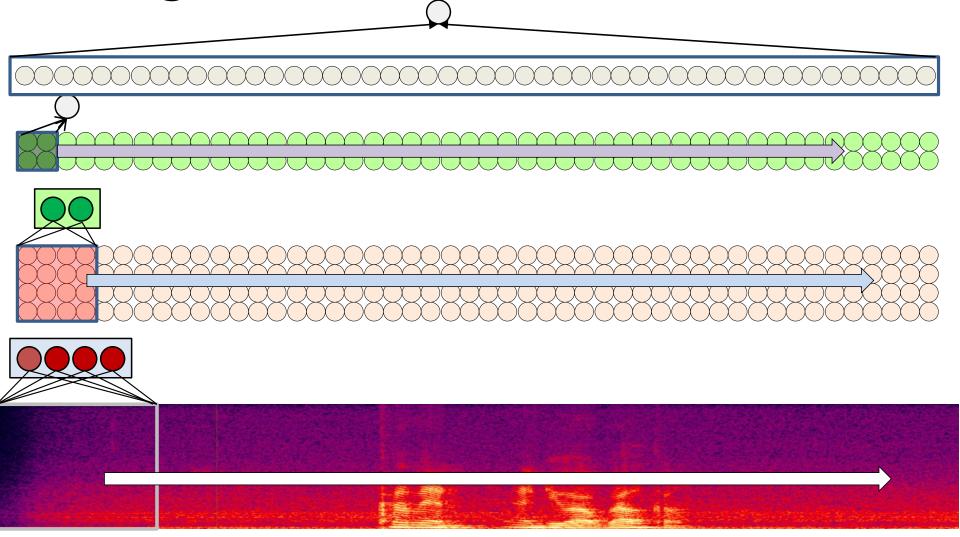


reparameterization

[Kingma et al.], [Rezende et al.], [Salimans et al.]



- 1D convolution ≈ Time Delay Neural Networks (Waibel et al. 1989, Collobert and Weston 2011)
- Two main paradigms:
 - Context window modeling: For tagging, etc. get the surrounding context before tagging
 - Sentence modeling: Do convolution to extract n-grams, pooling to combine over whole sentence



• CNNs for audio processing: MFCC features + Time Delay Neural Networks

Next lecture: Understanding and Visualizing ConvNets